1
|
Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
3
|
Bernier NA, Teh J, Reichel D, Zahorsky-Reeves JL, Perez JM, Spokoyny AM. Ex Vivo and In Vivo Evaluation of Dodecaborate-Based Clusters Encapsulated in Ferumoxytol Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14500-14508. [PMID: 34843246 PMCID: PMC8761388 DOI: 10.1021/acs.langmuir.1c02506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Host-guest interactions represent a growing research area with recent work demonstrating the ability to chemically manipulate both host molecules as well as guest molecules to vary the type and strength of bonding. Much less is known about the interactions of the guest molecules and hybrid materials containing similar chemical features to typical macrocyclic hosts. This work uses in vitro and in vivo kinetic analyses to investigate the interaction of closo-dodecahydrododecaborate derivatives with ferumoxytol, an iron oxide nanoparticle with a carboxylated dextran coating. We find that several boron cluster derivatives can become encapsulated into ferumoxytol, and the lack of pH dependence in these interactions suggests that ion pairing, hydrophobic/hydrophilic interaction, and hydrogen bonding are not the driving force for encapsulation in this system. Biodistribution experiments in BALB/c mice show that this system is nontoxic at the reported dosage and demonstrate that encapsulation of dodecaborate-based clusters in ferumoxytol can alter the biodistribution of the guest molecules.
Collapse
Affiliation(s)
- Nicholas A. Bernier
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joanne L. Zahorsky-Reeves
- Division of Lab Animal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding Author:,
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
- Corresponding Author:,
| |
Collapse
|
4
|
Abstract
"There's plenty of room at the bottom" (Richard Feynman, 1959): an invitation for (metalla)carboranes to enter the (new) field of nanomedicine. For two decades, the number of publications on boron cluster compounds designed for potential applications in medicine has been constantly increasing. Hundreds of compounds have been screened in vitro or in vivo for a variety of biological activities (chemotherapeutics, radiotherapeutics, antiviral, etc.), and some have shown rather promising potential for further development. However, until now, no boron cluster compounds have made it to the clinic, and even clinical trials have been very sparse. This review introduces a new perspective in the field of medicinal boron chemistry, namely that boron-based drugs should be regarded as nanomedicine platforms, due to their peculiar self-assembly behaviour in aqueous solutions, and treated as such. Examples for boron-based 12- and 11-vertex clusters and appropriate comparative studies from medicinal (in)organic chemistry and nanomedicine, highlighting similarities, differences and gaps in physicochemical and biological characterisation methods, are provided to encourage medicinal boron chemists to fill in the gaps between chemistry laboratory and real applications in living systems by employing bioanalytical and biophysical methods for characterising and controlling the aggregation behaviour of the clusters in solution.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
- Institute of Analytical ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityLinnéstr. 304103LeipzigGermany
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Benedikt Schwarze
- Institute of Medicinal Physics and BiophysicsFaculty of MedicineLeipzig UniversityHärtelstr. 16–1804107LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryFaculty of Chemistry and MineralogyLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
5
|
Parejo L, Chaari M, Santiago S, Guirado G, Teixidor F, Núñez R, Hernando J. Reversibly Switchable Fluorescent Molecular Systems Based on Metallacarborane-Perylenediimide Conjugates. Chemistry 2021; 27:270-280. [PMID: 32648595 DOI: 10.1002/chem.202002419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/31/2022]
Abstract
Icosahedral metallacarboranes are θ-shaped anionic molecules in which two icosahedra share one vertex that is a metal center. The most remarkable of these compounds is the anionic cobalt-based metallacarborane [Co(C2 B9 H11 )2 ]- , whose oxidation-reduction processes occur via an outer sphere electron process. This, along with its low density negative charge, makes [Co(C2 B9 H11 )2 ]- very appealing to participate in electron-transfer processes. In this work, [Co(C2 B9 H11 )2 ]- is tethered to a perylenediimide dye to produce the first examples of switchable luminescent molecules and materials based on metallacarboranes. In particular, the electronic communication of [Co(C2 B9 H11 )2 ]- with the appended chromophore unit in these compounds can be regulated upon application of redox stimuli, which allows the reversible modulation of the emitted fluorescence. As such, they behave as electrochemically-controlled fluorescent molecular switches in solution, which surpass the performance of previous systems based on conjugates of perylendiimides with ferrocene. Remarkably, they can form gels by treatment with appropriate mixtures of organic solvents, which result from the self-assembly of the cobaltabisdicarbollide-perylendiimide conjugates into 1D nanostructures. The interplay between dye π-stacking and metallacarborane electronic and steric interactions ultimately governs the supramolecular arrangement in these materials, which for one of the compounds prepared allows preserving the luminescent behavior in the gel state.
Collapse
Affiliation(s)
- Laura Parejo
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Mahdi Chaari
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Sara Santiago
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Gonzalo Guirado
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Francesc Teixidor
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Rosario Núñez
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193, Barcelona, Spain
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| |
Collapse
|
6
|
Fojt L, Grüner B, Šícha V, Nekvinda J, Vespalec R, Fojta M. Electrochemistry of icosahedral cobalt bis(dicarbollide) ions and their carbon and boron substituted derivatives in aqueous phosphate buffers. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Kang B, Tang H, Zhao Z, Song S. Hofmeister Series: Insights of Ion Specificity from Amphiphilic Assembly and Interface Property. ACS OMEGA 2020; 5:6229-6239. [PMID: 32258857 PMCID: PMC7114165 DOI: 10.1021/acsomega.0c00237] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/13/2020] [Indexed: 05/04/2023]
Abstract
Hofmeister series (HS), ion specific effect, or lyotropic sequence acts as a pivotal part in a number of biological and physicochemical phenomena, e.g., changing the solubility of hydrophobic solutes, the cloud points of polymers and nonionic surfactants, the activities of various enzymes, the action of ions on an ion-channel, and the surface tension of electrolyte solutions, etc. This review focused on how ion specificity influences the critical micelle concentration (CMC) and how the thermoresponsive behavior of surfactants, and the dynamic transition of the aggregate, controls the aggregate transition and gel formation and tunes the properties of air/water interfaces (Langmuir monolayer and interfacial free energy). Recent progress of the ion specific effect in bulk phase and at interfaces in amphiphilic systems and gels is summarized. Applications and a molecular level theoretical explanation of HS are discussed comprehensively. This review is aimed to supply a fresh and comprehensive understanding of Hofmiester phenomena in surfactants, polymers, colloids, and interface science and to provide a guideline to design the microstructures and templates for preparation of nanomaterials.
Collapse
Affiliation(s)
- Beibei Kang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Huicheng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| | - Shasha Song
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China
| |
Collapse
|
8
|
Fernandez-Alvarez R, Nová L, Uhlík F, Kereïche S, Uchman M, Košovan P, Matějíček P. Interactions of star-like polyelectrolyte micelles with hydrophobic counterions. J Colloid Interface Sci 2019; 546:371-380. [PMID: 30933716 DOI: 10.1016/j.jcis.2019.03.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/26/2022]
Abstract
Hydrophobicity of a counterion has a profound effect on the interaction with polyelectrolytes similar to that of multivalency. Specifically, understanding this interaction in weak polyelectrolyte micelles might assist in developing nanocarriers for pH-controlled encapsulation and release. We used star-like weak polyelectrolyte micelles of polystyrene-block-poly(2-vinyl pyridine) (PS-P2VP) with fixed aggregation number as a model polyelectrolyte, and cobalt bis(1,2-dicarbollide) (COSAN) as a model hydrophobic anion. We used NMR to assess the mobility of the polymer segments in the presence of varying amounts of COSAN, and at varying protonation degrees of the polyelectrolyte. Same experiments with indifferent electrolyte (NaCl) were used as a control. Furthermore, we used coarse-grained simulations to obtain a detailed picture of the effect of hydrophobic counterions on the conformation of the micelles. A small amount of hydrophobic counterions causes morphological changes within the micelles, whereas a bigger amount causes precipitation. This was confirmed both in simulations and in experiments. Furthermore, adsorption of the counterions induces ionization of the collapsed segments of the polyelectrolyte. Although the COSAN/P2VP system is rather specific, the generic model used in the coarse-grained simulations shows that the observed behavior is a consequence of synergy of hydrophobic and electrostatic attraction between polyelectrolytes and hydrophobic counterions. Our study provides general insights into the molecular mechanisms of these interactions.
Collapse
Affiliation(s)
- Roberto Fernandez-Alvarez
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Lucie Nová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Filip Uhlík
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Sami Kereïche
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Purkynie Ustav, Albertov 4, 12 801 Prague, Czech Republic
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic.
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic.
| |
Collapse
|
9
|
Vrbata D, Ďorďovič V, Seitsonen J, Ruokolainen J, Janoušková O, Uchman M, Matějíček P. Preparation of membrane-mimicking lamellar structures by molecular confinement of hybrid nanocomposites. Chem Commun (Camb) 2019; 55:2900-2903. [PMID: 30698594 DOI: 10.1039/c8cc09399g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hybrid nanocomposites are multiphase systems with a wide range of applications. Some nanocomposites are water insoluble thereby preventing several applications. Thus, we prepared telechelic PEO with glucose molecules to form water-soluble lamellar nanostructures by co-assembly with metallacarborane. The lamellas formed by PEO/metallacarborane decorated by glucose molecules on the surface can serve as delivery agents for boron clusters and benzoxaboroles.
Collapse
Affiliation(s)
- David Vrbata
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
10
|
Fernandez-Alvarez R, Medoš Ž, Tošner Z, Zhigunov A, Uchman M, Hervø-Hansen S, Lund M, Bešter-Rogač M, Matějíček P. Total Description of Intrinsic Amphiphile Aggregation: Calorimetry Study and Molecular Probing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14448-14457. [PMID: 30343575 DOI: 10.1021/acs.langmuir.8b03462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isothermal titration calorimetry (ITC) is an apt tool for a total thermodynamic description of self-assembly of atypical amphiphiles such as anionic boron cluster compounds (COSAN) in water. Global fitting of ITC enthalpograms reveals remarkable features that differentiate COSAN from classical amphiphiles: (i) strong enthalpy and weak entropy contribution to the free energy of aggregation, (ii) low degree of counterion binding, and (iii) very low aggregation number, leading to deviations from the ideal closed association model. The counterion condensation obtained from the thermodynamic model was compared with the results of 7Li DOSY NMR of Li[COSAN] micelles, which allows direct tracking of Li cations. The basic thermodynamic study of COSAN alkaline salt aggregation was complemented by NMR and ITC experiments in dilute Li/NaCl and acetonitrile aqueous solutions of COSAN. The strong affinity of acetonitrile molecules to COSAN clusters was microscopically investigated by all-atomic molecular dynamics simulations. The impact of ionic strength on COSAN self-assembling was comparable to the behavior of classical amphiphiles, whereas even a small amount of acetonitrile cosolvent has a pronounced nonclassical character of COSAN aggregation. It demonstrates that large self-assembling changes are triggered by traces of organic solvents.
Collapse
Affiliation(s)
| | - Žiga Medoš
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | | | - Alexander Zhigunov
- Institute of Macromolecular Chemistry, v.v.i. , Academy of Sciences of the Czech Republic , Heyrovský Sq. 2 , 16206 Prague 6 , Czechia
| | | | - Stefan Hervø-Hansen
- Division of Theoretical Chemistry , University of Lund , P.O. Box 124, SE-22100 Lund , Sweden
| | - Mikael Lund
- Division of Theoretical Chemistry , University of Lund , P.O. Box 124, SE-22100 Lund , Sweden
| | - Marija Bešter-Rogač
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | | |
Collapse
|
11
|
Fernandez-Alvarez R, Ďorďovič V, Uchman M, Matějíček P. Amphiphiles without Head-and-Tail Design: Nanostructures Based on the Self-Assembly of Anionic Boron Cluster Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3541-3554. [PMID: 29144761 DOI: 10.1021/acs.langmuir.7b03306] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anionic boron cluster compounds (ABCCs) are intrinsically amphiphilic building blocks suitable for nanochemistry. ABCCs are involved in atypical weak interactions, notably dihydrogen bonding, due to their peculiar polyhedral structure, consisting of negatively charged B-H units. The most striking feature of ABCCs that differentiates them from typical surfactants is the lack of head-and-tail structure. Furthermore, their structure can be described as intrinsically amphiphilic or aquaneutral. Therefore, classical terms established to describe self-assembly of classical amphiphiles are insufficient and need to be reconsidered. The opinions and theories focused on the solution behavior of ABCCs are briefly discussed. Moreover, a comparison between ABCCs with other amphiphilic systems is made focusing on the explanation of enthalpy-driven micellization or relations between hydrophobic and chaotropic effects. Despite the unusual structure, ABCCs still show self- and coassembly properties comparable to classical amphiphiles such as ionic surfactants. They self-assemble into micelles in water according to the closed association model. The most typical features of ABCCs solution behavior is demonstrated on calorimetry, NMR spectroscopy, and tensiometry experiments. Altogether, the unique features of ABCCs makes them a valuable inclusion into the nanochemisty toolbox to develop novel nanostructures both alone and with other molecules.
Collapse
Affiliation(s)
- Roberto Fernandez-Alvarez
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2 , Czechia
| | - Vladimír Ďorďovič
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2 , Czechia
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2 , Czechia
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Faculty of Science , Charles University , Hlavova 2030 , 128 40 Prague 2 , Czechia
| |
Collapse
|
12
|
Ďorďovič V, Verbraeken B, Hogenboom R, Kereïche S, Matějíček P, Uchman M. Tuning of Thermoresponsivity of a Poly(2-alkyl-2-oxazoline) Block Copolymer by Interaction with Surface-Active and Chaotropic Metallacarborane Anion. Chem Asian J 2018; 13:838-845. [PMID: 29384259 DOI: 10.1002/asia.201701720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 11/08/2022]
Abstract
Thermoresponsive nanoparticles based on the interaction of metallacarboranes, bulky chaotropic and surface-active anions, and poly(2-alkyl-2-oxazoline) block copolymers were prepared. Recently, the great potential of metallacarboranes have been recognized in biomedicine and many delivery nanosystems have been proposed. However, none of them are thermoresponsive. Therefore, a thermoresponsive block copolymer, poly(2-methyl-2-oxazoline)-block-poly(2-n-propyl-2-oxazoline) (PMeOx-PPrOx), was synthesized to encapsulate metallacarboranes. Light scattering, NMR spectroscopy, isothermal titration calorimetry, and cryogenic TEM were used to characterize all solutions of the formed nanoparticles. The cloud-point temperature (TCP ) of the block copolymer was observed at 30 °C and polymeric micelles formed above this temperature. Cobalt bis(dicarbollide) anion (COSAN) interacts with both polymeric segments. Depending on the COSAN concentration, this affinity influenced the phase transition of the thermoresponsive PPrOx block. The TCP shifted to lower values at a lower COSAN content. At higher COSAN concentrations, the hybrid nanoparticles are fragmented into relatively small pieces. This system is also thermoresponsive, whereby an increase in temperature leads to higher polymer mobility and COSAN release.
Collapse
Affiliation(s)
- Vladimír Ďorďovič
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague 2, Czech Republic
| | - Bart Verbraeken
- Supramolecular Chemistry Group, Department of Organic and Macromolecular chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, B-9000, Gent, Belgium
| | - Richard Hogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, B-9000, Gent, Belgium
| | - Sami Kereïche
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague 2, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Purkynie Ustav, Albertov 4, 12 801, Prague, Czech Republic
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague 2, Czech Republic
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague 2, Czech Republic
| |
Collapse
|
13
|
Goszczyński TM, Fink K, Kowalski K, Leśnikowski ZJ, Boratyński J. Interactions of Boron Clusters and their Derivatives with Serum Albumin. Sci Rep 2017; 7:9800. [PMID: 28852112 PMCID: PMC5574927 DOI: 10.1038/s41598-017-10314-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/31/2017] [Indexed: 12/21/2022] Open
Abstract
Boron clusters are polyhedral boron hydrides with unique properties, and they are becoming increasingly widely used in biology and medicine, including for boron neutron capture therapy (BNCT) of cancers and in the design of novel bioactive molecules and potential drugs. Among boron cluster types, icosahedral boranes, carboranes, and metallacarboranes are particularly interesting, and there is a need for basic studies on their interaction with biologically important molecules, such as proteins. Herein, we report studies on the interaction of selected boron clusters and their derivatives with serum albumin, the most abundant protein in mammalian blood. The interaction of boron clusters with albumin was examined by fluorescence quenching, circular dichroism, dynamic and static light scattering measurements and MALDI-TOF mass spectrometry. Our results showed that metallacarboranes have the strongest interaction with albumin among the tested clusters. The observed strength of boron cluster interactions with albumin decreases in order: metallacarboranes [M(C2B9H11)2]− > carboranes (C2B10H12) >> dodecaborate anion [B12H12]2−. Metallacarboranes first specifically interact with the binding cavity of albumin and then, with increasing compound concentrations, interact non-specifically with the protein surface. These findings can be of importance and are useful in the development of new bioactive compounds that contain boron clusters.
Collapse
Affiliation(s)
- Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114, Wrocław, Poland.
| | - Krzysztof Fink
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114, Wrocław, Poland
| | - Konrad Kowalski
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114, Wrocław, Poland
| | - Zbigniew J Leśnikowski
- Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa St., 93-232, Łódź, Poland.
| | - Janusz Boratyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolf Weigl St., 53-114, Wrocław, Poland
| |
Collapse
|
14
|
Cui Y, Jiang X, Feng C, Gu G, Xu J, Huang X. First double hydrophilic graft copolymer bearing a poly(2-hydroxylethyl acrylate) backbone synthesized by sequential RAFT polymerization and SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py00489j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reports the first synthesis of well-defined double hydrophilic graft copolymers with a PHEA backbone, by the combination of RAFT polymerization, SET-LRP, and a grafting-from strategy.
Collapse
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiuyu Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guangxin Gu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Jie Xu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|