1
|
Kanneth SS, Mathew D, Parameswaran P, Sajeev AK, Unni KNN, Chakkumkumarath L. Substituent-Controlled Photophysical Responses in Dihydropyridine Derivatives and Their Application in the Detection of Volatile Organic Contaminants. J Org Chem 2023; 88:15007-15017. [PMID: 37862461 DOI: 10.1021/acs.joc.3c01455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
In the ever-expanding realm of organic fluorophores, structurally simple and synthetically straightforward molecules with unique photophysical properties have received special attention. Among these, 1,4-dihydropyridine (DHP) is an important scaffold that permits fine-tuning of their photophysical properties through substituents on the periphery. Herein, we describe a series of solid-emissive N-substituted 2,6-dimethyl-4-methylene-1,4-dihydropyridine derivatives appended with electron-withdrawing substituents (dicyanomethylene or 2-dicyanomethylene-3-cyano-2,5-dihydrofuran) at the C-4 position and alkyl or alkylaryl groups on the DHP nitrogen. Electronic and steric tuning exerted by these substituents resulted in interesting photophysical properties such as negative solvatochromism, solidstate, and aggregation-induced emission (AIE). Theoretical calculations were carried out to explain the solvatochromic properties. Insight into the AIE properties was obtained through variable-temperature nuclear magnetic resonance and viscosity- and temperature-dependent emission studies. The variations in molecular packing in the crystal lattice with changes in the N-substituents contributed to the tuning of solid state emission properties. Detection of aromatic volatile organic compounds (VOCs) was achieved using the aggregates of the DHP derivatives. Among the VOCs, p-xylene elicited a significant enhancement in emission, allowing its detection at submicromolar levels.
Collapse
Affiliation(s)
- S Shurooque Kanneth
- Department of Chemistry, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | - Diana Mathew
- Department of Chemistry, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | - Pattiyil Parameswaran
- Department of Chemistry, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | - Anjali K Sajeev
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - K N Narayanan Unni
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Lakshmi Chakkumkumarath
- Department of Chemistry, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| |
Collapse
|
2
|
Saha BK, Nath NK, Thakuria R. Polymorphs with Remarkably Distinct Physical and/or Chemical Properties. CHEM REC 2023; 23:e202200173. [PMID: 36166697 DOI: 10.1002/tcr.202200173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Polymorphism in crystals is known since 1822 and the credit goes to Mitscherlich who realized the existence of different crystal structures of the same compound while working with some arsenate and phosphate salts. Later on, this phenomenon was observed also in organic crystals. With the advent of different technologies, especially the easy availability of single crystal XRD instruments, polymorphism in crystals has become a common phenomenon. Almost 37 % of compounds (single component) are polymorphic to date. As the energies of the different polymorphic forms are very close to each other, small changes in crystallization conditions might lead to different polymorphic structures. As a result, sometimes it is difficult to control polymorphism. For this reason, it is considered to be a nuisance to crystal engineering. It has been realized that the property of a material depends not only on the molecular structure but also on its crystal structure. Therefore, it is not only of interest to academia but also has widespread applications in the materials science as well as pharmaceutical industries. In this review, we have discussed polymorphism which causes significant changes in materials properties in different fields of solid-state science, such as electrical, magnetic, SHG, thermal expansion, mechanical, luminescence, color, and pharmaceutical. Therefore, this review will interest researchers from supramolecular chemistry, materials science as well as medicinal chemistry.
Collapse
Affiliation(s)
- Binoy K Saha
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Naba K Nath
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong, Meghalaya 793003, India
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati, 781014, India
| |
Collapse
|
3
|
Deka P, Patir K, Rawal I, Ahmed S, Bora SR, Kalita DJ, Althubeiti K, Gogoi SK, Sarma P, Thakuria R. Solid-State Fluorescence of A Quasi-Isostructural Polymorphic Biphenyl Based Michael Addition Product. CrystEngComm 2022. [DOI: 10.1039/d2ce00425a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymorphic materials have gained significant attention owing to their fascinating physicochemical properties. Herein, a biphenyl based Michael addition product (Compound A) with an active methylene group (dimedone) was synthesized. Compound...
Collapse
|
4
|
Wright AI, Kariuki BM, Wu Y. Triplet‐Forming Thionated Donor‐Acceptor Chromophores for Electrochemically Amphoteric Photosensitization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anna I. Wright
- School of Chemistry Cardiff University Main Building Park Place Cardiff CF10 3AT United Kingdom
| | - Benson M. Kariuki
- School of Chemistry Cardiff University Main Building Park Place Cardiff CF10 3AT United Kingdom
| | - Yi‐Lin Wu
- School of Chemistry Cardiff University Main Building Park Place Cardiff CF10 3AT United Kingdom
| |
Collapse
|
5
|
Ito S, Nagai S, Ubukata T, Tachikawa T. Multi-color mechanochromic luminescence of three polymorphic crystals of a donor–acceptor-type benzothiadiazole derivative. CrystEngComm 2021. [DOI: 10.1039/d1ce00445j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The three polymorphic crystals of a donor–acceptor dye exhibited different luminescence colors, which changed in response to mechanical grinding.
Collapse
Affiliation(s)
- Suguru Ito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Sayaka Nagai
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takashi Ubukata
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takashi Tachikawa
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Mayo RA, Johnson ER. Improved quantitative crystal-structure comparison using powder diffractograms via anisotropic volume correction. CrystEngComm 2021. [DOI: 10.1039/d1ce01058a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new anisotropic volume correction improves quantitative crystal structure comparison. Benchmarking against the 6th crystal structure prediction blind test data results in identification of two previously uncredited matching structures.
Collapse
Affiliation(s)
- R. Alex Mayo
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
7
|
Pal AK, Bhattacharyya K, Datta A. Polymorphism Dependent 9-Phosphoanthracene Derivative Exhibiting Thermally Activated Delayed Fluorescence: A Computational Investigation. J Phys Chem A 2020; 124:11025-11037. [PMID: 33332131 DOI: 10.1021/acs.jpca.0c10203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polymorphs of anthracene derivatives exhibit diverse photophysical properties that can help to develop efficient organic-based photovoltaic devices. 10-Anthryl-9-phosphoanthracene (10-APA) shows different photophysical behaviors for the solid state due to its variety in crystalline arrangement. Herein, we investigate the ground and excited-state properties of the monomer and two different polymorphs of 10-APA from first-principles. Calculations reveal that strong spin-orbit coupling (SOC) between first excited singlet state (S1) and triplet manifolds at their S1-optimized geometries enabling the reverse intersystem crossing (RISC). The electron-vibration coupling (Huang-Rhys factor) in the excited state is the most relevant factor here. For both ISC and RISC, a similarity in Huang-Rhys factors for the molecular vibration along the π···π stacking at low-frequency region makes the rates effective. On the other side, the nonvanishing vibronic relaxation modes provide a relatively slower RISC rate in the red crystal. However, for the red crystal, small reorganization energy (λ) and large Huang-Rhys factor toward S1 → S0 conversion reduce nonradiative decay, leading to a prompt fluorescence. As the feasibility of S1 ↔ T1 conversion increases in the yellow dimer, it allows a delay in fluorescence emission, leading to thermally activated delayed fluorescence (TADF).
Collapse
Affiliation(s)
- Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| | - Kalishankar Bhattacharyya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, WB, India
| |
Collapse
|
8
|
Polymorph of trans-dichlorotetrakis(pyridine-N)ruthenium(II) influenced by a dihydrazone: crystal structure, spectral, Hirshfeld surfaces, antimicrobial, toxicity and in silico docking studies. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01829-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Courté M, Ye J, Jiang H, Ganguly R, Tang S, Kloc C, Fichou D. Tuning the π-π overlap and charge transport in single crystals of an organic semiconductor via solvation and polymorphism. Phys Chem Chem Phys 2020; 22:19855-19863. [PMID: 32851393 DOI: 10.1039/d0cp03109g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymorphism is a central phenomenon in materials science that often results in important differences of the electronic properties of organic crystals due to slight variations in intermolecular distances and positions. Although a large number of π-conjugated organic compounds can grow as polymorphs, it is necessary to have at disposal a series of several polymorphs of the same molecule to establish clear and predictive structure-property relationships. We report here on the occurrence of two solvates and three polymorphs in single crystalline form of the organic p-type semiconductor 2,2',6,6'-tetraphenyldipyranylidene (DIPO). When grown from chlorobenzene or toluene, the DIPO crystals spontaneously capture solvent molecules to form two pseudopolymorphic 1 : 1 binary solvates. Independently, three solvent-free DIPO polymorphs are obtained either from the vapor phase or from acetonitrile and benzene. Surprisingly, single crystal field-effect transistors (SC-FETs) reveal that the DIPO 1 : 1 binary solvate grown from chlorobenzene possesses a higher hole mobility (1.1 cm2 V-1 s-1) than the three solvent-free polymorphs (0.02-0.64 cm2 V-1 s-1). A refined crystallographic analysis combined with a theoretical transport model clearly shows that the higher mobility of the solvate results from an improved π-π overlap. Our observations demonstrate that solvation allows to tune the π-π overlap and transport properties of organic semiconductors by selecting appropriate solvents.
Collapse
Affiliation(s)
- Marc Courté
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | | | | | | | | | | | | |
Collapse
|
10
|
Cassabaum AA, Bera K, Rich CC, Nebgen BR, Kwang SY, Clapham ML, Frontiera RR. Femtosecond stimulated Raman spectro-microscopy for probing chemical reaction dynamics in solid-state materials. J Chem Phys 2020; 153:030901. [DOI: 10.1063/5.0009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Alyssa A. Cassabaum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kajari Bera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Christopher C. Rich
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bailey R. Nebgen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Siu Yi Kwang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Margaret L. Clapham
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Renee R. Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
11
|
Zheng K, Ni F, Chen Z, Zhong C, Yang C. Polymorph‐Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kailu Zheng
- Renmin Hospital of Wuhan UniversityHubei Key Laboratory on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Zhanxiang Chen
- Renmin Hospital of Wuhan UniversityHubei Key Laboratory on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Cheng Zhong
- Renmin Hospital of Wuhan UniversityHubei Key Laboratory on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Chuluo Yang
- Renmin Hospital of Wuhan UniversityHubei Key Laboratory on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
12
|
Zheng K, Ni F, Chen Z, Zhong C, Yang C. Polymorph‐Dependent Thermally Activated Delayed Fluorescence Emitters: Understanding TADF from a Perspective of Aggregation State. Angew Chem Int Ed Engl 2019; 59:9972-9976. [PMID: 31710142 DOI: 10.1002/anie.201913210] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Kailu Zheng
- Renmin Hospital of Wuhan UniversityHubei Key Laboratory on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Zhanxiang Chen
- Renmin Hospital of Wuhan UniversityHubei Key Laboratory on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Cheng Zhong
- Renmin Hospital of Wuhan UniversityHubei Key Laboratory on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
| | - Chuluo Yang
- Renmin Hospital of Wuhan UniversityHubei Key Laboratory on Organic and Polymeric Optoelectronic MaterialsDepartment of ChemistryWuhan University Wuhan 430072 P. R. China
- Shenzhen Key Laboratory of Polymer Science and TechnologyCollege of Materials Science and EngineeringShenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
13
|
Jain S, Vanka K. Can the solvent enhance the rate of chemical reactions through C-H/π interactions? insights from theory. Phys Chem Chem Phys 2019; 21:14821-14831. [PMID: 31225546 DOI: 10.1039/c9cp02646k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current computational study with density functional theory (DFT) shows that the rate of chemical reactions can be influenced through non-covalent C-H/π interactions between substrates and the solvent. It is shown that intramolecular carbon-carbon interaction and CO2 activation by a low valent silicon complex are both favourably affected by the explicit presence of the solvent toluene, due to C-H/π interactions between toluene and the silicon complex. Furthermore, ab initio molecular dynamics (AIMD) simulations demonstrate that even if the C-H/π interacting solvent molecule is displaced from the complex, another would quickly take its place, thus maintaining the interaction. Hence, the current work shows how non-covalent interactions between solvent and substrate can enhance the rate of the reaction and expands our understanding of the role and influence of the solvent in effecting important chemical transformations.
Collapse
Affiliation(s)
- Shailja Jain
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Pagidi S, Kalluvettukuzhy NK, Thilagar P. Tunable Self-Assembly and Aggregation-Induced Emission Characteristics of Triarylboron-Decorated Naphthalimides. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sudhakar Pagidi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neena K. Kalluvettukuzhy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
15
|
Fang X, Yan D. White-light emission and tunable room temperature phosphorescence of dibenzothiophene. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9183-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Park JH, Hughs M, Chung TS, Ayitou AJL, Breslin VM, Garcia-Garibay MA. Generation and Reactivity Studies of Diarylmethyl Radical Pairs in Crystalline Tetraarylacetones via Laser Flash Photolysis Using Nanocrystalline Suspensions. J Am Chem Soc 2017; 139:13312-13317. [PMID: 28844142 DOI: 10.1021/jacs.7b04449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nanosecond electronic spectra and kinetics of the radical pairs from various crystalline tetraarylacetones were obtained using transmission laser flash photolysis methods by taking advantage of aqueous nanocrystalline suspensions in the presence of submicellar CTAB, which acts as a surface passivator. After showing that all tetraarylacetones react efficiently by a photodecarbonylation reaction in the crystalline state, we were able to detect the intermediate radical pairs within the ca. 8 ns laser pulse of our laser setup. We showed that the solid-state spectra of the radical pairs are very similar to those detected in solution, with λmax in the 330-360 nm range. Kinetics in the solid state was observed to be biexponential and impervious to the presence of oxygen or variations in laser power. A relatively short-lived component (0.3-1.7 μs) accounts for only 3-8% of the total decay with a longer-lived component having a time constant in the range of 40-90 μs depending on the nature of the substituents.
Collapse
Affiliation(s)
- Jin H Park
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Melissa Hughs
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Tim S Chung
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - A Jean-Luc Ayitou
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Vanessa M Breslin
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Li Y, Wang G, Li W, Wang Y, Li S. Understanding the polymorphism-dependent emission properties of molecular crystals using a refined QM/MM approach. Phys Chem Chem Phys 2017; 19:17516-17520. [PMID: 28653069 DOI: 10.1039/c7cp03584e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A refined QM/MM approach demonstrated that a monomer model is suitable for describing the emission spectra of crystals without the ππ stacking interaction. Whereas for the crystals with notable intermolecular ππ stacking interaction, the most stable trimer model (or at least a dimer model) should be used for accurately describing the corresponding emission spectra. This approach is applied to understand the emission properties of two kinds of organic polymorphs.
Collapse
Affiliation(s)
- Yunzhi Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210093, P. R. China.
| | - Guoqiang Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210093, P. R. China.
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210093, P. R. China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|
18
|
Sirbu D, Benniston AC, Harriman A. One-Pot Synthesis of a Mono-O,B,N-strapped BODIPY Derivative Displaying Bright Fluorescence in the Solid State. Org Lett 2017; 19:1626-1629. [PMID: 28319396 DOI: 10.1021/acs.orglett.7b00435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tin(IV) catalysis allows isolation of a boron dipyrromethene derivative bearing a solitary strap around the boron center. The conditions favor internal cyclization without contamination by side products and provide high yields of product in good purity. A phenolate-based strap imposes chirality and causes geometrical distortion of the dipyrrin. Relatively strong fluorescence is observed for single crystals, evaporated films, and adsorbed layers. Single-crystal absorption and emission spectra resemble those observed from solution with contributions from a dimer.
Collapse
Affiliation(s)
- Dumitru Sirbu
- Molecular Photonics Laboratory, School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Andrew C Benniston
- Molecular Photonics Laboratory, School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony Harriman
- Molecular Photonics Laboratory, School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
19
|
Anion-controlled dimer distance induced unique solid-state fluorescence of cyano substituted styrene pyridinium. Sci Rep 2016; 6:37609. [PMID: 27869183 PMCID: PMC5116621 DOI: 10.1038/srep37609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/01/2016] [Indexed: 01/17/2023] Open
Abstract
Molecular packing arrangements play a key role in dominating the photophysical properties of luminophores in aggregated state but fine control of the molecular packing is a great challenge. This article describes a unique cyano substituted styrene pyridinium with interesting solid-state fluorescence that can be finely tuned by simple change of counteranions. The dilute solutions of the organic salts (PyCl, PyNO3, PyOTs and PyPh4B) exhibit very weak fluorescence. The crystals of the organic salts (PyCl, PyNO3, and PyOTs) show much enhanced fluorescence compared with their dilute solutions. It is interesting that the emissions changed from bluish-green to deep-blue and fluorescence quantum yields increase from 2.5% to 13.1% with the increasing of steric hindrance of the anions from chloridion, nitrate, to p-toluenesulfonate. Crystal and DFT studies reveal that the enhanced fluorescence is ascribed to the formation of dimers and bigger anions induce larger molecular separation in dimers. Tetraphenylboron anion with very large steric hindrance impedes the formation of dimers and thus results in non-fluorescent salt (PyPh4B). Meanwhile, this unique dimeric packing endows the crystal of PyNO3 with anisotropic fluorescence.
Collapse
|
20
|
Al-Aqar R, Atahan A, Benniston AC, Perks T, Waddell PG, Harriman A. Exciton Migration and Surface Trapping for a Photonic Crystal Displaying Charge-Recombination Fluorescence. Chemistry 2016; 22:15420-15429. [DOI: 10.1002/chem.201602155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Roza Al-Aqar
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Alparslan Atahan
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
- Department of Polymer Engineering; Faculty of Technology; Duzce University; Duzce 81620 Turkey
| | - Andrew C. Benniston
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Thomas Perks
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Paul G. Waddell
- Crystallography Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
21
|
Padalkar VS, Sakamaki D, Kuwada K, Horio A, Okamoto H, Tohnai N, Akutagawa T, Sakai KI, Seki S. π-π Interactions: Influence on Molecular Packing and Solid-State Emission of ESIPT and non-ESIPT Motifs. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Vikas S. Padalkar
- Department of Molecular Engineering; Kyoto University; Katsura Campus Kyoto 615-8510 Japan
| | - Daisuke Sakamaki
- Department of Molecular Engineering; Kyoto University; Katsura Campus Kyoto 615-8510 Japan
| | - Kenji Kuwada
- Department of Molecular Engineering; Kyoto University; Katsura Campus Kyoto 615-8510 Japan
| | - Akifumi Horio
- Department of Molecular Engineering; Kyoto University; Katsura Campus Kyoto 615-8510 Japan
| | - Haruka Okamoto
- Department of Molecular Engineering; Kyoto University; Katsura Campus Kyoto 615-8510 Japan
| | - Norimitsu Tohnai
- Department of Material and Life Science; Osaka University; Suita Campus, Suita Osaka 565-0871 Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials; Tohuku University; Sendai 980-8577 Japan
| | - Ken-ichi Sakai
- Department of Bio- and Material Photonics; Chitose Institute of Science and Technology; Chitose 066-8655 Japan
| | - Shu Seki
- Department of Molecular Engineering; Kyoto University; Katsura Campus Kyoto 615-8510 Japan
| |
Collapse
|