1
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Zhao J, Bhandari B, Gaiani C, Prakash S. Fermentation of almond-based gel incorporated with double emulsion (W1/O/W2): a study on gel properties and effectiveness of double emulsion as a fat replacer. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Babot JD, Argañaraz-Martínez E, Apella MC, Perez Chaia A. Microencapsulation of Probiotics with Soy Protein Isolate and Alginate for the Poultry Industry. FOOD BIOPROCESS TECH 2023; 16:1478-1487. [PMID: 36748011 PMCID: PMC9892664 DOI: 10.1007/s11947-023-03007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Many probiotic products, with properly selected microorganisms, may not be effective for the intended purpose due to the low tolerance of microorganisms to gastrointestinal digestion. The microencapsulation seems to be one of the most promising techniques to protect probiotics against adverse environmental conditions. Therefore, the aim of this work was the design of soy protein isolate-alginate microcapsules for the encapsulation of probiotics for the poultry industry by the water-in-oil emulsion technique. To this end, the strain Ligilactobacillus salivarius CRL2217, with the ability to bind wheat germ agglutinin (WGA) on its surface and protect intestinal epithelial cells from the cytotoxicity of the glycoprotein, was used as model microorganism. Several parameters were varied in order to find the better conditions for microencapsulation: oil source and nature, SPI and sodium alginate concentration, stirring equipment and time for emulsion formation, CaCl2 concentration, and absence or presence of stirring after the addition of the CaCl2 solution. The survival of entrapped cells to a simulated gastric digestion and their survival and release during simulated intestinal digestion were also investigated. The obtained particles effectively protected L. salivarius CRL2217 from the proteolytic activity and low pH present in the gastric environment. Besides, their content was released in contact with a simulated intestinal juice, as viable counts and binding of WGA after a simulated intestinal digestion revealed. This work paves the way for the design of probiotic supplements for poultry including gastrointestinal digestion-susceptible bacteria.
Collapse
Affiliation(s)
- Jaime D. Babot
- Centro de Referencia Para Lactobacilos (CERELA-CCT NOA Sur-CONICET), Chacabuco 145, San Miguel de Tucumán, T4000ILC Argentina
- San Miguel de Tucumán, Crisóstomo Álvarez 722, Tucumán, T4000ILC Argentina
| | - Eloy Argañaraz-Martínez
- San Miguel de Tucumán, Crisóstomo Álvarez 722, Tucumán, T4000ILC Argentina
- Universidad Nacional de Tucumán, San Miguel de Tucumán, Ayacucho 491, Tucumán, T4000INI Argentina
| | - María C. Apella
- Centro de Referencia Para Lactobacilos (CERELA-CCT NOA Sur-CONICET), Chacabuco 145, San Miguel de Tucumán, T4000ILC Argentina
- San Miguel de Tucumán, Crisóstomo Álvarez 722, Tucumán, T4000ILC Argentina
- Universidad Nacional de Tucumán, San Miguel de Tucumán, Ayacucho 491, Tucumán, T4000INI Argentina
| | - Adriana Perez Chaia
- Centro de Referencia Para Lactobacilos (CERELA-CCT NOA Sur-CONICET), Chacabuco 145, San Miguel de Tucumán, T4000ILC Argentina
- San Miguel de Tucumán, Crisóstomo Álvarez 722, Tucumán, T4000ILC Argentina
- Universidad Nacional de Tucumán, San Miguel de Tucumán, Ayacucho 491, Tucumán, T4000INI Argentina
| |
Collapse
|
4
|
Mohd Isa NS, El Kadri H, Vigolo D, Gkatzionis K. The Effect of Bacteria on the Stability of Microfluidic-Generated Water-in-Oil Droplet. MICROMACHINES 2022; 13:2067. [PMID: 36557366 PMCID: PMC9785555 DOI: 10.3390/mi13122067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Microencapsulation in emulsion droplets has great potential for various applications such as food which require formation of highly stable emulsions. Bacterial-emulsion interactions affect the physiological status of bacteria while bacterial cell characteristics such as surface-active properties and metabolic activity can affect emulsion stability. In this study, the viability and growth of two different bacterial species, Gram-negative Escherichia coli and Gram-positive Lactobacillus paracasei, encapsulated in water-in-oil (W/O) droplets or as planktonic cells, were monitored and their effect on droplet stability was determined. Microencapsulation of bacteria in W/O droplets with growth media or water was achieved by using a flow-focusing microfluidic device to ensure the production of highly monodispersed droplets. Stability of W/O droplets was monitored during 5 days of storage. Fluorescence microscopy was used to observe bacterial growth behaviour. Encapsulated cells showed different growth to planktonic cells. Encapsulated E. coli grew faster initially followed by a decline in viability while encapsulated L. paracasei showed a slow gradual growth throughout storage. The presence of bacteria increased droplet stability and a higher number of dead cells was found to provide better stability due to high affinity towards the interface. The stability of the droplets is also species dependent, with E. coli providing better stability as compared to Lactobacillus paracasei.
Collapse
Affiliation(s)
- Nur Suaidah Mohd Isa
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Food Science and Nutrition, University of the Aegean, Metropolite Ioakeim 2, 81400 Myrina, Lemnos, Greece
| |
Collapse
|
5
|
Mohd Isa NS, El Kadri H, Vigolo D, Gkatzionis K. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion. RSC Adv 2021; 11:7738-7749. [PMID: 35423274 PMCID: PMC8695039 DOI: 10.1039/d0ra10954a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Application of droplet microfluidics for the encapsulation of bacteria in water-in-oil-in-water (W/O/W) emulsion allows for production of monodisperse droplets with controllable size. In this study the release of bacteria from W/O/W emulsion, the effect of the double emulsion structure on bacterial growth and metabolic activity, and the stability and mechanism of bacterial release were investigated. W/O/W emulsions were formed using a double flow-focusing junction microfluidic device under controlled pressure to produce droplets of approximately 100 μm in diameter containing an inner aqueous phase (W1) of about 40–50 μm in diameter. GFP-labelled Escherichia coli (E. coli-GFP) bacteria were encapsulated within the W1 droplets and the stability of emulsions was studied by monitoring droplet size and creaming behaviour. The double emulsions were stabilised using a hydrophilic (Tween 80) and a lipophilic surfactant (polyglycerol polyricinoleate) and were destabilised by altering the osmotic balance, adding NaCl either in the inner W1 phase (hypo-osmotic) or outer W2 phase (hyper-osmotic). The release of E. coli-GFP was monitored by plating on agar whereby the colony form unit (CFU) of the released bacteria was determined while fluorescent microscopy was employed to observe the mechanism of release from the droplets. The release of E. coli-GFP was significantly increased with higher concentrations of NaCl and lower amounts of Tween 80. Microscopic observation revealed a two-step mechanism for the release of bacteria: double W/O/W emulsion droplet splitting to release W1 droplets forming a secondary double emulsion followed by the collapse of W1 droplets to release E. coli-GFP into the continuous aqueous phase. Encapsulation enhanced viability and metabolic activity. Nutrients can cross the oil layer. Bacterial release increased while emulsion stability decreased at high osmotic pressure and low surfactant concentration. Two-step release mechanism observed.![]()
Collapse
Affiliation(s)
- Nur Suaidah Mohd Isa
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu 21030 Kuala Terengganu Terengganu Malaysia.,School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK.,School of Biomedical Engineering, University of Sydney NSW 2006 Australia
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK.,Department of Food Science and Nutrition, School of the Environment, University of the Aegean Metropolite Ioakeim 2 81400 Myrina Lemnos Greece
| |
Collapse
|
6
|
González E, Herencias C, Prieto MA. A polyhydroxyalkanoate‐based encapsulating strategy for ‘bioplasticizing’ microorganisms. Microb Biotechnol 2020; 13:185-198. [PMID: 31714682 PMCID: PMC9531750 DOI: 10.1111/1751-7915.13492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
Over the past few decades, considerable interest has been shown in developing nano‐ and microcarriers with biocompatible and biodegradable materials for medical and biotechnological applications. Microencapsulation is a technology capable of enhancing the survival rate of bacteria, providing stability in harsh environments. In the present paper, we developed a technology to encapsulate microorganisms within polyhydroxyalkanoate (PHA)‐based microcapsules (MPs), employing a modified double emulsion solvent evaporation technique, with Pseudomonas putida KT2440 as a biotechnological model strain. The resulting MPs display a spherical morphology and an average particle size of 10 μm. The stability of the MPs was monitored under different conditions of storage and stress. The MPs remained stable for at least 24 days stored at 4°C in a water suspension. They exhibited greater tolerance to stress conditions; encapsulated cells remained viable for 2 h in alkaline solution and after 24 h of H2O2 exposure at 10 and 20 mM. Results suggested the potential of MPs as a microcontainer of bacterial cells, even for biotechnological applications requiring high alkaline conditions and oxidative stress. We validated the potential applicability of the PHA‐based microencapsulation method in other microorganisms by encapsulating the predatory bacterium Bdellovibrio bacteriovorus.
Collapse
Affiliation(s)
- Erika González
- Polymer Biotechnology Group Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas CIB‐CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC) Madrid Spain
| | - Cristina Herencias
- Polymer Biotechnology Group Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas CIB‐CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC) Madrid Spain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Group Microbial and Plant Biotechnology Department Centro de Investigaciones Biológicas CIB‐CSIC Ramiro de Maeztu 9 28040 Madrid Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC) Madrid Spain
| |
Collapse
|
7
|
Protection of anthocyanin-rich extract from pH-induced color changes using water-in-oil-in-water emulsions. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
El Kadri H, Lalou S, Mantzouridou F, Gkatzionis K. Utilisation of water-in-oil-water (W 1 /O/W 2 ) double emulsion in a set-type yogurt model for the delivery of probiotic Lactobacillus paracasei. Food Res Int 2018; 107:325-336. [DOI: 10.1016/j.foodres.2018.02.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 12/25/2022]
|
9
|
Devanthi PVP, Linforth R, El Kadri H, Gkatzionis K. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce. Food Chem 2018; 257:243-251. [PMID: 29622206 DOI: 10.1016/j.foodchem.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 10/17/2022]
Abstract
This study investigated the application of water-oil-water (W1/O/W2) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W1 and external W2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality.
Collapse
Affiliation(s)
| | - Robert Linforth
- Division of Food Sciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
10
|
Devanthi PVP, El Kadri H, Bowden A, Spyropoulos F, Gkatzionis K. Segregation of Tetragenococcus halophilus and Zygosaccharomyces rouxii using W 1/O/W 2 double emulsion for use in mixed culture fermentation. Food Res Int 2018; 105:333-343. [PMID: 29433222 DOI: 10.1016/j.foodres.2017.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 11/15/2022]
Abstract
Antagonism in mixed culture fermentation can result in undesirable metabolic activity and negatively affect the fermentation process. Water-oil-water (W1/O/W2) double emulsions (DE) could be utilized in fermentation for segregating multiple species and controlling their release and activity. Zygosaccharomyces rouxii and Tetragenococcus halophilus, two predominant microbial species in soy sauce fermentation, were incorporated in the internal W1 and external W2 phase of a W1/O/W2, respectively. The suitability of DE for controlling T. halophilus and Z. rouxii in soy sauce fermentation was studied in relation to emulsion stability and microbial release profile. The effects of varying concentrations of Z. rouxii cells (5 and 7logCFU/mL) and glucose (0%, 6%, 12%, 30% w/v) in the W2 phase were investigated. DE stability was determined by monitoring encapsulation stability (%), oil globule size, and microstructure with fluorescence and optical microscopy. Furthermore, the effect of DE on the interaction between T. halophilus and Z. rouxii was studied in Tryptic Soy Broth containing 10% w/v NaCl and 12% w/v glucose and physicochemical changes (glucose, ethanol, lactic acid, and acetic acid) were monitored. DE destabilization resulted in cell release which was proportional to the glucose concentration in W2. Encapsulated Z. rouxii presented higher survival during storage (~3 log). The application of DE affected microbial cells growth and physiology, which led to the elimination of antagonism. These results demonstrate the potential use of DE as a delivery system of mixed starter cultures in food fermentation, where multiple species are required to act sequentially in a controlled manner.
Collapse
Affiliation(s)
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Allen Bowden
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Fotios Spyropoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
11
|
Kadri HE, Devanthi PVP, Overton TW, Gkatzionis K. Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria? Food Res Int 2017; 101:114-128. [DOI: 10.1016/j.foodres.2017.08.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 11/28/2022]
|
12
|
Incorporation of water-in-oil-in-water (W 1 /O/W 2 ) double emulsion in a set-type yogurt model. Food Res Int 2017; 100:122-131. [DOI: 10.1016/j.foodres.2017.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/07/2017] [Accepted: 08/12/2017] [Indexed: 11/18/2022]
|
13
|
Kadri HEL, Gun R, Overton TW, Bakalis S, Gkatzionis K. Modulating the release of Escherichia coli in double W1/O/W2 emulsion globules under hypo-osmotic pressure. RSC Adv 2016. [DOI: 10.1039/c6ra17091a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial release from double W1/O/W2 emulsion globules under hypo-osmotic pressure is described for the first time.
Collapse
Affiliation(s)
| | | | - Tim W. Overton
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection
- University of Birmingham
- UK
| | | | - Konstantinos Gkatzionis
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection
- University of Birmingham
- UK
| |
Collapse
|