1
|
Asmaey MA. Unravelling the Secrets of α-Pyrones from Aspergillus Fungi: A Comprehensive Review of Their Natural Sources, Biosynthesis, and Biological Activities. Chem Biodivers 2023; 20:e202301185. [PMID: 37823671 DOI: 10.1002/cbdv.202301185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Aspergillus, one of the most product-rich and genetically robust genera, contains a diverse range of species with potential economic and ecological implications. Chemically, Aspergillus is one of the essential sources of polyketides, alkaloids, diphenyl ethers, diketopiperazines, and other miscellaneous compounds, displaying a variety of pharmacological activities. The α-pyrones are unsaturated six-membered lactones. Although α-pyrone has a small structure, it is responsible for the structural diversity of several natural and synthetic compounds and multiple biological activities. In this review, we have summarized approximately 178 α-pyrone containing metabolites derivatives identified/reported from terrestrial, marine, endophytic, and filamentous Aspergillus species, including their sources, biological properties, and biosynthetic pathways until mid-2023, for the first time. This review is the first to compile and analyze the available data on α-pyrone metabolites from Aspergillus, which could facilitate further research and innovation in this field. Additionally, it offers a valuable source of scaffolds for future bioactive drug development, as some of these metabolites have shown potent antimicrobial, anti-inflammatory, and anticancer effects. Therefore, this review has significant implications for the advancement of natural product chemistry, pharmacology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Mostafa A Asmaey
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
2
|
Martins T, Glasser NR, Kountz DJ, Oliveira P, Balskus EP, Leão PN. Biosynthesis of the Unusual Carbon Skeleton of Nocuolin A. ACS Chem Biol 2022; 17:2528-2537. [PMID: 36044983 PMCID: PMC9486936 DOI: 10.1021/acschembio.2c00464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Nocuolin A is a cytotoxic cyanobacterial metabolite that is proposed to be produced by enzymes of the noc biosynthetic gene cluster. Nocuolin A features a 1,2,3-oxadiazine moiety, a structural feature unique among natural products and, so far, inaccessible through organic synthesis, suggesting that novel enzymatic chemistry might be involved in its biosynthesis. This heterocycle is substituted with two alkyl chains and a 3-hydroxypropanoyl moiety. We report here our efforts to elucidate the origin of the carbon skeleton of nocuolin A. Supplementation of cyanobacterial cultures with stable isotope-labeled fatty acids revealed that the central C13 chain is assembled from two medium-chain fatty acids, hexanoic and octanoic acids. Using biochemical assays, we show that a fatty acyl-AMP ligase, NocH, activates both fatty acids as acyl adenylates, which are loaded onto an acyl carrier protein domain and undergo a nondecarboxylative Claisen condensation catalyzed by the ketosynthase NocG. This enzyme is part of a phylogenetically well-defined clade within similar genomic contexts. NocG presents a unique combination of characteristics found in other ketosynthases, namely in terms of substrate specificity and reactivity. Further supplementation experiments indicate that the 3-hydroxypropanoyl moiety of 1 originates from methionine, through an as-yet-uncharacterized mechanism. This work provides ample biochemical evidence connecting the putative noc biosynthetic gene cluster to nocuolin A and identifies the origin of all its carbon atoms, setting the stage for elucidation of its unusual biosynthetic chemistry.
Collapse
Affiliation(s)
- Teresa
P. Martins
- CIIMAR
− Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS
− Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Nathaniel R. Glasser
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Duncan J. Kountz
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Paulo Oliveira
- i3S
− Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC
− Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto, 4169-00 Porto, Portugal
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Pedro N. Leão
- CIIMAR
− Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
3
|
Krome AK, Becker T, Kehraus S, Schiefer A, Gütschow M, Chaverra-Muñoz L, Hüttel S, Jansen R, Stadler M, Ehrens A, Pogorevc D, Müller R, Hübner MP, Hesterkamp T, Pfarr K, Hoerauf A, Wagner KG, König GM. Corallopyronin A: antimicrobial discovery to preclinical development. Nat Prod Rep 2022; 39:1705-1720. [PMID: 35730490 DOI: 10.1039/d2np00012a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covering: August 1984 up to January 2022Worldwide, increasing morbidity and mortality due to antibiotic-resistant microbial infections has been observed. Therefore, better prevention and control of infectious diseases, as well as appropriate use of approved antibacterial drugs are crucial. There is also an urgent need for the continuous development and supply of novel antibiotics. Thus, identifying new antibiotics and their further development is once again a priority of natural product research. The antibiotic corallopyronin A was discovered in the 1980s in the culture broth of the Myxobacterium Corallococcus coralloides and serves, in the context of this review, as a show case for the development of a naturally occurring antibiotic compound. The review demonstrates how a hard to obtain, barely water soluble and unstable compound such as corallopyronin A can be developed making use of sophisticated production and formulation approaches. Corallopyronin A is a bacterial DNA-dependent RNA polymerase inhibitor with a new target site and one of the few representatives of this class currently in preclinical development. Efficacy against Gram-positive and Gram-negative pathogens, e.g., Chlamydia trachomatis, Orientia tsutsugamushi, Staphylococcus aureus, and Wolbachia has been demonstrated. Due to its highly effective in vivo depletion of Wolbachia, which are essential endobacteria of most filarial nematode species, and its robust macrofilaricidal efficacy, corallopyronin A was selected as a preclinical candidate for the treatment of human filarial infections. This review highlights the discovery and production optimization approaches for corallopyronin A, as well as, recent preclinical efficacy results demonstrating a robust macrofilaricidal effect of the anti-Wolbachia candidate, and the solid formulation strategy which enhances the stability as well as the bioavailability of corallopyronin A.
Collapse
Affiliation(s)
- Anna K Krome
- Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany. .,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Tim Becker
- Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany. .,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
| | - Stefan Kehraus
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Pharmaceutical Biology, University of Bonn, Germany.
| | - Andrea Schiefer
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | | | - Stephan Hüttel
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Rolf Jansen
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Alexandra Ehrens
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Domen Pogorevc
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrucken, Germany
| | - Rolf Müller
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.,Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrucken, Germany
| | - Marc P Hübner
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Thomas Hesterkamp
- Translational Project Management Office (TPMO), German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Kenneth Pfarr
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Achim Hoerauf
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Karl G Wagner
- Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Germany. .,German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany
| | - Gabriele M König
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Germany.,Institute for Pharmaceutical Biology, University of Bonn, Germany.
| |
Collapse
|
4
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022; 61:e202200879. [DOI: 10.1002/anie.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaoli Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Hongqun Tan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhihao Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Kai Jiang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Wenya Tian
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Mengmeng Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xudong Qu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University 1 Luojiashan Rd. Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
6
|
Yan X, Zhang J, Tan H, Liu Z, Jiang K, Tian W, Zheng M, Lin Z, Deng Z, Qu X. A Pair of Atypical KAS III Homologues with Initiation and Elongation Functions Program the Polyketide Biosynthesis in Asukamycin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoli Yan
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Jun Zhang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Hongqun Tan
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhihao Liu
- Wuhan University School of pharmaceutical Sciences CHINA
| | - Kai Jiang
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Wenya Tian
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Mengmeng Zheng
- Wuhan University School of Pharmaceutical Sciences CHINA
| | - Zhi Lin
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Zixin Deng
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology CHINA
| | - Xudong Qu
- Shanghai Jiao Tong University School of Life Sciences and Biotechnology 800 Dongchuan Rd. 200240 Shanghai CHINA
| |
Collapse
|
7
|
Kita R, Osawa T, Obika S. Conjugation of oligonucleotides with activated carbamate reagents prepared by the Ugi reaction for oligonucleotide library synthesis. RSC Chem Biol 2022; 3:728-738. [PMID: 35755192 PMCID: PMC9175101 DOI: 10.1039/d1cb00240f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
The DNA-encoded library (DEL) is a powerful tool for drug discovery. As a result, to obtain diverse DELs, many DNA-compatible chemical reactions have been developed over the past decade. Among the most commonly used reactions in medicinal chemistry, multicomponent reactions (MCRs) can lead to the generation of various compounds in a one-step reaction. In particular, the Ugi reaction can easily provide a peptoid library. Thus, we herein report a solution-phase DEL synthesis based on the Ugi reaction. Using 6-(4-nitrophenoxycarbonylamino)hexanoic acid and N-4-nitrophenoxycarbonylglycine as carboxylic acids, peptoids with activated carbamate moieties were obtained as the products of the Ugi reaction. These peptoids were then treated with oligonucleotides bearing a 5′- or 3′-terminal aminohexyl linker to give various oligonucleotide-tagged peptoids in good yields. Moreover, the obtained peptoids could be substituted by a Suzuki cross-coupling reaction and by hydrolysis of the carboxylate ester, followed by condensation with amines. These advances should therefore promote pharmaceutical and medicinal research using DELs. A solution-phase conjugation method based on the Ugi reaction is reported, which enables the synthesis of an oligonucleotide-tagged peptoid library.![]()
Collapse
Affiliation(s)
- Ryosuke Kita
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
8
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
9
|
Okoth DA, Hug JJ, Mándi A, Kurtán T, Garcia R, Müller R. Structure and biosynthesis of sorangipyranone - a new γ-dihydropyrone from the myxobacterial strain MSr12020. J Ind Microbiol Biotechnol 2021; 48:kuab029. [PMID: 34003283 PMCID: PMC9113121 DOI: 10.1093/jimb/kuab029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/13/2021] [Indexed: 08/28/2024]
Abstract
Sorangipyranone was isolated as a novel natural product featuring a unique 2,3-dihydro-γ-4H-pyrone scaffold from cultures of the myxobacterial strain MSr12020. We report here the full structure elucidation of sorangipyranone by spectroscopic techniques including 2D NMR and high-resolution mass spectrometry together with the analysis of the biosynthetic pathway. Determination of the absolute configuration was performed by time-dependent density functional theory-electronic circular dichroism calculations and determination of the applicability of the Snatzke's helicity rule, to correlate the high-wavelength n→π* electronic circular dichroism (ECD) transition and the absolute configuration of the 2,3-dihydro-4H-γ-pyrone, was done by the analysis of low-energy conformers and the Kohn-Sham orbitals. Sorangipyranone outlines a new class of a γ-dihydropyrone-containing natural product comprised of malonyl-CoA-derived building blocks and features a unique polyketide scaffold. In silico analysis of the genome sequence of the myxobacterial strain MSr12020 complemented with feeding experiments employing stable isotope-labeled precursors allowed the identification and annotation of a candidate biosynthetic gene cluster that encodes a modular polyketide synthase assembly line. A model for the biosynthetic pathway leading to the formation of the γ-dihydropyrone scaffold is presented in this study.
Collapse
Affiliation(s)
- Dorothy A Okoth
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Joachim J Hug
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Ronald Garcia
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
10
|
Bae D, Lee J, Jin H, Ryu DH. Bifunctional Urea/Hg(OAc) 2-Mediated Synthesis of 4-Aryl-6-oxycarbonyl-2-pyrones and 2-Pyridones from Dithiomalonate and β,γ-Unsaturated α-Keto Esters. J Org Chem 2021; 86:6001-6014. [PMID: 33819048 DOI: 10.1021/acs.joc.1c00323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Disubstituted 2-pyrones and 2-pyridones were obtained by bifunctional urea-catalyzed Michael addition/lactonization or lactamization followed by a Hg(OAc)2- or Hg(OAc)2/DBU-mediated hydrolysis/decarboxylation/dehydrogenation process. This one-pot two-stage protocol enabled the rapid synthesis of 4,6-disubstituted 2-pyrones and 2-pyridones from dithiomalonate and β,γ-unsaturated α-keto esters in practical yields under mild reaction conditions. Additionally, the obtained 2-pyridones were facilely transformed to 2,4,6-trisubstituted pyridines in excellent yields.
Collapse
Affiliation(s)
- Daeil Bae
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Juyeol Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Hui Jin
- Liaoning Province Key Laboratory of Green Functional Molecular Design and Development, Institute of Functional Molecules, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
11
|
Hahn F, Guth FM. The ambruticins and jerangolids - chemistry, biology and chemoenzymatic synthesis of potent antifungal drug candidates. Nat Prod Rep 2020; 37:1300-1315. [PMID: 32420573 DOI: 10.1039/d0np00012d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1977 to 2020The ambruticins and jerangolids are myxobacterial reduced polyketides, which are produced via highly unusual biosynthetic pathways containing a plethora of non-canonical enzymatic transformations. Since the discovery of the first congeners in the late 1970s, they have been in the focus of drug development due to their good antifungal activity and low toxicity in mammals, which result from interaction with an unusual innercellular target in fungi. Despite significant efforts, which have led to the development of various total syntheses, their structural complexity has yet avoided full exploitation of their pharmacological potential. This article summarises biological, total and semisynthetic as well as biosynthetic studies on both compounds. An outlook on the biosynthesis-based approaches to them and their derivatives is presented. Due to the structural and biosynthetic characteristics of the ambruticins and jerangolids, chemoenzymatic processes that make use of their biosynthetic pathway enzymes are particularly promising to gain efficient access to derivative libraries for structure activity relationship studies.
Collapse
Affiliation(s)
- Frank Hahn
- Department of Chemistry, University of Bayreuth, 51427 Bayreuth, Germany.
| | | |
Collapse
|
12
|
Wunderlich J, Roß T, Schröder M, Hahn F. Step-Economic Synthesis of Biomimetic β-Ketopolyene Thioesters and Demonstration of Their Usefulness in Enzymatic Biosynthesis Studies. Org Lett 2020; 22:4955-4959. [PMID: 32610930 DOI: 10.1021/acs.orglett.0c01348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies on the biosynthetic processing of polyene thioester intermediates are complicated by limited access to appropriate substrate surrogates. We present a step-economic synthetic access to biomimetic β-ketopolyene thioesters that is based on an Ir-catalyzed reductive Horner-Wadsworth-Emmons olefination. New β-ketotriene and pentaenethioates of pantetheine and N-acetylcysteamine were exemplarily synthesized via short and concise routes. The usefulness of these compounds was demonstrated in an in vitro assay with the ketoreductase domain MycKRB from mycolactone biosynthesis.
Collapse
Affiliation(s)
- Johannes Wunderlich
- Fakultät Biologie, Chemie und Geologie, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Theresa Roß
- Fakultät Biologie, Chemie und Geologie, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marius Schröder
- Fakultät Biologie, Chemie und Geologie, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Frank Hahn
- Fakultät Biologie, Chemie und Geologie, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
13
|
Wang WG, Wang H, Du LQ, Li M, Chen L, Yu J, Cheng GG, Zhan MT, Hu QF, Zhang L, Yao M, Matsuda Y. Molecular Basis for the Biosynthesis of an Unusual Chain-Fused Polyketide, Gregatin A. J Am Chem Soc 2020; 142:8464-8472. [PMID: 32275405 DOI: 10.1021/jacs.0c02337] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gregatin A (1) is a fungal polyketide featuring an alkylated furanone core, but the biosynthetic mechanism to furnish the intriguing molecular skeleton has yet to be elucidated. Herein, we have identified the biosynthetic gene cluster of gregatin A (1) in Penicillium sp. sh18 and investigated the mechanism that produces the intriguing structure of 1 by in vivo and in vitro reconstitution of its biosynthesis. Our study established the biosynthetic route leading to 1 and illuminated that 1 is generated by the fusion of two different polyketide chains, which are, amazingly, synthesized by a single polyketide synthase GrgA with the aid of a trans-acting enoylreductase GrgB. Chain fusion, as well as chain hydrolysis, is catalyzed by an α/β hydrolase, GrgF, hybridizing the C11 and C4 carbon chains by Claisen condensation. Finally, structural analysis and mutational experiments using GrgF provided insight into how the enzyme facilitates the unusual chain-fusing reaction. In unraveling a new biosynthetic strategy involving a bifunctional PKS and a polyketide fusing enzyme, our study expands our knowledge concerning fungal polyketide biosynthesis.
Collapse
Affiliation(s)
- Wei-Guang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Hang Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Lian-Qiong Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Min Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Lin Chen
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Jian Yu
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Gui-Guang Cheng
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Meng-Tao Zhan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Qiu-Fen Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, Yunnan, China
| | - Lihan Zhang
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| |
Collapse
|
14
|
Sigrist R, Luhavaya H, McKinnie SMK, Ferreira da Silva A, Jurberg ID, Moore BS, Gonzaga de Oliveira L. Nonlinear Biosynthetic Assembly of Alpiniamide by a Hybrid cis/ trans-AT PKS-NRPS. ACS Chem Biol 2020; 15:1067-1077. [PMID: 32195572 DOI: 10.1021/acschembio.0c00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpiniamide A is a linear polyketide produced by Streptomyces endophytic bacteria. Despite its relatively simple chemical structure suggestive of a linear assembly line biosynthetic construction involving a hybrid polyketide synthase-nonribosomal peptide synthetase enzymatic protein machine, we report an unexpected nonlinear synthesis of this bacterial natural product. Using a combination of genomics, heterologous expression, mutagenesis, isotope-labeling, and chain terminator experiments, we propose that alpiniamide A is assembled in two halves and then ligated into the mature molecule. We show that each polyketide half is constructed using orthogonal biosynthetic strategies, employing either cis- or trans-acyl transferase mechanisms, thus prompting an alternative proposal for the operation of this PKS-NRPS.
Collapse
Affiliation(s)
- Renata Sigrist
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Hanna Luhavaya
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Shaun M. K. McKinnie
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Amanda Ferreira da Silva
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Igor D. Jurberg
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Luciana Gonzaga de Oliveira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
15
|
Abstract
In this review, we present the recent advances in unusual novel ketosynthases catalyzing
the non-decarboxylative Claisen condensations, including CsyB, MxnB/CorB, Ppys and StlD. The
differences are summarized between these non-decarboxylative ketosynthases and the typical decarboxylative
ketosynthases. Furthermore, the detailed enzymatic characteristics, structural basis, and
catalytic mechanismof these novel ketosynthasesare described. Finally, the prospect of these kind of
ketosynthases is discussed.
Collapse
Affiliation(s)
- Lixia Pan
- Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| |
Collapse
|
16
|
Lei CW, Zhang CB, Wang ZH, Xie KX, Zhao JQ, Zhou MQ, Zhang XM, Xu XY, Yuan WC. Cyclocondensation of coumarin-3-thioformates with 3-hydroxyoxindoles and 3-aminooxindoles for the synthesis of spiro-fused pentaheterocyclic compounds. Org Chem Front 2020. [DOI: 10.1039/c9qo01039d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A range of spiro-fused pentaheterocyclic compounds including spiro-butyrolactoneoxindole[3,4-c]coumarins and spiro-butyrolactamoxindole[3,4-c]coumarins were smoothly obtained via tandem Michael addition-lactonization/lactamization process.
Collapse
Affiliation(s)
- Chuan-Wen Lei
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Chuan-Bao Zhang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Ke-Xin Xie
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiao-Mei Zhang
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiao-Ying Xu
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
17
|
Babadi ZK, Sudarman E, Ebrahimipour GH, Primahana G, Stadler M, Wink J. Structurally diverse metabolites from the rare actinobacterium Saccharothrix xinjiangensis. J Antibiot (Tokyo) 2019; 73:48-55. [PMID: 31451754 DOI: 10.1038/s41429-019-0223-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/17/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022]
Abstract
The bioassay-guided fractionation from cultures of the actinobacterium Saccharothrix xinjiangensis Act24Zk, collected from the Caspian Sea beach in Iran led to the isolation of three new compounds, caerulomycin M (1), saccharopyrone (2), and saccharonoic acid (3), together with the known compound, caerulomycin A (4). Their structures were elucidated from HR-ESIMS and 1D and 2D NMR data. Compound 2 displayed moderate cytotoxic activity against the human cervix carcinoma HeLa cells KB3.1 with an IC50 value of 5.4 µM.
Collapse
Affiliation(s)
- Zahra Khosravi Babadi
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University GC, Tehran, Iran.,Microbial Strain Collection, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Enge Sudarman
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany.,German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Gholam Hossein Ebrahimipour
- Department of Microbiology & Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University GC, Tehran, Iran
| | - Gian Primahana
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany.,German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany.,German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Joachim Wink
- Microbial Strain Collection, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany. .,German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|
18
|
Nofiani R, Philmus B, Nindita Y, Mahmud T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. MEDCHEMCOMM 2019; 10:1517-1530. [PMID: 31673313 DOI: 10.1039/c9md00162j] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022]
Abstract
The 3-ketoacyl-ACP synthase (KAS) III proteins are one of the most abundant enzymes in nature, as they are involved in the biosynthesis of fatty acids and natural products. KAS III enzymes catalyse a carbon-carbon bond formation reaction that involves the α-carbon of a thioester and the carbonyl carbon of another thioester. In addition to the typical KAS III enzymes involved in fatty acid and polyketide biosynthesis, there are proteins homologous to KAS III enzymes that catalyse reactions that are different from that of the traditional KAS III enzymes. Those include enzymes that are responsible for a head-to-head condensation reaction, the formation of acetoacetyl-CoA in mevalonate biosynthesis, tailoring processes via C-O bond formation or esterification, as well as amide formation. This review article highlights the diverse reactions catalysed by this class of enzymes and their role in natural product biosynthesis.
Collapse
Affiliation(s)
- Risa Nofiani
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA . .,Department of Chemistry , Universitas Tanjungpura , Pontianak , Indonesia
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Yosi Nindita
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| |
Collapse
|
19
|
Jin H, Lee J, Shi H, Lee JY, Yoo EJ, Song CE, Ryu DH. Bioinspired Synthesis of Chiral 3,4-Dihydropyranones via S-to-O Acyl-Transfer Reactions. Org Lett 2018; 20:1584-1588. [DOI: 10.1021/acs.orglett.8b00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Hui Jin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Juyeol Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Hu Shi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Eun Jeong Yoo
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Korea
| | - Choong Eui Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
20
|
OleA Glu117 is key to condensation of two fatty-acyl coenzyme A substrates in long-chain olefin biosynthesis. Biochem J 2017; 474:3871-3886. [PMID: 29025976 DOI: 10.1042/bcj20170642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/08/2017] [Accepted: 10/10/2017] [Indexed: 12/23/2022]
Abstract
In the interest of decreasing dependence on fossil fuels, microbial hydrocarbon biosynthesis pathways are being studied for renewable, tailored production of specialty chemicals and biofuels. One candidate is long-chain olefin biosynthesis, a widespread bacterial pathway that produces waxy hydrocarbons. Found in three- and four-gene clusters, oleABCD encodes the enzymes necessary to produce cis-olefins that differ by alkyl chain length, degree of unsaturation, and alkyl chain branching. The first enzyme in the pathway, OleA, catalyzes the Claisen condensation of two fatty acyl-coenzyme A (CoA) molecules to form a β-keto acid. In this report, the mechanistic role of Xanthomonas campestris OleA Glu117 is investigated through mutant enzymes. Crystal structures were determined for each mutant as well as their complex with the inhibitor cerulenin. Complemented by substrate modeling, these structures suggest that Glu117 aids in substrate positioning for productive carbon-carbon bond formation. Analysis of acyl-CoA substrate hydrolysis shows diminished activity in all mutants. When the active site lacks an acidic residue in the 117 position, OleA cannot form condensed product, demonstrating that Glu117 has a critical role upstream of the essential condensation reaction. Profiling of pH dependence shows that the apparent pKa for Glu117 is affected by mutagenesis. Taken together, we propose that Glu117 is the general base needed to prime condensation via deprotonation of the second, non-covalently bound substrate during turnover. This is the first example of a member of the thiolase superfamily of condensing enzymes to contain an active site base originating from the second monomer of the dimer.
Collapse
|
21
|
Sucipto H, Pogorevc D, Luxenburger E, Wenzel SC, Müller R. Heterologous production of myxobacterial α-pyrone antibiotics in Myxococcus xanthus. Metab Eng 2017; 44:160-170. [PMID: 29030273 DOI: 10.1016/j.ymben.2017.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/01/2017] [Accepted: 10/05/2017] [Indexed: 11/17/2022]
Abstract
Myxopyronins (MXN) and corallopyronins (COR) are structurally related α-pyrone antibiotics from myxobacteria that represent a highly promising compound class for the development of broad-spectrum antibacterial therapeutic agents. Their ability to inhibit RNA polymerase through interaction with the "switch region", a novel target, distant from previously characterized RNA polymerase inhibitors (e.g. rifampicin), makes them particularly promising candidates for further research. To improve compound supply for further investigation of MXN, COR and novel derivatives of these antibacterial agents, establishment of an efficient and versatile microbial production platform for myxobacterial α-pyrone antibiotics is highly desirable. Here we describe design, construction and expression of a heterologous production and engineering platforms for MXN and COR to facilitate rational structure design and yield improvement approaches in the myxobacterial host strain Myxococcus xanthus DK1622. Optimization of the cultivation medium yielded significantly higher production titers of MXN A at around 41-fold increase and COR A at around 25-fold increase, compared to the standard CTT medium.
Collapse
Affiliation(s)
- Hilda Sucipto
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Domen Pogorevc
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Eva Luxenburger
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Silke C Wenzel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany.
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy at Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany.
| |
Collapse
|
22
|
Oukacha-Hikem D, Makhloufi-Chebli M, Amar A, Bouherrou H, Rachedi Y, Meghezzi H, Silva AMS, Hamdi M. New 2-pyrone-based hydrazones: Synthesis, spectral characterisation, UV–visible study and evaluation of the antiradicalar activity. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2016.1276602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Djamila Oukacha-Hikem
- Laboratoire de Physique et Chimie des Matériaux LPCM, Faculté des Sciences, Université Mouloud Mammeri, Tizi-Ouzou, Algeria
- Laboratoire de Chimie Organique Appliquée (Groupe Hétérocycles), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, Bab-Ezzouar, Alger, Algeria
| | - Malika Makhloufi-Chebli
- Laboratoire de Physique et Chimie des Matériaux LPCM, Faculté des Sciences, Université Mouloud Mammeri, Tizi-Ouzou, Algeria
- Laboratoire de Chimie Organique Appliquée (Groupe Hétérocycles), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, Bab-Ezzouar, Alger, Algeria
| | - Anissa Amar
- Département de Chimie, Université Mouloud Mammeri, Tizi-Ouzou, Algeria
- Laboratoire de Thermodynamique et Modélisation Moléculaire, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, Bab-Ezzouar, Alger, Algeria
| | - Houria Bouherrou
- Laboratoire de Chimie Organique Appliquée (Groupe Hétérocycles), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, Bab-Ezzouar, Alger, Algeria
| | - Yahia Rachedi
- Laboratoire de Chimie Organique Appliquée (Groupe Hétérocycles), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, Bab-Ezzouar, Alger, Algeria
| | - Hacène Meghezzi
- Laboratoire de Thermodynamique et Modélisation Moléculaire, Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, Bab-Ezzouar, Alger, Algeria
| | - Artur M. S. Silva
- QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Maamar Hamdi
- Laboratoire de Chimie Organique Appliquée (Groupe Hétérocycles), Faculté de Chimie, Université des Sciences et de la Technologie Houari Boumediène, Bab-Ezzouar, Alger, Algeria
| |
Collapse
|
23
|
Mori T, Awakawa T, Shimomura K, Saito Y, Yang D, Morita H, Abe I. Structural Insight into the Enzymatic Formation of Bacterial Stilbene. Cell Chem Biol 2016; 23:1468-1479. [DOI: 10.1016/j.chembiol.2016.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 09/26/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
|
24
|
Herrmann J, Fayad AA, Müller R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat Prod Rep 2016; 34:135-160. [PMID: 27907217 DOI: 10.1039/c6np00106h] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 2011-July 2016Myxobacteria are a rich source for structurally diverse secondary metabolites with intriguing biological activities. Here we report on new natural products that were isolated from myxobacteria in the period of 2011 to July 2016. Some examples of recent advances on modes-of-action are also summarised along with a more detailed overview on five compound classes currently assessed in preclinical studies.
Collapse
Affiliation(s)
- J Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Department of Microbial Natural Products, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| | | | | |
Collapse
|
25
|
Goblirsch BR, Jensen MR, Mohamed FA, Wackett LP, Wilmot CM. Substrate Trapping in Crystals of the Thiolase OleA Identifies Three Channels That Enable Long Chain Olefin Biosynthesis. J Biol Chem 2016; 291:26698-26706. [PMID: 27815501 DOI: 10.1074/jbc.m116.760892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/31/2016] [Indexed: 12/29/2022] Open
Abstract
Phylogenetically diverse microbes that produce long chain, olefinic hydrocarbons have received much attention as possible sources of renewable energy biocatalysts. One enzyme that is critical for this process is OleA, a thiolase superfamily enzyme that condenses two fatty acyl-CoA substrates to produce a β-ketoacid product and initiates the biosynthesis of long chain olefins in bacteria. Thiolases typically utilize a ping-pong mechanism centered on an active site cysteine residue. Reaction with the first substrate produces a covalent cysteine-thioester tethered acyl group that is transferred to the second substrate through formation of a carbon-carbon bond. Although the basics of thiolase chemistry are precedented, the mechanism by which OleA accommodates two substrates with extended carbon chains and a coenzyme moiety-unusual for a thiolase-are unknown. Gaining insights into this process could enable manipulation of the system for large scale olefin production with hydrocarbon chains lengths equivalent to those of fossil fuels. In this study, mutagenesis of the active site cysteine in Xanthomonas campestris OleA (Cys143) enabled trapping of two catalytically relevant species in crystals. In the resulting structures, long chain alkyl groups (C12 and C14) and phosphopantetheinate define three substrate channels in a T-shaped configuration, explaining how OleA coordinates its two substrates and product. The C143A OleA co-crystal structure possesses a single bound acyl-CoA representing the Michaelis complex with the first substrate, whereas the C143S co-crystal structure contains both acyl-CoA and fatty acid, defining how a second substrate binds to the acyl-enzyme intermediate. An active site glutamate (Gluβ117) is positioned to deprotonate bound acyl-CoA and initiate carbon-carbon bond formation.
Collapse
Affiliation(s)
- Brandon R Goblirsch
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Matthew R Jensen
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Fatuma A Mohamed
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Lawrence P Wackett
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Carrie M Wilmot
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Biotechnology Institute, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
26
|
Franke J, Hertweck C. Biomimetic Thioesters as Probes for Enzymatic Assembly Lines: Synthesis, Applications, and Challenges. Cell Chem Biol 2016; 23:1179-1192. [PMID: 27693058 DOI: 10.1016/j.chembiol.2016.08.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/31/2016] [Indexed: 10/20/2022]
Abstract
Thioesters play essential roles in many biosynthetic pathways to fatty acids, esters, polyketides, and non-ribosomal peptides. Coenzyme A (CoA) and related phosphopantetheine thioesters are typically employed as activated acyl units for diverse C-C, C-O, and C-N coupling reactions. To study and control these enzymatic assembly lines in vitro and in vivo structurally simplified analogs such as N-acetylcysteamine (NAC) thioesters have been developed. This review gives an overview on experimental strategies enabled by synthetic NAC thioesters, such as the elucidation of complex biosynthetic pathways and enzyme mechanisms as well as precursor-directed biosynthesis and mutasynthesis. The review also summarizes synthetic protocols and protection group strategies to access these versatile synthetic tools, which are reactive and often unstable compounds. In addition, alternative phosphopantetheine thioester mimics are presented that can be used as protein tags or suicide inhibitors for protein crosslinking and off-loading probes to elucidate polyketide intermediates.
Collapse
Affiliation(s)
- Jakob Franke
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745 Jena, Germany; Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
27
|
Ma M, Rateb ME, Yang D, Rudolf JD, Zhu X, Huang Y, Zhao LX, Jiang Y, Duan Y, Shen B. Germicidins H–J from Streptomyces sp. CB00361. J Antibiot (Tokyo) 2016; 70:200-203. [DOI: 10.1038/ja.2016.100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
|
28
|
Fisch KM, Schäberle TF. Toolbox for Antibiotics Discovery from Microorganisms. Arch Pharm (Weinheim) 2016; 349:683-91. [DOI: 10.1002/ardp.201600064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Katja M. Fisch
- Rheinische Friedrich Wilhelms Universität Bonn; Bonn Germany
| | | |
Collapse
|
29
|
Abstract
The α-pyrone moiety is a structural feature found in a huge variety of biologically active metabolites. In recent times new insights into additional biosynthetic mechanisms, yielding in such six-membered unsaturated ester ring residues have been obtained. The purpose of this mini-review is to give a brief overview of α-pyrones and the mechanisms forming the basis of their natural synthesis. Especially the chain interconnecting enzymes, showing homology to ketosynthases which catalyze Claisen-like condensation reactions, will be presented.
Collapse
Affiliation(s)
- Till F Schäberle
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| |
Collapse
|
30
|
Helfrich EJN, Piel J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat Prod Rep 2016; 33:231-316. [DOI: 10.1039/c5np00125k] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review discusses the biosynthesis of natural products that are generated bytrans-AT polyketide synthases, a family of catalytically versatile enzymes that represents one of the major group of proteins involved in the production of bioactive polyketides.
Collapse
Affiliation(s)
- Eric J. N. Helfrich
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| | - Jörn Piel
- Institute of Microbiology
- Eidgenössische Technische Hochschule (ETH) Zurich
- 8093 Zurich
- Switzerland
| |
Collapse
|
31
|
Bauer JS, Ghequire MGK, Nett M, Josten M, Sahl HG, De Mot R, Gross H. Biosynthetic Origin of the Antibiotic Pseudopyronines A and B in Pseudomonas putida BW11M1. Chembiochem 2015; 16:2491-7. [PMID: 26507104 DOI: 10.1002/cbic.201500413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 11/08/2022]
Abstract
Within the framework of our effort to discover new antibiotics from pseudomonads, pseudopyronines A and B were isolated from the plant-derived Pseudomonas putida BW11M1. Pseudopyronines are 3,6-dialkyl-4-hydroxy-2-pyrones and displayed high in vitro activities against several human pathogens, and in our hands also towards the plant pathogen Pseudomonas savastanoi. Here, the biosynthesis of pseudopyronine B was studied by a combination of feeding experiments with isotopically labeled precursors, genomic sequence analysis, and gene deletion experiments. The studies resulted in the deduction of all acetate units and revealed that the biosynthesis of these α-pyrones occurs with a single PpyS-homologous ketosynthase. It fuses, with some substrate flexibility, a 3-oxo-fatty acid and a further unbranched saturated fatty acid, both of medium chain-length and provided by primary metabolism.
Collapse
Affiliation(s)
- Judith S Bauer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.,German Centre for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Maarten G K Ghequire
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Kasteelpark Arenberg 20, 3001, Heverlee-Leuven, Belgium
| | - Markus Nett
- Junior Research Group "Secondary Metabolism of Predatory Bacteria", Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Beutenbergstrasse 11 A, 07745, Jena, Germany
| | - Michaele Josten
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner site Bonn-Cologne, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - Hans-Georg Sahl
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, Meckenheimer Allee 168, 53115, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner site Bonn-Cologne, Meckenheimer Allee 168, 53115, Bonn, Germany
| | - René De Mot
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven, Kasteelpark Arenberg 20, 3001, Heverlee-Leuven, Belgium.
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner site Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
32
|
Kresovic D, Schempp F, Cheikh-Ali Z, Bode HB. A novel and widespread class of ketosynthase is responsible for the head-to-head condensation of two acyl moieties in bacterial pyrone biosynthesis. Beilstein J Org Chem 2015; 11:1412-7. [PMID: 26425196 PMCID: PMC4578411 DOI: 10.3762/bjoc.11.152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/22/2015] [Indexed: 01/22/2023] Open
Abstract
The biosynthesis of photopyrones, novel quorum sensing signals in Photorhabdus, has been studied by heterologous expression of the photopyrone synthase PpyS catalyzing the head-to-head condensation of two acyl moieties. The biochemical mechanism of pyrone formation has been investigated by amino acid exchange and bioinformatic analysis. Additionally, the evolutionary origin of PpyS has been studied by phylogenetic analyses also revealing homologous enzymes in Pseudomonas sp. GM30 responsible for the biosynthesis of pseudopyronines including a novel derivative. Moreover this novel class of ketosynthases is only distantly related to other pyrone-forming enzymes identified in the biosynthesis of the potent antibiotics myxopyronin and corallopyronin.
Collapse
Affiliation(s)
- Darko Kresovic
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Florence Schempp
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zakaria Cheikh-Ali
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany ; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Zocher G, Vilstrup J, Heine D, Hallab A, Goralski E, Hertweck C, Stahl M, Schäberle TF, Stehle T. Structural basis of head to head polyketide fusion by CorB. Chem Sci 2015; 6:6525-6536. [PMID: 28757960 PMCID: PMC5506619 DOI: 10.1039/c5sc02488a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/06/2015] [Indexed: 02/04/2023] Open
Abstract
Corallopyronin A is a polyketide derived from the myxobacterium Corallococcus coralloides with potent antibiotic features.
Corallopyronin A is a polyketide derived from the myxobacterium Corallococcus coralloides with potent antibiotic features. The gene cluster responsible for the biosynthesis of corallopyronin A has been described recently, and it was proposed that CorB acts as a ketosynthase to interconnect two polyketide chains in a rare head-to-head condensation reaction. We determined the structure of CorB, the interconnecting polyketide synthase, to high resolution and found that CorB displays a thiolase fold. Site-directed mutagenesis showed that the catalytic triad consisting of a cysteine, a histidine and an asparagine is crucial for catalysis, and that this triad shares similarities with the triad found in HMG-CoA synthases. We synthesized a substrate mimic to derivatize purified CorB and confirmed substrate attachment by ESI-MS. Structural analysis of the complex yielded an electron density-based model for the polyketide chain and showed that the unusually wide, T-shaped active site is able to accommodate two polyketides simultaneously. Our structural analysis provides a platform for understanding the unusual head-to-head polyketide-interconnecting reaction catalyzed by CorB.
Collapse
Affiliation(s)
- Georg Zocher
- Interfaculty Institute of Biochemistry , University Tübingen , Hoppe-Seyler-Str. 4 , 72076 Tübingen , Germany .
| | - Joachim Vilstrup
- Department of Molecular Biology and Genetics , Aarhus University , Gustav Wieds Vej 10C , DK 8000 Aarhus C , Denmark
| | - Daniel Heine
- Leibniz Institute for Natural Product Research and Infection Biology (HKI) , 07745 Jena , Germany
| | - Asis Hallab
- Max Planck Institute for Plant Breeding Research , Carl-von-Linné-Weg 10 , 50829 Köln , Germany
| | - Emilie Goralski
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany .
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology (HKI) , 07745 Jena , Germany.,Chair for Natural Product Chemistry , Friedrich Schiller University , 07743 Jena , Germany
| | - Mark Stahl
- Center for Plant Molecular Biology , University Tübingen , Auf der Morgenstelle 32 , 72076 Tübingen , Germany
| | - Till F Schäberle
- Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany .
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry , University Tübingen , Hoppe-Seyler-Str. 4 , 72076 Tübingen , Germany . .,Department of Pediatrics , Vanderbilt University School of Medicine , Nashville , TN 37232 , USA
| |
Collapse
|