1
|
Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Radha Sachan
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G. Warkar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
2
|
Schmalz H, Abetz V. Block Copolymers with Crystallizable Blocks: Synthesis, Self-Assembly and Applications. Polymers (Basel) 2022; 14:polym14040696. [PMID: 35215610 PMCID: PMC8875877 DOI: 10.3390/polym14040696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/25/2022] Open
Abstract
Block copolymers with crystallizable blocks are a highly interesting class of materials owing to their unique self-assembly behaviour both in bulk and solution. This Special Issue brings together new developments in the synthesis and self-assembly of semicrystalline block copolymers and also addresses potential applications of these exciting materials.
Collapse
Affiliation(s)
- Holger Schmalz
- Macromolecular Chemistry II and Bavarian Polymer Institute, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Correspondence: (H.S.); (V.A.)
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany
- Correspondence: (H.S.); (V.A.)
| |
Collapse
|
3
|
Yang C, Li Z, Xu J. Single crystals and two‐dimensional crystalline assemblies of block copolymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi‐Xian Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun‐Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
4
|
Matxinandiarena E, Múgica A, Zubitur M, Ladelta V, Zapsas G, Cavallo D, Hadjichristidis N, Müller AJ. Crystallization and Morphology of Triple Crystalline Polyethylene- b-poly(ethylene oxide)- b-poly(ε-caprolactone) PE- b-PEO- b-PCL Triblock Terpolymers. Polymers (Basel) 2021; 13:polym13183133. [PMID: 34578032 PMCID: PMC8473441 DOI: 10.3390/polym13183133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
The morphology and crystallization behavior of two triblock terpolymers of polymethylene, equivalent to polyethylene (PE), poly (ethylene oxide) (PEO), and poly (ε-caprolactone) (PCL) are studied: PE227.1-b-PEO4615.1-b-PCL3210.4 (T1) and PE379.5-b-PEO348.8-b-PCL297.6 (T2) (superscripts give number average molecular weights in kg/mol and subscripts composition in wt %). The three blocks are potentially crystallizable, and the triple crystalline nature of the samples is investigated. Polyhomologation (C1 polymerization), ring-opening polymerization, and catalyst-switch strategies were combined to synthesize the triblock terpolymers. In addition, the corresponding PE-b-PEO diblock copolymers and PE homopolymers were also analyzed. The crystallization sequence of the blocks was determined via three independent but complementary techniques: differential scanning calorimetry (DSC), in situ SAXS/WAXS (small angle X-ray scattering/wide angle X-ray scattering), and polarized light optical microscopy (PLOM). The two terpolymers (T1 and T2) are weakly phase segregated in the melt according to SAXS. DSC and WAXS results demonstrate that in both triblock terpolymers the crystallization process starts with the PE block, continues with the PCL block, and ends with the PEO block. Hence triple crystalline materials are obtained. The crystallization of the PCL and the PEO block is coincident (i.e., it overlaps); however, WAXS and PLOM experiments can identify both transitions. In addition, PLOM shows a spherulitic morphology for the PE homopolymer and the T1 precursor diblock copolymer, while the other systems appear as non-spherulitic or microspherulitic at the last stage of the crystallization process. The complicated crystallization of tricrystalline triblock terpolymers can only be fully grasped when DSC, WAXS, and PLOM experiments are combined. This knowledge is fundamental to tailor the properties of these complex but fascinating materials.
Collapse
Affiliation(s)
- Eider Matxinandiarena
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
| | - Agurtzane Múgica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
| | - Manuela Zubitur
- Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
| | - George Zapsas
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy;
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
- Correspondence: (N.H.); (A.J.M.)
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Correspondence: (N.H.); (A.J.M.)
| |
Collapse
|
5
|
Sangroniz L, Wang B, Su Y, Liu G, Cavallo D, Wang D, Müller AJ. Fractionated crystallization in semicrystalline polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101376] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
6
|
Palacios JK, Zhang H, Zhang B, Hadjichristidis N, Müller AJ. Direct identification of three crystalline phases in PEO-b-PCL-b-PLLA triblock terpolymer by In situ hot-stage atomic force microscopy. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Ladelta V, Zapsas G, Abou‐hamad E, Gnanou Y, Hadjichristidis N. Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Viko Ladelta
- Polymer Synthesis LaboratoryKAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - George Zapsas
- Polymer Synthesis LaboratoryKAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Edy Abou‐hamad
- Imaging and Characterization Core LabKing Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis LaboratoryKAUST Catalysis CenterPhysical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia
| |
Collapse
|
8
|
Ladelta V, Zapsas G, Abou-Hamad E, Gnanou Y, Hadjichristidis N. Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angew Chem Int Ed Engl 2019; 58:16267-16274. [PMID: 31448860 DOI: 10.1002/anie.201908688] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 11/10/2022]
Abstract
Multicrystalline block polymers having three or more crystalline segments are essential materials for the advancement of physics in the field of crystallinity. The challenging synthesis of multicrystalline polymers has resulted in only a limited number of tricrystalline terpolymers having been reported to date. We report, for the first time, the synthesis of polyethylene-b-poly(ethylene oxide)-b-poly(ϵ-caprolactone)-b-poly(l-lactide) (PE-b-PEO-b-PCL-b-PLLA), a tetracrystalline tetrablock quarterpolymer, by combining polyhomologation, ring-opening polymerization, and an organic/metal "catalyst switch" strategy. 1 H NMR spectroscopy and gel-permeation chromatography confirmed the formation of the tetrablock quarterpolymer, while differential scanning calorimetry, X-ray diffraction, and wide-line separation solid-state NMR spectroscopy revealed the existence of four different crystalline domains.
Collapse
Affiliation(s)
- Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - George Zapsas
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Edy Abou-Hamad
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Yves Gnanou
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
9
|
Palacios JK, Liu G, Wang D, Hadjichristidis N, Müller AJ. Generating Triple Crystalline Superstructures in Melt Miscible PEO‐
b
‐PCL‐
b
‐PLLA Triblock Terpolymers by Controlling Thermal History and Sequential Crystallization. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jordana K. Palacios
- POLYMAT and Polymer Science and Technology DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Dujin Wang
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Nikos Hadjichristidis
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionKAUST Catalysis Center Thuwal 23955 Saudi Arabia
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
- IkerbasqueBasque Foundation for Science Bilbao 48013 Spain
| |
Collapse
|
10
|
Van Horn RM, Steffen MR, O'Connor D. Recent progress in block copolymer crystallization. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Dana O'Connor
- Department of Chemistry Allegheny College Meadville Pennsylvania
| |
Collapse
|
11
|
Liu X, Huang M, Zhu P, Dong S, Dong X, Wang D. Shape memory property and underlying mechanism by the phase separation control of poly(ϵ-caprolactone)/poly(ether- b
-amide). POLYM INT 2018. [DOI: 10.1002/pi.5653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xinran Liu
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Miaoming Huang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing P. R. China
| | - Ping Zhu
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing P. R. China
| | - Siyuan Dong
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing P. R. China
- College of Material Science and Engineering; Beijing Institute of Fashion Technology; Beijing P. R. China
| | - Xia Dong
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry; Chinese Academy of Sciences; Beijing P. R. China
- University of Chinese Academy of Sciences; Beijing P. R. China
| |
Collapse
|
12
|
Palacios JK, Zhao J, Hadjichristidis N, Müller AJ. How the Complex Interplay between Different Blocks Determines the Isothermal Crystallization Kinetics of Triple-Crystalline PEO-b-PCL-b-PLLA Triblock Terpolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jordana K. Palacios
- POLYMAT
and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Junpeng Zhao
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alejandro J. Müller
- POLYMAT
and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
13
|
Li L, Cao ZQ, Bao RY, Xie BH, Yang MB, Yang W. Poly(l-lactic acid)-polyethylene glycol-poly(l-lactic acid) triblock copolymer: A novel macromolecular plasticizer to enhance the crystallization of poly(l-lactic acid). Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.10.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Palacios JK, Tercjak A, Liu G, Wang D, Zhao J, Hadjichristidis N, Müller AJ. Trilayered Morphology of an ABC Triple Crystalline Triblock Terpolymer. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01576] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Guoming Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dujin Wang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junpeng Zhao
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nikos Hadjichristidis
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
15
|
Zaldua N, Mugica A, Zubitur M, Iturrospe A, Arbe A, Re GL, Raquez JM, Dubois P, Müller AJ. The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA. CrystEngComm 2016. [DOI: 10.1039/c6ce02005d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|