1
|
Avornyo A, Thanigaivelan A, Krishnamoorthy R, Hassan SW, Banat F. Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. MEMBRANES 2023; 13:176. [PMID: 36837679 PMCID: PMC9967170 DOI: 10.3390/membranes13020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles are reported for the improved separation performance of emulsified oil. Ag-CuO nanoparticles were synthesized via hydrothermal technique and dip-coated onto commercial membranes at varying concentrations (0.1, 0.5, and 1.0 wt.%). The prepared membranes were further examined to understand the improvements in oil-water separation due to Ag-CuO coating. All modified ceramic membranes exhibited higher hydrophilicity and decreased porosity. Additionally, the permeate flux, oil rejection, and antifouling performance of the Ag-CuO-coated membranes were more significantly improved than the pristine commercial membrane. The 0.5 wt.% modified membrane exhibited a 30% higher water flux (303.63 L m-2 h-1) and better oil rejection efficiency (97.8%) for oil/water separation among the modified membranes. After several separation cycles, the 0.5 wt.% Ag-CuO-modified membranes showed a constant permeate flux with an excellent oil rejection of >95% compared with the unmodified membrane. Moreover, the corrosion resistance of the coated membrane against acid, alkali, actual seawater, and oily wastewater was remarkable. Thus, the Ag-CuO-modified ceramic membranes are promising for oil separation applications due to their high flux, enhanced oil rejection, better antifouling characteristics, and good stability.
Collapse
Affiliation(s)
- Amos Avornyo
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Arumugham Thanigaivelan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shadi W. Hassan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
2
|
Li H, Zhong Q, Sun Q, Xiang B, Li J. Upcycling Waste Pine nut Shell Membrane for Highly Efficient Separation of Crude Oil-in-Water Emulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3493-3500. [PMID: 35271280 DOI: 10.1021/acs.langmuir.1c03386] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Discharge of oily sewage and frequent oil spills have caused serious harm to human production, life, and ecological environment. Due to the presence of a large number of surfactants in water, these oil-water mixtures are easy to form oil-in-water emulsion, which is difficult to separate by traditional methods. At the same time, the water-soluble pollutants such as dyes and heavy metal ions in oily wastewater also cause great harm to the human body and the environment. A pine nut shell is a kind of common domestic waste material. Herein, an underwater superoleophobic pine nut shell membrane (PNSM) was prepared by the simple pumping filtration method, which realized the separation of oil-in-water emulsion and adsorption of dyes and heavy metal ions. In addition, the filter membrane can be used for separating corrosive emulsions of strong acid, strong alkali, and 3.5% NaCl solutions (simulated seawater). Besides, the PNSM showed excellent toughness and flexibility. Due to the abovementioned performance, this cost-efficient and environmentally friendly membrane can be a promising candidate for multifunctional oily water remediation.
Collapse
Affiliation(s)
- Haoyu Li
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Qi Zhong
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Qing Sun
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Bin Xiang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Jian Li
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| |
Collapse
|
3
|
Chen M, Heijman SGJ, Rietveld LC. State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. MEMBRANES 2021; 11:888. [PMID: 34832117 PMCID: PMC8625480 DOI: 10.3390/membranes11110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
Membrane filtration is considered to be one of the most promising methods for oily wastewater treatment. Because of their hydrophilic surface, ceramic membranes show less fouling compared with their polymeric counterparts. Membrane fouling, however, is an inevitable phenomenon in the filtration process, leading to higher energy consumption and a shorter lifetime of the membrane. It is therefore important to improve the fouling resistance of the ceramic membranes in oily wastewater treatment. In this review, we first focus on the various methods used for ceramic membrane modification, aiming for application in oily wastewater. Then, the performance of the modified ceramic membranes is discussed and compared. We found that, besides the traditional sol-gel and dip-coating methods, atomic layer deposition is promising for ceramic membrane modification in terms of the control of layer thickness, and pore size tuning. Enhanced surface hydrophilicity and surface charge are two of the most used strategies to improve the performance of ceramic membranes for oily wastewater treatment. Nano-sized metal oxides such as TiO2, ZrO2 and Fe2O3 and graphene oxide are considered to be the potential candidates for ceramic membrane modification for flux enhancement and fouling alleviation. The passive antifouling ceramic membranes, e.g., photocatalytic and electrified ceramic membranes, have shown some potential in fouling control, oil rejection and flux enhancement, but have their limitations.
Collapse
Affiliation(s)
- Mingliang Chen
- Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; (S.G.J.H.); (L.C.R.)
| | | | | |
Collapse
|
4
|
Fabrication of a novel latex-based membrane for oily wastewater filtration: effect of degassing on the properties of membrane. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00954-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Matindi CN, Hu M, Kadanyo S, Ly QV, Gumbi NN, Dlamini DS, Li J, Hu Y, Cui Z, Li J. Tailoring the morphology of polyethersulfone/sulfonated polysulfone ultrafiltration membranes for highly efficient separation of oil-in-water emulsions using TiO2 nanoparticles. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118868] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Paiman SH, Rahman MA, Uchikoshi T, Md Nordin NAH, Alias NH, Abdullah N, Abas KH, Othman MHD, Jaafar J, Ismail AF. In situ growth of α-Fe2O3 on Al2O3/YSZ hollow fiber membrane for oily wastewater. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116250] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
|
8
|
Li J, Zhao Z, Li D, Tian H, Zha F, Feng H, Guo L. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation. NANOSCALE 2017; 9:13610-13617. [PMID: 28876001 DOI: 10.1039/c7nr04448h] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oil/water separation is of great importance for the treatment of oily wastewater, including immiscible light/heavy oil-water mixtures, oil-in-water or water-in-oil emulsions. Smart surfaces with responsive wettability have received extensive attention especially for controllable oil/water separation. However, traditional smart membranes with a switchable wettability between superhydrophobicity and superhydrophilicity are limited to certain responsive materials and continuous external stimuli, such as pH, electrical field or light irradiation. Herein, a candle soot coated mesh (CSM) with a larger pore size and a candle soot coated PVDF membrane (CSP) with a smaller pore size with underwater superoleophobicity and underoil superhydrophobicity were successfully fabricated, which can be used for on-demand immiscible oil/water mixtures and surfactants-stabilized oil/water emulsion separation, respectively. Without any continuous external stimulus, the wettability of our membranes could be reversibly switched between underwater superoleophobicity and underoil superhydrophobicity simply by drying and washing alternately, thus achieving effective and switchable oil/water separation with excellent separation efficiency. We believe that such smart materials will be promising candidates for use in the removal of oil pollutants in the future.
Collapse
Affiliation(s)
- Jian Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zoubeik M, Ismail M, Salama A, Henni A. New Developments in Membrane Technologies Used in the Treatment of Produced Water: A Review. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2017. [DOI: 10.1007/s13369-017-2690-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Suresh K, Pugazhenthi G, Uppaluri R. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane. Front Chem Sci Eng 2017. [DOI: 10.1007/s11705-017-1608-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Du Y, Li Y, Wu T. A superhydrophilic and underwater superoleophobic chitosan–TiO2 composite membrane for fast oil-in-water emulsion separation. RSC Adv 2017. [DOI: 10.1039/c7ra08266e] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The CST modified membrane showed an excellent flux and can maintain underwater superoleophobicity in corrosive aqueous media.
Collapse
Affiliation(s)
- Yanqing Du
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- PR China
| | - Yujiang Li
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan
- PR China
| | - Tao Wu
- Key Laboratory of Colloid and Interface Science of Education Ministry
- Shandong University
- Jinan
- PR China
| |
Collapse
|
12
|
Abd Jalil SN, Wang DK, Yacou C, Motuzas J, Smart S, Diniz da Costa JC. Molecular Weight Cut-Off and Structural Analysis of Vacuum-Assisted Titania Membranes for Water Processing. MATERIALS 2016; 9:ma9110938. [PMID: 28774057 PMCID: PMC5457227 DOI: 10.3390/ma9110938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/11/2016] [Indexed: 12/03/2022]
Abstract
This work investigates the structural formation and analyses of titania membranes (TM) prepared using different vacuum exposure times for molecular weight (MW) cut-off performance and oil/water separation. Titania membranes were synthesized via a sol-gel method and coated on macroporous alumina tubes followed by exposure to a vacuum between 30 and 1200 s and then calcined at 400 °C. X-ray diffraction and nitrogen adsorption analyses showed that the crystallite size and particle size of titania increased as a function of vacuum time. All the TM membranes were mesoporous with an average pore diameter of ~3.6 nm with an anatase crystal morphology. Water, glucose, sucrose, and polyvinylpyrrolidone with 40 and 360 kDa (PVP-40 kDa and PVP-360 kDa) were used as feed solutions for MW cut-off and hexadecane solution for oil filtration investigation. The TM membranes were not able to separate glucose and sucrose, thus indicating the membrane pore sizes are larger than the kinetic diameter of sucrose of 0.9 nm, irrespective of vacuum exposure time. They also showed only moderate rejection (20%) of the smaller PVP-40 kDa, however, all the membranes were able to obtain an excellent rejection of near 100% for the larger PVP-360 kDa molecule. Furthermore, the TM membranes were tested for the separation of oil emulsions with a high concentration of oil (3000 ppm), reaching high oil rejections of more than 90% of oil. In general, the water fluxes increased with the vacuum exposure time indicating a pore structural tailoring effect. It is therefore proposed that a mechanism of pore size tailoring was formed by an interconnected network of Ti–O–Ti nanoparticles with inter-particle voids, which increased as TiO2 nanoparticle size increased as a function of vacuum exposure time, and thus reduced the water transport resistance through the TM membranes.
Collapse
Affiliation(s)
- Siti Nurehan Abd Jalil
- The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia.
- Faculty of Chemical Engineering, Universiti Teknologi MARA (UiTM), Shah Alam 40450, Malaysia.
| | - David K Wang
- The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia.
| | - Christelle Yacou
- The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia.
- Department of Engineering, Université des Antilles, BP 250, Pointe à Pitre Cedex 97157, France.
| | - Julius Motuzas
- The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia.
| | - Simon Smart
- The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia.
| | - João C Diniz da Costa
- The University of Queensland, FIM²Lab-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane 4072, Australia.
| |
Collapse
|