1
|
Varadwaj PR. Halogen Bond via an Electrophilic π-Hole on Halogen in Molecules: Does It Exist? Int J Mol Sci 2024; 25:4587. [PMID: 38731806 PMCID: PMC11083155 DOI: 10.3390/ijms25094587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 05/13/2024] Open
Abstract
This study reveals a new non-covalent interaction called a π-hole halogen bond, which is directional and potentially non-linear compared to its sister analog (σ-hole halogen bond). A π-hole is shown here to be observed on the surface of halogen in halogenated molecules, which can be tempered to display the aptness to form a π-hole halogen bond with a series of electron density-rich sites (Lewis bases) hosted individually by 32 other partner molecules. The [MP2/aug-cc-pVTZ] level characteristics of the π-hole halogen bonds in 33 binary complexes obtained from the charge density approaches (quantum theory of intramolecular atoms, molecular electrostatic surface potential, independent gradient model (IGM-δginter)), intermolecular geometries and energies, and second-order hyperconjugative charge transfer analyses are discussed, which are similar to other non-covalent interactions. That a π-hole can be observed on halogen in halogenated molecules is substantiated by experimentally reported crystals documented in the Cambridge Crystal Structure Database. The importance of the π-hole halogen bond in the design and growth of chemical systems in synthetic chemistry, crystallography, and crystal engineering is yet to be fully explicated.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| |
Collapse
|
2
|
Wacha M, Helm DL, Smart MM, McMillen CD, Casabianca LB, Sachdeva R, Urick CR, Wilson LP, Thrasher JS. A New Motif in Halogen Bonding: Cooperative Intermolecular S-Br⋅⋅⋅O, O⋅⋅⋅F, and F⋅⋅⋅F Associations in the Crystal Packing of α,ω-Di(sulfonyl bromide) Perfluoroalkanes. Chem Asian J 2023; 18:e202300012. [PMID: 36735331 DOI: 10.1002/asia.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
We recently reported the first examples of S-Cl⋅⋅⋅O halogen bonding complemented by short F⋅⋅⋅F contacts between neighboring chains that resulted in stabilized crystals of ClSO2 (CF2 )4 SO2 Cl and ClSO2 (CF2 )6 SO2 Cl. More recently, other researchers studied our crystallographic data further using an Independent Gradient Model (IGM), and they suggested if one goes beyond IUPAC's proposed 'less than the sum of the van der Waals radii' criterion that even more noncovalent interactions between fluorine atoms on neighboring chains as well as Cl⋅⋅⋅Cl, Cl⋅⋅⋅S, O⋅⋅⋅F, and O⋅⋅⋅S attractive interactions can be found. With that said, we have prepared samples of the related BrSO2 (CF2 )n SO2 Br derivatives (where n=4, 6, 8, and others), which give rise to even stronger S-Br⋅⋅⋅O halogen bonding interactions complemented minimally by O⋅⋅⋅F and F⋅⋅⋅F intermolecular interactions as shown by X-ray crystallography and computational chemistry using IGM isosurface plots. Additional spectroscopic characterization (multinuclear NMR, FT-IR, and MS) of the disulfonyl bromide derivatives BrSO2 (CF2 )4 SO2 Br, BrSO2 (CF2 )6 SO2 Br, and BrSO2 (CF2 )8 SO2 Br has also been obtained as well as some preliminary spectroscopic evidence for BrSO2 (CF2 )2 SO2 Br and BrSO2 CF2 O(CF2 )2 OCF2 SO2 Br. The implication of these results toward the preparation of the corresponding disulfonyl iodides is discussed.
Collapse
Affiliation(s)
- Max Wacha
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt am Main, GERMANY.,Department of Chemistry, Clemson University, Advanced Materials Research Laboratory, 91 Technology Drive, Anderson, South Carolina, 29625, USA
| | - David L Helm
- Department of Chemistry, Clemson University, Advanced Materials Research Laboratory, 91 Technology Drive, Anderson, South Carolina, 29625, USA.,Department of Chemistry, Clemson University, Hunter Laboratory, 211 S. Palmetto Blvd., Clemson, South Carolina, 29634, USA
| | - Megan M Smart
- Department of Chemistry, Clemson University, Hunter Laboratory, 211 S. Palmetto Blvd., Clemson, South Carolina, 29634, USA
| | - Colin D McMillen
- Department of Chemistry, Clemson University, Hunter Laboratory, 211 S. Palmetto Blvd., Clemson, South Carolina, 29634, USA
| | - Leah B Casabianca
- Department of Chemistry, Clemson University, Hunter Laboratory, 211 S. Palmetto Blvd., Clemson, South Carolina, 29634, USA
| | - Rakesh Sachdeva
- Department of Chemistry, Clemson University, Hunter Laboratory, 211 S. Palmetto Blvd., Clemson, South Carolina, 29634, USA
| | - Catherine R Urick
- Department of Chemistry, Clemson University, Advanced Materials Research Laboratory, 91 Technology Drive, Anderson, South Carolina, 29625, USA.,Department of Chemistry, Clemson University, Hunter Laboratory, 211 S. Palmetto Blvd., Clemson, South Carolina, 29634, USA
| | - London P Wilson
- Department of Chemistry, Clemson University, Advanced Materials Research Laboratory, 91 Technology Drive, Anderson, South Carolina, 29625, USA.,Department of Chemistry, Clemson University, Hunter Laboratory, 211 S. Palmetto Blvd., Clemson, South Carolina, 29634, USA
| | - Joseph S Thrasher
- Department of Chemistry, Clemson University, Advanced Materials Research Laboratory, 91 Technology Drive, Anderson, South Carolina, 29625, USA.,Department of Chemistry, Clemson University, Hunter Laboratory, 211 S. Palmetto Blvd., Clemson, South Carolina, 29634, USA
| |
Collapse
|
3
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond, Together with Other Non-Covalent Interactions, in the Rational Design of One-, Two- and Three-Dimensional Organic-Inorganic Hybrid Metal Halide Perovskite Semiconducting Materials, and Beyond. Int J Mol Sci 2022; 23:8816. [PMID: 35955945 PMCID: PMC9369011 DOI: 10.3390/ijms23158816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The pnictogen bond, a somewhat overlooked supramolecular chemical synthon known since the middle of the last century, is one of the promising types of non-covalent interactions yet to be fully understood by recognizing and exploiting its properties for the rational design of novel functional materials. Its bonding modes, energy profiles, vibrational structures and charge density topologies, among others, have yet to be comprehensively delineated, both theoretically and experimentally. In this overview, attention is largely centered on the nature of nitrogen-centered pnictogen bonds found in organic-inorganic hybrid metal halide perovskites and closely related structures deposited in the Cambridge Structural Database (CSD) and the Inorganic Chemistry Structural Database (ICSD). Focusing on well-characterized structures, it is shown that it is not merely charge-assisted hydrogen bonds that stabilize the inorganic frameworks, as widely assumed and well-documented, but simultaneously nitrogen-centered pnictogen bonding, and, depending on the atomic constituents of the organic cation, other non-covalent interactions such as halogen bonding and/or tetrel bonding, are also contributors to the stabilizing of a variety of materials in the solid state. We have shown that competition between pnictogen bonding and other interactions plays an important role in determining the tilting of the MX6 (X = a halogen) octahedra of metal halide perovskites in one, two and three-dimensions. The pnictogen interactions are identified to be directional even in zero-dimensional crystals, a structural feature in many engineered ordered materials; hence an interplay between them and other non-covalent interactions drives the structure and the functional properties of perovskite materials and enabling their application in, for example, photovoltaics and optoelectronics. We have demonstrated that nitrogen in ammonium and its derivatives in many chemical systems acts as a pnictogen bond donor and contributes to conferring stability, and hence functionality, to crystalline perovskite systems. The significance of these non-covalent interactions should not be overlooked, especially when the focus is centered on the rationale design and discovery of such highly-valued materials.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Harry SA, Vemulapalli S, Dudding T, Lectka T. Rational Computational Design of Systems Exhibiting Strong Halogen Bonding Involving Fluorine in Bicyclic Diamine Derivatives. J Org Chem 2022; 87:8413-8419. [PMID: 35658438 DOI: 10.1021/acs.joc.2c00497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Perhaps the most controversial and rare aspect of the halogen bonding interaction is the potential of fluorine in compounds to serve as a halogen bond donor. In this note, we provide clear and convincing examples of hypothetical molecules in which fluorine is strongly halogen bonding in a metastable state. Of particular note is a polycyclic system inspired by Selectfluor, which has been controversially proposed to engage in halogen bonding.
Collapse
Affiliation(s)
- Stefan Andrew Harry
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Srini Vemulapalli
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Pnictogen Bond: The Covalently Bound Arsenic Atom in Molecular Entities in Crystals as a Pnictogen Bond Donor. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113421. [PMID: 35684359 PMCID: PMC9181914 DOI: 10.3390/molecules27113421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
In chemical systems, the arsenic-centered pnictogen bond, or simply the arsenic bond, occurs when there is evidence of a net attractive interaction between the electrophilic region associated with a covalently or coordinately bound arsenic atom in a molecular entity and a nucleophile in another or the same molecular entity. It is the third member of the family of pnictogen bonds formed by the third atom of the pnictogen family, Group 15 of the periodic table, and is an inter- or intramolecular noncovalent interaction. In this overview, we present several illustrative crystal structures deposited into the Cambridge Structure Database (CSD) and the Inorganic Chemistry Structural Database (ICSD) during the last and current centuries to demonstrate that the arsenic atom in molecular entities has a significant ability to act as an electrophilic agent to make an attractive engagement with nucleophiles when in close vicinity, thereby forming σ-hole or π-hole interactions, and hence driving (in part, at least) the overall stability of the system’s crystalline phase. This overview does not include results from theoretical simulations reported by others as none of them address the signatory details of As-centered pnictogen bonds. Rather, we aimed at highlighting the interaction modes of arsenic-centered σ- and π-holes in the rationale design of crystal lattices to demonstrate that such interactions are abundant in crystalline materials, but care has to be taken to identify them as is usually done with the much more widely known noncovalent interactions in chemical systems, halogen bonding and hydrogen bonding. We also demonstrate that As-centered pnictogen bonds are usually accompanied by other primary and secondary interactions, which reinforce their occurrence and strength in most of the crystal structures illustrated. A statistical analysis of structures deposited into the CSD was performed for each interaction type As···D (D = N, O, S, Se, Te, F, Cl, Br, I, arene’s π system), thus providing insight into the typical nature of As···D interaction distances and ∠R–As···D bond angles of these interactions in crystals, where R is the remainder of the molecular entity.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Correspondence: (A.V.); (P.R.V.)
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence: (A.V.); (P.R.V.)
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Tokyo 113-8656, Japan;
| |
Collapse
|
6
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. The Stibium Bond or the Antimony-Centered Pnictogen Bond: The Covalently Bound Antimony Atom in Molecular Entities in Crystal Lattices as a Pnictogen Bond Donor. Int J Mol Sci 2022; 23:4674. [PMID: 35563065 PMCID: PMC9099767 DOI: 10.3390/ijms23094674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
A stibium bond, i.e., a non-covalent interaction formed by covalently or coordinately bound antimony, occurs in chemical systems when there is evidence of a net attractive interaction between the electrophilic region associated with an antimony atom and a nucleophile in another, or the same molecular entity. This is a pnictogen bond and are likely formed by the elements of the pnictogen family, Group 15, of the periodic table, and is an inter- or intra-molecular non-covalent interaction. This overview describes a set of illustrative crystal systems that were stabilized (at least partially) by means of stibium bonds, together with other non-covalent interactions (such as hydrogen bonds and halogen bonds), retrieved from either the Cambridge Structure Database (CSD) or the Inorganic Crystal Structure Database (ICSD). We demonstrate that these databases contain hundreds of crystal structures of various dimensions in which covalently or coordinately bound antimony atoms in molecular entities feature positive sites that productively interact with various Lewis bases containing O, N, F, Cl, Br, and I atoms in the same or different molecular entities, leading to the formation of stibium bonds, and hence, being partially responsible for the stability of the crystals. The geometric features, pro-molecular charge density isosurface topologies, and extrema of the molecular electrostatic potential model were collectively examined in some instances to illustrate the presence of Sb-centered pnictogen bonding in the representative crystal systems considered.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| |
Collapse
|
7
|
Varadwaj PR, Varadwaj A, Marques HM, Yamashita K. The Phosphorus Bond, or the Phosphorus-Centered Pnictogen Bond: The Covalently Bound Phosphorus Atom in Molecular Entities and Crystals as a Pnictogen Bond Donor. Molecules 2022; 27:molecules27051487. [PMID: 35268588 PMCID: PMC8911988 DOI: 10.3390/molecules27051487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The phosphorus bond in chemical systems, which is an inter- or intramolecular noncovalent interaction, occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a covalently or coordinately bonded phosphorus atom in a molecular entity and a nucleophile in another, or the same, molecular entity. It is the second member of the family of pnictogen bonds, formed by the second member of the pnictogen family of the periodic table. In this overview, we provide the reader with a snapshot of the nature, and possible occurrences, of phosphorus-centered pnictogen bonding in illustrative chemical crystal systems drawn from the ICSD (Inorganic Crystal Structure Database) and CSD (Cambridge Structural Database) databases, some of which date back to the latter part of the last century. The illustrative systems discussed are expected to assist as a guide to researchers in rationalizing phosphorus-centered pnictogen bonding in the rational design of molecular complexes, crystals, and materials and their subsequent characterization.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Correspondence:
| | - Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, University of Tokyo 7-3-1, Tokyo 113-8656, Japan; (A.V.); (K.Y.)
| |
Collapse
|
8
|
Chalcogen Bonding in the Molecular Dimers of WCh 2 (Ch = S, Se, Te): On the Basic Understanding of the Local Interfacial and Interlayer Bonding Environment in 2D Layered Tungsten Dichalcogenides. Int J Mol Sci 2022; 23:ijms23031263. [PMID: 35163185 PMCID: PMC8835845 DOI: 10.3390/ijms23031263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/28/2023] Open
Abstract
Layered two-dimensional transition metal dichalcogenides and their heterostructures are of current interest, owing to the diversity of their applications in many areas of materials nanoscience and technologies. With this in mind, we have examined the three molecular dimers of the tungsten dichalcogenide series, (WCh2)2 (Ch = S, Se, Te), using density functional theory to provide insight into which interactions, and their specific characteristics, are responsible for the interfacial/interlayer region in the room temperature 2H phase of WCh2 crystals. Our calculations at various levels of theory suggested that the Te···Te chalcogen bonding in (WTe2)2 is weak, whereas the Se···Se and S···S bonding interactions in (WSe2)2 and (WS2)2, respectively, are of the van der Waals type. The presence and character of Ch···Ch chalcogen bonding interactions in the dimers of (WCh2)2 are examined with a number of theoretical approaches and discussed, including charge-density-based approaches, such as the quantum theory of atoms in molecules, interaction region indicator, independent gradient model, and reduced density gradient non-covalent index approaches. The charge-density-based topological features are shown to be concordant with the results that originate from the extrema of potential on the electrostatic surfaces of WCh2 monomers. A natural bond orbital analysis has enabled us to suggest a number of weak hyperconjugative charge transfer interactions between the interacting monomers that are responsible for the geometry of the (WCh2)2 dimers at equilibrium. In addition to other features, we demonstrate that there is no so-called van der Waals gap between the monolayers in two-dimensional layered transition metal tungsten dichalcogenides, which are gapless, and that the (WCh2)2 dimers may be prototypes for a basic understanding of the physical chemistry of the chemical bonding environments associated with the local interfacial/interlayer regions in layered 2H-WCh2 nanoscale systems.
Collapse
|
9
|
Chalcogen···Chalcogen Bonding in Molybdenum Disulfide, Molybdenum Diselenide and Molybdenum Ditelluride Dimers as Prototypes for a Basic Understanding of the Local Interfacial Chemical Bonding Environment in 2D Layered Transition Metal Dichalcogenides. INORGANICS 2022. [DOI: 10.3390/inorganics10010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An attempt was made, using computational methods, to understand whether the intermolecular interactions in the dimers of molybdenum dichalcogenides MoCh2 (Ch = chalcogen, element of group 16, especially S, Se and Te) and similar mixed-chalcogenide derivatives resemble the room temperature experimentally observed interactions in the interfacial regions of molybdenites and their other mixed-chalcogen derivatives. To this end, MP2(Full)/def2-TVZPPD level electronic structure calculations on nine dimer systems, including (MoCh2)2 and (MoChCh′2)2 (Ch, Ch′ = S, Se and Te), were carried out not only to demonstrate the energetic stability of these systems in the gas phase, but also to reproduce the intermolecular geometrical properties that resemble the interfacial geometries of 2D layered MoCh2 systems reported in the crystalline phase. Among the six DFT functionals (single and double hybrids) benchmarked against MP2(full), it was found that the double hybrid functional B2PLYPD3 has some ability to reproduce the intermolecular geometries and binding energies. The intermolecular geometries and binding energies of all nine dimers are discussed, together with the charge density topological aspects of the chemical bonding interactions that emerge from the application of the quantum theory of atoms in molecules (QTAIM), the isosurface topology of the reduced density gradient noncovalent index, interaction region indicator and independent gradient model (IGM) approaches. While the electrostatic surface potential model fails to explain the origin of the S···S interaction in the (MoS2)2 dimer, we show that the intermolecular bonding interactions in all nine dimers examined are a result of hyperconjugative charge transfer delocalizations between the lone-pair on (Ch/Ch′) and/or the π-orbitals of a Mo–Ch/Ch′ bond of one monomer and the dπ* anti-bonding orbitals of the same Mo–Ch/Ch′ bond in the second monomer during dimer formation, and vice versa. The HOMO–LUMO gaps calculated with the MN12-L functional were 0.9, 1.0, and 1.1 eV for MoTe2, MoSe2 and MoS2, respectively, which match very well with the solid-state theoretical (SCAN-rVV10)/experimental band gaps of 0.75/0.88, 0.90/1.09 and 0.93/1.23 eV of the corresponding systems, respectively. We observed that the gas phase dimers examined are perhaps prototypical for a basic understanding of the interfacial/inter-layer interactions in molybdenum-based dichalcogenides and their derivatives.
Collapse
|
10
|
Yamada S, Kobayashi K, Morita M, Konno T. D–π–A-type fluorinated tolanes with a diphenylamino group: crystal polymorphism formation and photophysical behavior. CrystEngComm 2022. [DOI: 10.1039/d1ce01671g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ph2N-Substituted fluorinated tolanes produced two polymorphisms, which display a distinct photoluminescence behavior; one polymorphism showed green PL and the other exhibited yellow PL.
Collapse
Affiliation(s)
- Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kazuki Kobayashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masato Morita
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
11
|
Yamada S, Sato M, Uto E, Kataoka M, Morita M, Konno T. Fluorinated tolane-based fluorophores bearing a branched flexible unit with aggregation-induced emission enhancement characteristics. NEW J CHEM 2022. [DOI: 10.1039/d1nj05822c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise molecular design of fluorinated tolane-based fluorophores can control both the electron density and molecular aggregated structures.
Collapse
Affiliation(s)
- Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masaya Sato
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eiji Uto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mitsuki Kataoka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masato Morita
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
12
|
Scheiner S. On the Ability of Nitrogen to Serve as an Electron Acceptor in a Pnicogen Bond. J Phys Chem A 2021; 125:10419-10427. [PMID: 34846149 DOI: 10.1021/acs.jpca.1c09213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whereas pnicogen atoms like P and As have been shown repeatedly to act as electron acceptors in pnicogen bonds, the same is not true of the more electronegative first-row N atom. Quantum calculations assess whether N can serve in this capacity in such bonds and under what conditions. There is a positive π-hole belt that surrounds the central N atom in the linear arrangement of NNNF, NNN-CN, and NNO, which can engage a NH3 base to form a pnicogen bond with binding energy between 3 and 5 kcal/mol. Within the context of a planar arrangement, the π-hole above the N in NO2OF, N(CN)3, and CF3NO2 is also capable of forming a pnicogen bond, the strongest of which amounts to 11 kcal/mol with NMe3 as base. In their pyramidal geometry, NF3 and N(NO2)3 engage with a base through the σ-hole on the central N, with variable binding energies between 2 and 9 kcal/mol. AIM and NBO provide somewhat different interpretations of the secondary interactions that occur in some of these complexes.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300 United States
| |
Collapse
|
13
|
Rana A, Galmés B, Frontera A, Biswal HS, Chopra D. Unravelling the electronic nature of C-FO-C non-covalent interaction in proteins and small molecules in the solid state. Phys Chem Chem Phys 2020; 22:25704-25711. [PMID: 33146185 DOI: 10.1039/d0cp05280a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The participation of organic fluorine as a halogen bond donor is rare and is sensitive to the electronic environment in the vicinity of the fluorine atom. The enhancement in the electropositive character (the σ-hole formalism) in fluorine is established by the presence of electron withdrawing groups and this has been examined in the solid-state structures in small molecules and proteins. Short, directional FO contacts have been observed and physical insights obtained, from quantum mechanical calculations, via the molecular electrostatic potential, an analysis of their topological features from atoms-in-molecules, and donor-acceptor characteristics from natural bond orbital analyses. It was observed that such contacts, cooperatively act in the presence of other interactions, and the formed aggregates are stabilizing in nature. In addition, the FO has a bonding character and is attractive in nature. The halogen bonding character of fluorine is relevant in supramolecular chemistry.
Collapse
Affiliation(s)
- Abhijit Rana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, 752050, Bhubaneswar, India.
| | | | | | | | | |
Collapse
|
14
|
Abstract
The fundamental underpinnings of noncovalent bonds are presented, focusing on the σ-hole interactions that are closely related to the H-bond. Different means of assessing their strength and the factors that control it are discussed. The establishment of a noncovalent bond is monitored as the two subunits are brought together, allowing the electrostatic, charge redistribution, and other effects to slowly take hold. Methods are discussed that permit prediction as to which site an approaching nucleophile will be drawn, and the maximum number of bonds around a central atom in its normal or hypervalent states is assessed. The manner in which a pair of anions can be held together despite an overall Coulombic repulsion is explained. The possibility that first-row atoms can participate in such bonds is discussed, along with the introduction of a tetrel analog of the dihydrogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
15
|
Ibrahim MAA, Moussa NAM. Unconventional Type III Halogen···Halogen Interactions: A Quantum Mechanical Elucidation of σ-Hole···σ-Hole and Di-σ-Hole Interactions. ACS OMEGA 2020; 5:21824-21835. [PMID: 32905309 PMCID: PMC7469378 DOI: 10.1021/acsomega.0c02887] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Herein, two unconventional type III halogen···halogen interactions, namely, σ-hole···σ-hole and di-σ-hole interactions, were reported in a series of halogenated complexes. In type III, the A-halogen···halogen angles are typically equal to 180°, and the occurrence of σ-hole on halogen atoms is mandatory. Using diverse quantum mechanical calculations, it was demonstrated that the occurrence of such interactions with binding energies varied from -0.35 to -1.30 kcal/mol. Symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) revealed that type III interactions are dominated by dispersion forces, while electrostatic forces are unfavorable. Cambridge Structure Database (CSD) survey unveiled the experimental evidence for the manifestation of σ-hole···σ-hole interactions in crystal structures. This work might be deemed as a foundation for a vast number of forthcoming crystal engineering and materials science studies.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
16
|
Abstract
The question as to whether the F atom can engage in a halogen bond (XB) remains unsettled. This issue is addressed via density functional theory calculations which pair a wide range of organic and inorganic F-acids with various sorts of Lewis bases. From an energetic perspective, perfluorinated hydrocarbons with sp, sp2, or sp3 C-hybridization are unable to form an XB with an N-base, but a very weak bond can be formed if electron-withdrawing C≡N substituents are added to the acid. There is little improvement for inorganic acids O2NF, FOF, ClF, BrF, SiF4, or GeF4, but F2 is capable of a stronger XB of up to 5 kcal/mol. These results are consistent with a geometric criterion, which compares the intermolecular equilibrium distance with the sum of atomic van der Waals radii. The intensity of the σ-hole on the F atom has predictive value in that a Vs,max of at least 10-15 kcal/mol is required for XB formation. Adding a positive charge to the Lewis acid enhances the strength of any XB and even more so if the base is anionic. The acid-base interaction induces a contraction of the r(AF) covalent bond in the acid in most cases and a deshielding of the NMR signal of the F nucleus.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
17
|
Maryam Hesabi, Ghasem Ghasemi. A CAM-B3LYP DFT Investigation of Atenolol Adsorption on the Surface of Boron Nitride and Carbon Nanotubes and Effect of Surface Carboxylic Groups. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420080117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Abstract
The CH3Cl molecule has been used in several studies as an example purportedly to demonstrate that while Cl is weakly negative, a positive potential can be induced on its axial surface by the electric field of a reasonably strong Lewis base (such as O=CH2). The induced positive potential then has the ability to attract the negative site of the Lewis base, thus explaining the importance of polarization leading to the formation of the H3C–Cl···O=CH2 complex. By examining the nature of the chlorine’s surface in CH3Cl using the molecular electrostatic surface potential (MESP) approach, with MP2/aug-cc-pVTZ, we show that this view is not correct. The results of our calculations demonstrate that the local potential associated with the axial surface of the Cl atom is inherently positive. Therefore, it should be able to inherently act as a halogen bond donor. This is shown to be the case by examining several halogen-bonded complexes of CH3Cl with a series of negative sites. In addition, it is also shown that the lateral portions of Cl in CH3Cl features a belt of negative electrostatic potential that can participate in forming halogen-, chalcogen-, and hydrogen-bonded interactions. The results of the theoretical models used, viz. the quantum theory of atoms in molecules; the reduced density gradient noncovalent index; the natural bond orbital analysis; and the symmetry adapted perturbation theory show that Cl-centered intermolecular bonding interactions revealed in a series of 18 binary complexes do not involve a polarization-induced potential on the Cl atom.
Collapse
|
19
|
Smith JA, Singh-Wilmot MA, Carter KP, Cahill CL, Ridenour JA. Supramolecular assembly of lanthanide-2,3,5,6-tetrafluoroterephthalic acid coordination polymers via fluorine⋯fluorine interactions: a platform for luminescent detection of Fe3+ and nitroaromatic compounds. NEW J CHEM 2020. [DOI: 10.1039/d0nj02604b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
F⋯F interactions stabilize {[Ln(TFTA)1.5(H2O)2]·H2O}n 2D coordination polymers which selectively detect Fe3+ and p-nitrophenols.
Collapse
Affiliation(s)
- Jermaine A. Smith
- Department of Chemistry
- Faculty of Science and Technology
- The University of the West Indies
- Mona
- Jamaica
| | - Marvadeen A. Singh-Wilmot
- Department of Chemistry
- Faculty of Science and Technology
- The University of the West Indies
- Mona
- Jamaica
| | - Korey P. Carter
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | | | | |
Collapse
|
20
|
Mononuclear Ru(II) PolyPyridyl Water Oxidation Catalysts Decorated with Perfluoroalkyl C
8
H
17
‐Tag Bearing Chains. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Ibrahim MAA, Telb EMZ. A Computational Investigation of Unconventional Lone‐Pair Hole Interactions of Group V–VIII Elements. ChemistrySelect 2019. [DOI: 10.1002/slct.201900603] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry LaboratoryChemistry DepartmentFaculty of ScienceMinia University Minia 61519 Egypt
| | - Ebtisam M. Z. Telb
- Computational Chemistry LaboratoryChemistry DepartmentFaculty of ScienceMinia University Minia 61519 Egypt
| |
Collapse
|
22
|
Varadwaj A, Marques HM, Varadwaj PR. Nature of halogen-centered intermolecular interactions in crystal growth and design: Fluorine-centered interactions in dimers in crystalline hexafluoropropylene as a prototype. J Comput Chem 2019; 40:1836-1860. [PMID: 31017721 DOI: 10.1002/jcc.25836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/10/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
The wide occurrence of halogen-centered noncovalent interactions in crystal growth and design prompted this study, which includes a mini review of recent advances in the field. Particular emphasis is placed on providing compelling theoretical evidence of the formation of these interactions between sites of positive electrostatic potential, as well as between sites of negative electrostatic potential, localized on the electrostatic surfaces of the bound fluorine atoms in a prototypical system, hexafluoropropylene (C3 F6 ), upon its interaction with another same molecule to form (C3 F6 )2 dimers. The existence of σ- and π-hole interactions is shown for the stable dimers. Even so, weakly bound interactions locally responsible in holding the molecular fragments together cannot and should not be overlooked since they are partly responsible for determining the overall geometry of the crystal. The results of combined quantum theory of atoms in molecules, molecular electrostatic surface potential, and reduced density gradient noncovalent interaction analyses showed that these latter interactions do indeed play a role in the stability and growth of crystalline C3 F6 itself and the (C3 F6 )2 dimers. A symmetry adapted perturbation theory energy decomposition analysis leads to the conclusion that a great majority of the (C3 F6 )2 dimers examined are the consequence of dispersion (and electrostatics), with nonnegligible contribution from polarization, which together competes with an exchange repulsion component to determine the equilibrium geometries. In a few structures of the (C3 F6 )2 dimer, the fluorine is found to serve as a six-center five-bond donor/acceptor, as found for carbon in other systems (Malischewski and Seppelt, Angew. Chem. Int. Ed. 2017, 56, 368). © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki Prefecture, 305-8560, Japan
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki Prefecture, 305-8560, Japan
| |
Collapse
|
23
|
Abstract
In addition to the underlying basic concepts and early recognition of halogen bonding, this paper reviews the conflicting views that consistently appear in the area of noncovalent interactions and the ability of covalently bonded halogen atoms in molecules to participate in noncovalent interactions that contribute to packing in the solid-state. It may be relatively straightforward to identify Type-II halogen bonding between atoms using the conceptual framework of σ-hole theory, especially when the interaction is linear and is formed between the axial positive region (σ-hole) on the halogen in one monomer and a negative site on a second interacting monomer. A σ-hole is an electron density deficient region on the halogen atom X opposite to the R–X covalent bond, where R is the remainder part of the molecule. However, it is not trivial to do so when secondary interactions are involved as the directionality of the interaction is significantly affected. We show, by providing some specific examples, that halogen bonds do not always follow the strict Type-II topology, and the occurrence of Type-I and -III halogen-centered contacts in crystals is very difficult to predict. In many instances, Type-I halogen-centered contacts appear simultaneously with Type-II halogen bonds. We employed the Independent Gradient Model, a recently proposed electron density approach for probing strong and weak interactions in molecular domains, to show that this is a very useful tool in unraveling the chemistry of halogen-assisted noncovalent interactions, especially in the weak bonding regime. Wherever possible, we have attempted to connect some of these results with those reported previously. Though useful for studying interactions of reasonable strength, IUPAC’s proposed “less than the sum of the van der Waals radii” criterion should not always be assumed as a necessary and sufficient feature to reveal weakly bound interactions, since in many crystals the attractive interaction happens to occur between the midpoint of a bond, or the junction region, and a positive or negative site.
Collapse
|
24
|
Varadwaj A, Marques HM, Varadwaj PR. Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions? Molecules 2019; 24:E379. [PMID: 30678158 PMCID: PMC6384640 DOI: 10.3390/molecules24030379] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/23/2022] Open
Abstract
Can two sites of positive electrostatic potential localized on the outer surfaces of two halogen atoms (and especially fluorine) in different molecular domains attract each other to form a non-covalent engagement? The answer, perhaps counterintuitive, is yes as shown here using the electronic structures and binding energies of the interactions for a series of 22 binary complexes formed between identical or different atomic domains in similar or related halogen-substituted molecules containing fluorine. These were obtained using various computational approaches, including density functional and ab initio first-principles theories with M06-2X, RHF, MP2 and CCSD(T). The physical chemistry of non-covalent bonding interactions in these complexes was explored using both Quantum Theory of Atoms in Molecules and Symmetry Adapted Perturbation Theories. The surface reactivity of the 17 monomers was examined using the Molecular Electrostatic Surface Potential approach. We have demonstrated inter alia that the dispersion term, the significance of which is not always appreciated, which emerges either from an energy decomposition analysis, or from a correlated calculation, plays a structure-determining role, although other contributions arising from electrostatic, exchange-repulsion and polarization effects are also important. The 0.0010 a.u. isodensity envelope, often used for mapping the electrostatic potential is found to provide incorrect information about the complete nature of the surface reactive sites on some of the isolated monomers, and can lead to a misinterpretation of the results obtained.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656, Japan.
- National Institute of Advanced Industrial Science and Technology, 1 Chome-1-1 Umezono, Tsukuba, Ibaraki Prefecture, Ibaraki 305-8560, Japan.
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656, Japan.
- National Institute of Advanced Industrial Science and Technology, 1 Chome-1-1 Umezono, Tsukuba, Ibaraki Prefecture, Ibaraki 305-8560, Japan.
| |
Collapse
|
25
|
Varadwaj PR, Varadwaj A, Marques HM, MacDougall PJ. The chalcogen bond: can it be formed by oxygen? Phys Chem Chem Phys 2019; 21:19969-19986. [DOI: 10.1039/c9cp03783g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study theoretically investigates the possibility of oxygen-centered chalcogen bonding in several complexes. Shown in the graph is such a bonding scenario formed between the electrophile on O in OF2 and the nucleophile on O in H2CO.
Collapse
Affiliation(s)
- Pradeep R. Varadwaj
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo 7-3-1
- Tokyo 113-8656
- Japan
| | - Arpita Varadwaj
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo 7-3-1
- Tokyo 113-8656
- Japan
| | - Helder M. Marques
- Molecular Sciences Institute
- School of Chemistry
- University of the Witwatersrand
- Johannesburg 2050
- South Africa
| | | |
Collapse
|
26
|
Wang C, Danovich D, Shaik S, Wu W, Mo Y. Attraction between electrophilic caps: A counterintuitive case of noncovalent interactions. J Comput Chem 2018; 40:1015-1022. [DOI: 10.1002/jcc.25566] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/29/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Changwei Wang
- School of Chemistry & Chemical EngineeringShaanxi Normal University Xi'an 710119 China
| | - David Danovich
- Institute of ChemistryThe Hebrew University Jerusalem 91904 Israel
| | - Sason Shaik
- Institute of ChemistryThe Hebrew University Jerusalem 91904 Israel
| | - Wei Wu
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen University Xiamen 360015 China
| | - Yirong Mo
- Department of ChemistryWestern Michigan University Kalamazoo Michigan 49008
| |
Collapse
|
27
|
Hybrid DFT study on non-covalent interactions and their influence on pKa's of magnesium-carboxylate complexes. J Mol Graph Model 2018; 85:13-24. [DOI: 10.1016/j.jmgm.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/18/2018] [Accepted: 07/09/2018] [Indexed: 01/15/2023]
|
28
|
Can Combined Electrostatic and Polarization Effects Alone Explain the F···F Negative-Negative Bonding in Simple Fluoro-Substituted Benzene Derivatives? A First-Principles Perspective. COMPUTATION 2018. [DOI: 10.3390/computation6040051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The divergence of fluorine-based systems and significance of their nascent non-covalent chemistry in molecular assemblies are presented in a brief review of the field. Emphasis has been placed to show that type-I and -II halogen-centered F···F long-ranged intermolecular distances viable between the entirely negative fluorine atoms in some fluoro-substituted dimers of C6H6 can be regarded as the consequence of significant non-covalent attractive interactions. Such attractive interactions observed in the solid-state structures of C6F6 and other similar fluorine-substituted aromatic compounds have frequently been underappreciated. While these are often ascribed to crystal packing effects, we show using first-principles level calculations that these are much more fundamental in nature. The stability and reliability of these interactions are supported by their negative binding energies that emerge from a supermolecular procedure using MP2 (second-order Møller-Plesset perturbation theory), and from the Symmetry Adapted Perturbation Theory, in which the latter does not determine the interaction energy by computing the total energy of the monomers or dimer. Quantum Theory of Atoms in Molecules and Reduced Density Gradient Non-Covalent Index charge-density-based approaches confirm the F···F contacts are a consequence of attraction by their unified bond path (and bond critical point) and isosurface charge density topologies, respectively. These interactions can be explained neither by the so-called molecular electrostatic surface potential (MESP) model approach that often demonstrates attraction between sites of opposite electrostatic surface potential by means of Coulomb’s law of electrostatics, nor purely by the effect of electrostatic polarization. We provide evidence against the standalone use of this approach and the overlooking of other approaches, as the former does not allow for the calculation of the electrostatic potential on the surfaces of the overlapping atoms on the monomers as in the equilibrium geometry of a complex. This study thus provides unequivocal evidence of the limitation of the MESP approach for its use in gaining insight into the nature of reactivity of overlapped interacting atoms and the intermolecular interactions involved.
Collapse
|
29
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. A DFT assessment of some physical properties of iodine-centered halogen bonding and other non-covalent interactions in some experimentally reported crystal geometries. Phys Chem Chem Phys 2018; 20:15316-15329. [PMID: 29796486 DOI: 10.1039/c8cp01085d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A set of six binary complexes that feature iodine-centered halogen bonding, extracted from structures deposited in the Cambridge Structure Database, has been examined computationally using density functional theory calculations with the M06-2X global hybrid, and dispersion corrected B3LYP-D3 and B97-D3, to determine their equilibrium geometries, binding energies and electronic properties. The results show that gas phase calculations are very informative in evaluating what occurs in the solid state, even though these calculations ignore the importance of lattice packing and counter ion effects. The calculated binding energies for the non-covalent interactions responsible for these complexes lie between -4.15 and -7.48 kcal mol-1 (M06-2X), which enables us to characterize them as weak-to-moderate in strength. The basis set superposition error energies are calculated to vary between 0.60 and 2.42 kcal mol-1 for all the complexes examined, even though an all-electron QZP basis set used in the analysis was of quadrupole-ζ (plus polarization) quality. Dispersion is found to have a profound effect on the binding energy of some of these complexes, and was estimated to be as large as 5.0 kcal mol-1. For one complex, the crystal geometry could not be precisely reproduced using a gas phase calculation. While both halogen- and hydrogen-bonding interactions were found competitive, they cooperate with each other to determine the stable configuration of the binary complex. The molecular electrostatic surface potential, quantum theory of atoms in molecules, and reduced density gradient non-covalent Interaction models were utilized to arrive at a fundamental understanding of the various inter- and intra-molecular molecular interactions involved, as well as some other previously-overlooked non-covalent interactions that emerge in the modelling.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.
| | | | | | | |
Collapse
|
30
|
Varadwaj A, Varadwaj PR, Marques HM, Yamashita K. Revealing Factors Influencing the Fluorine-Centered Non-Covalent Interactions in Some Fluorine-Substituted Molecular Complexes: Insights from First-Principles Studies. Chemphyschem 2018; 19:1486-1499. [PMID: 29569853 DOI: 10.1002/cphc.201800023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 01/13/2023]
Abstract
We examine the equilibrium structure and properties of six fully or partially fluorinated hydrocarbons and several of their binary complexes using computational methods. In the monomers, the electrostatic surface of the fluorine is predicted to be either entirely negative or weakly positive. However, its lateral sites are always negative. This enables the fluorine to display an anisotropic distribution of charge density on its electrostatic surface. While this is the electrostatic surface scenario of the fluorine atom, its negative sites in some of these monomers are shown to have the potential to engage in attractive engagements with the negative site(s) on the same atom in another molecule of the same type, or a molecule of a different type, to form bimolecular complexes. This is revealed by analyzing the results of current state-of-the-art computational approaches such as DFT, together with those obtained from the quantum theory of atoms in molecules, molecular electrostatic surface potential and symmetry adapted perturbation theories. We demonstrate that the intermolecular interaction energy arising in part from the universal London dispersion, which has been underappreciated for decades, is an essential factor in explaining the attraction between the negative sites, although energy arising from polarization strengthens the extent of the intermolecular interactions in these complexes.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Japan 113-8656, and CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076
| | - Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Japan 113-8656, and CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Japan 113-8656, and CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, Japan 102-0076
| |
Collapse
|
31
|
Varadwaj A, Varadwaj PR, Yamashita K. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like! J Comput Chem 2017; 39:343-350. [PMID: 29226338 DOI: 10.1002/jcc.25125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 01/12/2023]
Abstract
Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r-6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, 113-8656, Japan.,CREST-JST, 7 Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
| |
Collapse
|
32
|
Varadwaj A, Varadwaj PR, Yamashita K. Hybrid organic-inorganic CH3NH3PbI3perovskite building blocks: Revealing ultra-strong hydrogen bonding and mulliken inner complexes and their implications in materials design. J Comput Chem 2017; 38:2802-2818. [DOI: 10.1002/jcc.25073] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/21/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering; The University of Tokyo 7-3-1; Hongo Bunkyo-ku 113-8656 Japan
- CREST-JST, 7 Gobancho; Chiyoda-ku Tokyo 102-0076 Japan
| | - Pradeep R. Varadwaj
- Department of Chemical System Engineering, School of Engineering; The University of Tokyo 7-3-1; Hongo Bunkyo-ku 113-8656 Japan
- CREST-JST, 7 Gobancho; Chiyoda-ku Tokyo 102-0076 Japan
| | - Koichi Yamashita
- Department of Chemical System Engineering, School of Engineering; The University of Tokyo 7-3-1; Hongo Bunkyo-ku 113-8656 Japan
- CREST-JST, 7 Gobancho; Chiyoda-ku Tokyo 102-0076 Japan
| |
Collapse
|
33
|
Ferrocenyl thiocarboxylates: Synthesis, solid-state structure and electrochemical investigations. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Tatikonda R, Bhowmik S, Rissanen K, Haukka M, Cametti M. Metallogel formation in aqueous DMSO by perfluoroalkyl decorated terpyridine ligands. Dalton Trans 2016; 45:12756-62. [DOI: 10.1039/c6dt02008a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this paper, we present a series of stable and thermoreversible metallogels formed by the combination of terpyridine based ligands decorated with perfluorinated C8F17 tags and several divalent d-block metal salts.
Collapse
Affiliation(s)
| | - Sandip Bhowmik
- University of Jyväskylä
- Department of Chemistry
- FI-40014 University of Jyväskylä
- Finland
| | - Kari Rissanen
- University of Jyväskylä
- Department of Chemistry
- FI-40014 University of Jyväskylä
- Finland
| | - Matti Haukka
- University of Jyväskylä
- Department of Chemistry
- FI-40014 University of Jyväskylä
- Finland
| | - Massimo Cametti
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta” Politecnico di Milano
- Milano
- Italy
| |
Collapse
|
35
|
Bauzá A, Frontera A. Electrostatically enhanced F⋯F interactions through hydrogen bonding, halogen bonding and metal coordination: an ab initio study. Phys Chem Chem Phys 2016; 18:20381-8. [DOI: 10.1039/c6cp03862j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this manuscript the ability of hydrogen and halogen bonding interactions, as well as metal coordination to enhance F⋯F interactions involving fluorine substituted aromatic moieties has been studied at the RI-MP2/def2-TZVPD level of theory.
Collapse
Affiliation(s)
- Antonio Bauzá
- Department of Chemistry Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| | - Antonio Frontera
- Department of Chemistry Universitat de les Illes Balears
- 07122 Palma (Baleares)
- Spain
| |
Collapse
|