1
|
Wu GY, Zhu HM, Li H, Zhang K, Zhang X, Yan D, Zhang XD, Lin L, Lu Z. The impact of aggregation of AIE and ACQ moiety-integrating material on the excited state dynamics. RSC Adv 2023; 13:33911-33917. [PMID: 38020029 PMCID: PMC10658659 DOI: 10.1039/d3ra06359c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
The investigation of the properties of aggregate materials is highly interesting because the process of aggregation can result in the disappearance of original properties and the emergence of new ones. Here, a novel fluorescent material (TPEIP), which synergistically combines aggregation-induced emission (AIE) and aggregation caused quenching (ACQ) moieties, was first synthesized by the cyclization reaction of 2,3-diamino-phenazine with 4-tetraphenylenthenealdehyde. We controlled the degree of aggregation of TPEIP to shed light on the impact of the aggregation on the excited state dynamics. TPEIP aggregation realized control over the Intersystem Crossing (ISC) rates and, in turn, the suppression of triplet excited states in MeOH, EtOH or via the simple addition of water to TPEIP solutions in DMSO. From global target analysis, the time scale was 966.2 ps for ISC for TPEIP in DMSO, but it was 860 ps in the case of TPEIP solutions featuring 5% water. The dynamics of TPEIP excited states undergo significant changes as the degree of aggregation increases. Notably, the lifetime of singlet excited states decreases, and there was a gradual diminishment in triplet states.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Hui-Min Zhu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University Jinan 250014 China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| | - Dong Yan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Xiu-Du Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University Wuhu 241002 China
| | - Lili Lin
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University Jinan 250014 China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu 241002 China
| |
Collapse
|
2
|
Pearce N, Reynolds KEA, Kayal S, Sun XZ, Davies ES, Malagreca F, Schürmann CJ, Ito S, Yamano A, Argent SP, George MW, Champness NR. Selective photoinduced charge separation in perylenediimide-pillar[5]arene rotaxanes. Nat Commun 2022; 13:415. [PMID: 35058440 PMCID: PMC8776946 DOI: 10.1038/s41467-022-28022-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to control photoinduced charge transfer within molecules represents a major challenge requiring precise control of the relative positioning and orientation of donor and acceptor groups. Here we show that such photoinduced charge transfer processes within homo- and hetero-rotaxanes can be controlled through organisation of the components of the mechanically interlocked molecules, introducing alternative pathways for electron donation. Specifically, studies of two rotaxanes are described: a homo[3]rotaxane, built from a perylenediimide diimidazolium rod that threads two pillar[5]arene macrocycles, and a hetero[4]rotaxane in which an additional bis(1,5-naphtho)-38-crown-10 (BN38C10) macrocycle encircles the central perylenediimide. The two rotaxanes are characterised by a combination of techniques including electron diffraction crystallography in the case of the hetero[4]rotaxane. Cyclic voltammetry, spectroelectrochemistry, and EPR spectroscopy are employed to establish the behaviour of the redox states of both rotaxanes and these data are used to inform photophysical studies using time-resolved infra-red (TRIR) and transient absorption (TA) spectroscopies. The latter studies illustrate the formation of a symmetry-breaking charge-separated state in the case of the homo[3]rotaxane in which charge transfer between the pillar[5]arene and perylenediimide is observed involving only one of the two macrocyclic components. In the case of the hetero[4]rotaxane charge separation is observed involving only the BN38C10 macrocycle and the perylenediimide leaving the pillar[5]arene components unperturbed.
Collapse
Affiliation(s)
- Nicholas Pearce
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Surajit Kayal
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Xue Z Sun
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - E Stephen Davies
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ferdinando Malagreca
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | - Sho Ito
- Rigaku Corporation, 3-9-12, Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Akihito Yamano
- Rigaku Corporation, 3-9-12, Matsubara, Akishima, Tokyo, 196-8666, Japan
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Michael W George
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Yu S, Kupryakov A, Lewis JEM, Martí-Centelles V, Goldup SM, Pozzo JL, Jonusauskas G, McClenaghan ND. Damming an electronic energy reservoir: ion-regulated electronic energy shuttling in a [2]rotaxane. Chem Sci 2021; 12:9196-9200. [PMID: 34276950 PMCID: PMC8261707 DOI: 10.1039/d1sc02225c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
We demonstrate the first example of bidirectional reversible electronic energy transfer (REET) between the mechanically bonded components of a rotaxane. Our prototypical system was designed such that photoexcitation of a chromophore in the axle results in temporary storage of electronic energy in a quasi-isoenergetic “reservoir” chromophore in the macrocycle. Over time, the emissive state of the axle is repopulated from this reservoir, resulting in long-lived, delayed luminescence. Importantly, we show that cation binding in the cavity formed by the mechanical bond perturbs the axle chromophore energy levels, modulating the REET process, and ultimately providing a luminescence read-out of cation binding. Modulation of REET processes represents an unexplored mechanism in luminescent molecular sensor development. Delayed emission due to reversible electronic energy transfer (REET) between chromophores in the axle and macrocycle components of a rotaxane is demonstrated. The REET process can be modulated by metal ion binding in the cavity of the rotaxane.![]()
Collapse
Affiliation(s)
- Shilin Yu
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France .,Department of Chemistry, University of Jyvaskyla 40014 Jyväskylä Finland
| | - Arkady Kupryakov
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | - James E M Lewis
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK .,Department of Chemistry, Imperial College London, Molecular Sciences Research Hub 82 Wood Lane London W12 0BZ UK
| | | | - Stephen M Goldup
- School of Chemistry, University of Southampton Highfield Southampton SO17 1BJ UK
| | - Jean-Luc Pozzo
- Institut des Sciences Moléculaires, University of Bordeaux/CNRS Talence France
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, University of Bordeaux/CNRS Talence France
| | | |
Collapse
|
4
|
Li ZW, Yang JJ, Liu XY, Fang WH, Wang H, Cui G. Chemical Bonding as a New Avenue for Controlling Excited-State Properties and Excitation Energy-Transfer Processes in Zinc Phthalocyanine-Fullerene Dyads. Chemistry 2021; 27:4159-4167. [PMID: 33372312 DOI: 10.1002/chem.202004850] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/08/2022]
Abstract
Whether chemical bonding can regulate the excited-state and optoelectronic properties of donor-acceptor dyads has been largely elusive. In this work, we used electronic structure and nonadiabatic dynamics methods to explore the excited-state properties of covalently bonded zinc phthalocyanine (ZnPc)-fullerene (C60 ) dyads with a 6-6 (or 5-6) bonding configuration in which ZnPc is bonded to two carbon atoms shared by the two hexagonal rings (or a pentagonal and a hexagonal ring) in C60 . In both cases, the locally excited (LE) states on ZnPc are spectroscopically bright. However, their different chemical bonding differentiates the electronic interactions between ZnPc and C60 . In the 5-6 bonding configuration, the LE states on ZnPc are much higher in energy than the LE states on C60 . Thus, the excitation energy transfer from ZnPc to C60 is thermodynamically favorable. On the other hand, in the 6-6 bonding configuration, such a process is inhibited because the LE states on ZnPc are the lowest ones. More detailed mechanisms are elucidated from nonadiabatic dynamics simulations. In the 6-6 bonding configuration, no excitation energy transfer was observed. In contrast, in the 5-6 bonding configuration, several LE and charge-transfer (CT) excitons were shown to participate in the energy-transfer process. Further analysis reveals that the photoinduced energy transfer is mediated by a CT exciton, such that electron- and hole-transfer processes take place in a concerted but asynchronous manner in the excitation energy transfer. It is also found that high-level electronic structure methods including exciton effects are indispensable to accurately describe photoinduced energy- and electron-transfer processes. Furthermore, this work opens up new avenues for regulating the excited-state properties of molecular donor-acceptor dyads by means of chemical bonding.
Collapse
Affiliation(s)
- Zi-Wen Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jia-Jia Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Haobin Wang
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, 80217-3364, USA
| | - Ganglong Cui
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
5
|
Limosani F, Kaur R, Cataldo A, Bellucci S, Micciulla F, Zanoni R, Lembo A, Wang B, Pizzoferrato R, Guldi DM, Tagliatesta P. Designing Cascades of Electron Transfer Processes in Multicomponent Graphene Conjugates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Francesca Limosani
- Fusion and Nuclear Department Photonics Micro and Nanostructures Laboratory ENEA Via E. Fermi 45 00044 Frascati Rome Italy
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| | - Ramandeep Kaur
- Interdisciplinary Center for Molecular Materials Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Antonino Cataldo
- Department of Information Engineering Polytechnic University of Marche Via Brecce Bianche, 1 60131 Ancona Italy
- INFN- National laboratories of Frascati Via Enrico Fermi 40 00044 Frascati Rome Italy
| | - Stefano Bellucci
- INFN- National laboratories of Frascati Via Enrico Fermi 40 00044 Frascati Rome Italy
| | | | - Robertino Zanoni
- Department of Chemistry University of Rome “La Sapienza” Piazzale Aldo Moro 5 00185 Rome Italy
| | - Angelo Lembo
- Department of Drug Metabolism and PharmacoKinetic IRBM SpA Via Pontina km 30.600 00071 Pomezia Rome Italy
| | - Bingzhe Wang
- Interdisciplinary Center for Molecular Materials Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Roberto Pizzoferrato
- Department of Industrial Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| | - Dirk M. Guldi
- Interdisciplinary Center for Molecular Materials Department of Chemistry and Pharmacy Friedrich-Alexander University Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Germany
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies University of Rome Tor Vergata Via della Ricerca Scientifica 1 00133 Rome Italy
| |
Collapse
|
6
|
Limosani F, Kaur R, Cataldo A, Bellucci S, Micciulla F, Zanoni R, Lembo A, Wang B, Pizzoferrato R, Guldi DM, Tagliatesta P. Designing Cascades of Electron Transfer Processes in Multicomponent Graphene Conjugates. Angew Chem Int Ed Engl 2020; 59:23706-23715. [PMID: 32886436 PMCID: PMC7756474 DOI: 10.1002/anie.202008820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 11/21/2022]
Abstract
A novel family of nanocarbon-based materials was designed, synthesized, and probed within the context of charge-transfer cascades. We integrated electron-donating ferrocenes with light-harvesting/electron-donating (metallo)porphyrins and electron-accepting graphene nanoplates (GNP) into multicomponent conjugates. To control the rate of charge flow between the individual building blocks, we bridged them via oligo-p-phenyleneethynylenes of variable lengths by β-linkages and the Prato-Maggini reaction. With steady-state absorption, fluorescence, Raman, and XPS measurements we realized the basic physico-chemical characterization of the photo- and redox-active components and the multicomponent conjugates. Going beyond this, we performed transient absorption measurements and corroborated by single wavelength and target analyses that the selective (metallo)porphyrin photoexcitation triggers a cascade of charge transfer events, that is, charge separation, charge shift, and charge recombination, to enable the directed charge flow. The net result is a few nanosecond-lived charge-separated state featuring a GNP-delocalized electron and a one-electron oxidized ferrocenium.
Collapse
Affiliation(s)
- Francesca Limosani
- Fusion and Nuclear DepartmentPhotonics Micro and Nanostructures LaboratoryENEAVia E. Fermi 4500044 FrascatiRomeItaly
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica 100133RomeItaly
| | - Ramandeep Kaur
- Interdisciplinary Center for Molecular MaterialsDepartment of Chemistry and PharmacyFriedrich-Alexander University Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Antonino Cataldo
- Department of Information EngineeringPolytechnic University of MarcheVia Brecce Bianche, 160131AnconaItaly
- INFN- National laboratories of FrascatiVia Enrico Fermi 4000044 FrascatiRomeItaly
| | - Stefano Bellucci
- INFN- National laboratories of FrascatiVia Enrico Fermi 4000044 FrascatiRomeItaly
| | | | - Robertino Zanoni
- Department of ChemistryUniversity of Rome “La Sapienza”Piazzale Aldo Moro 500185RomeItaly
| | - Angelo Lembo
- Department of Drug Metabolism and PharmacoKineticIRBM SpAVia Pontina km 30.60000071 PomeziaRomeItaly
| | - Bingzhe Wang
- Interdisciplinary Center for Molecular MaterialsDepartment of Chemistry and PharmacyFriedrich-Alexander University Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Roberto Pizzoferrato
- Department of Industrial EngineeringUniversity of Rome Tor VergataVia del Politecnico 100133RomeItaly
| | - Dirk M. Guldi
- Interdisciplinary Center for Molecular MaterialsDepartment of Chemistry and PharmacyFriedrich-Alexander University Erlangen-NürnbergEgerlandstrasse 391058ErlangenGermany
| | - Pietro Tagliatesta
- Department of Chemical Science and TechnologiesUniversity of Rome Tor VergataVia della Ricerca Scientifica 100133RomeItaly
| |
Collapse
|
7
|
Fontana LA, Almeida MP, Alcântara AFP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Ru(II)Porphyrinate-based molecular nanoreactor for carbene insertion reactions and quantitative formation of rotaxanes by active-metal-template syntheses. Nat Commun 2020; 11:6370. [PMID: 33311502 PMCID: PMC7733472 DOI: 10.1038/s41467-020-20046-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/29/2020] [Indexed: 12/28/2022] Open
Abstract
Selectivity in N–H and S–H carbene insertion reactions promoted by Ru(II)porphyrinates currently requires slow addition of the diazo precursor and large excess of the primary amine and thiol substrates in the reaction medium. Such conditions are necessary to avoid the undesirable carbene coupling and/or multiple carbene insertions. Here, the authors demonstrate that the synergy between the steric shielding provided by a Ru(II)porphyrinate-based macrocycle with a relatively small central cavity and the kinetic stabilization of otherwise labile coordinative bonds, warranted by formation of the mechanical bond, enables single carbene insertions to occur with quantitative efficiency and perfect selectivity even in the presence of a large excess of the diazo precursor and stoichiometric amounts of the primary amine and thiol substrates. As the Ru(II)porphyrinate-based macrocycle bears a confining nanospace and alters the product distribution of the carbene insertion reactions when compared to that of its acyclic version, the former therefore functions as a nanoreactor. Selectivity in carbene insertion reactions promoted by Ru(II)porphyrinates is achieved only upon careful control of substrate stoichiometry. Here, the authors demonstrate that endotopic catalysis and formation of mechanical bonds enables carbene insertions to occur selectively and in quantitative yield regardless of substrate stoichiometry.
Collapse
Affiliation(s)
- Liniquer A Fontana
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil
| | - Marlon P Almeida
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil
| | - Arthur F P Alcântara
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil.,Instituto Federal do Sertão Pernambucano, Estrada do Tamboril, 56200-000, Ouricuri, Brazil
| | - Vitor H Rigolin
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil
| | - Marcos A Ribeiro
- Departamento de Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, 29075-910, Vitória, Brazil
| | - Wdeson P Barros
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil
| | - Jackson D Megiatto
- Institute of Chemistry, University of Campinas (UNICAMP), POBox 6154, 13083-970, Campinas, Brazil.
| |
Collapse
|
8
|
Zanetti‐Polzi L, Djemili R, Durot S, Heitz V, Daidone I, Ventura B. Allosteric Control of Naphthalene Diimide Encapsulation and Electron Transfer in Porphyrin Containers: Photophysical Studies and Molecular Dynamics Simulation. Chemistry 2020; 26:17514-17524. [DOI: 10.1002/chem.202003151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Indexed: 12/20/2022]
Affiliation(s)
| | - Ryan Djemili
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Stéphanie Durot
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels Institut de Chimie de Strasbourg, CNRS/UMR 7177 Université de Strasbourg 4, rue Blaise Pascal 67000 Strasbourg France
| | - Isabella Daidone
- Department of Physical and Chemical Sciences University of L'Aquila via Vetoio (Coppito 1) 67010 L'Aquila Italy
| | - Barbara Ventura
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) Consiglio Nazionale delle Ricerche (CNR) Via P. Gobetti 101 40129 Bologna Italy
| |
Collapse
|
9
|
Anaya‐Plaza E, Joseph J, Bauroth S, Wagner M, Dolle C, Sekita M, Gröhn F, Spiecker E, Clark T, Escosura A, Guldi DM, Torres T. Synergie von elektrostatischen und π‐π‐Wechselwirkungen für die Verwirklichung von künstlichen photosynthetischen Modellsystemen auf Nano‐Ebene. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Eduardo Anaya‐Plaza
- Lehrstuhl der organischen Chemie Autonome Universität Madrid (UAM) c/ Francisco Tomás y Valiente 7, Cantoblanco 28049 Madrid Spanien
- Lehrstuhl für Bioprodukte und Biosysteme Aalto Universität Kemistintie 1 02150 Espoo Finnland
| | - Jan Joseph
- Department für Chemie und Pharmazie & interdisziplinäres Zentrum für molekulare Materialien (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Stefan Bauroth
- Department für Chemie und Pharmazie & interdisziplinäres Zentrum für molekulare Materialien (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Maximilian Wagner
- Department für Chemie und Pharmazie & interdisziplinäres Zentrum für molekulare Materialien (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Christian Dolle
- Lehrstuhl für Mikro- und Nanostrukturforschung (IMN) & Center, for Nanoanalysis and Electron Microscopy (CENEM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Michael Sekita
- Department für Chemie und Pharmazie & interdisziplinäres Zentrum für molekulare Materialien (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Franziska Gröhn
- Department für Chemie und Pharmazie & interdisziplinäres Zentrum für molekulare Materialien (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Erdmann Spiecker
- Lehrstuhl für Mikro- und Nanostrukturforschung (IMN) & Center, for Nanoanalysis and Electron Microscopy (CENEM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Timothy Clark
- Department für Chemie und Pharmazie & interdisziplinäres Zentrum für molekulare Materialien (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Andrés Escosura
- Lehrstuhl der organischen Chemie Autonome Universität Madrid (UAM) c/ Francisco Tomás y Valiente 7, Cantoblanco 28049 Madrid Spanien
- Institut für moderne Forschung in Chemiewissenschaften (IAdChem) Autonome Universität Madrid (UAM) 28049 Madrid Spanien
| | - Dirk M. Guldi
- Department für Chemie und Pharmazie & interdisziplinäres Zentrum für molekulare Materialien (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) 91058 Erlangen Deutschland
| | - Tomás Torres
- Lehrstuhl der organischen Chemie Autonome Universität Madrid (UAM) c/ Francisco Tomás y Valiente 7, Cantoblanco 28049 Madrid Spanien
- Institut für moderne Forschung in Chemiewissenschaften (IAdChem) Autonome Universität Madrid (UAM) 28049 Madrid Spanien
- IMDEA-Institut für Nanowissenschaften c/ Faraday 9, Campus de Cantoblanco 28049 Madrid Spanien
| |
Collapse
|
10
|
Anaya‐Plaza E, Joseph J, Bauroth S, Wagner M, Dolle C, Sekita M, Gröhn F, Spiecker E, Clark T, de la Escosura A, Guldi DM, Torres T. Synergy of Electrostatic and π-π Interactions in the Realization of Nanoscale Artificial Photosynthetic Model Systems. Angew Chem Int Ed Engl 2020; 59:18786-18794. [PMID: 32652750 PMCID: PMC7590087 DOI: 10.1002/anie.202006014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 12/27/2022]
Abstract
In the scientific race to build up photoactive electron donor-acceptor systems with increasing efficiencies, little is known about the interplay of their building blocks when integrated into supramolecular nanoscale arrays, particularly in aqueous environments. Here, we describe an aqueous donor-acceptor ensemble whose emergence as a nanoscale material renders it remarkably stable and efficient. We have focused on a tetracationic zinc phthalocyanine (ZnPc) featuring pyrenes, which shows an unprecedented mode of aggregation, driven by subtle cooperation between electrostatic and π-π interactions. Our studies demonstrate monocrystalline growth in solution and a symmetry-breaking intermolecular charge transfer between adjacent ZnPcs upon photoexcitation. Immobilizing a negatively charged fullerene (C60 ) as electron acceptor onto the monocrystalline ZnPc assemblies was found to enhance the overall stability, and to suppress the energy-wasting charge recombination found in the absence of C60 . Overall, the resulting artificial photosynthetic model system exhibits a high degree of preorganization, which facilitates efficient charge separation and subsequent charge transport.
Collapse
Affiliation(s)
- Eduardo Anaya‐Plaza
- Department of Organic ChemistryUniversidad Autónoma de Madrid (UAM)c/ Francisco Tomás y Valiente 7, Cantoblanco28049MadridSpain
- Department of Bioproducts and BiosystemsAalto UniversityKemistintie 102150EspooFinland
| | - Jan Joseph
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Stefan Bauroth
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Maximilian Wagner
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Christian Dolle
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Michael Sekita
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Franziska Gröhn
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Erdmann Spiecker
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Andrés de la Escosura
- Department of Organic ChemistryUniversidad Autónoma de Madrid (UAM)c/ Francisco Tomás y Valiente 7, Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid (UAM)28049MadridSpain
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)91058ErlangenGermany
| | - Tomás Torres
- Department of Organic ChemistryUniversidad Autónoma de Madrid (UAM)c/ Francisco Tomás y Valiente 7, Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid (UAM)28049MadridSpain
- IMDEA-Nanocienciac/ Faraday 9, Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
11
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
12
|
Kaur R, Possanza F, Limosani F, Bauroth S, Zanoni R, Clark T, Arrigoni G, Tagliatesta P, Guldi DM. Understanding and Controlling Short- and Long-Range Electron/Charge-Transfer Processes in Electron Donor–Acceptor Conjugates. J Am Chem Soc 2020; 142:7898-7911. [DOI: 10.1021/jacs.0c01452] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ramandeep Kaur
- Interdisciplinary Center for Molecular Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Fabio Possanza
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Francesca Limosani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefan Bauroth
- Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Robertino Zanoni
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Timothy Clark
- Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, Padova, Italy
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, Padova, Italy
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Dirk M. Guldi
- Interdisciplinary Center for Molecular Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Kage Y, Shimizu S, Kociok-Köhn G, Furuta H, Pantoş GD. Subphthalocyanine-Stoppered [2]Rotaxanes: Synthesis and Size/Energy Threshold of Slippage. Org Lett 2020; 22:1096-1101. [PMID: 31942791 DOI: 10.1021/acs.orglett.9b04620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subphthalocyanine (SubPc)-stoppered [2]rotaxanes were synthesized for the first time. The rotaxane bearing unsubstituted SubPc as a stopper exhibited an equilibrium of slipping-on and slipping-off, whereas a perfluorinated SubPc stopper completely blocked slippage of the ring due to its slightly larger size. Kinetic studies revealed the Gibbs free energy of activation for the slipping-on and slipping-off processes. The optical properties of the rotaxanes, including photoinduced electron transfer, were also revealed.
Collapse
Affiliation(s)
- Yuto Kage
- Department of Chemistry and Biochemistry, Graduate School of Engineering , Kyushu University , Fukuoka 819-0395 , Japan
| | - Soji Shimizu
- Department of Chemistry and Biochemistry, Graduate School of Engineering , Kyushu University , Fukuoka 819-0395 , Japan.,Center for Molecular Systems (CMS) , Kyushu University , Fukuoka 819-0395 , Japan
| | | | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering , Kyushu University , Fukuoka 819-0395 , Japan.,Center for Molecular Systems (CMS) , Kyushu University , Fukuoka 819-0395 , Japan
| | - G Dan Pantoş
- Department of Chemistry , University of Bath , Bath BA2 7AY , U.K
| |
Collapse
|
14
|
Colasson B, Credi A, Ventura B. Photoinduced Electron Transfer Involving a Naphthalimide Chromophore in Switchable and Flexible [2]Rotaxanes. Chemistry 2019; 26:534-542. [PMID: 31638287 DOI: 10.1002/chem.201904155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 11/10/2022]
Abstract
The interlocking of ring and axle molecular components in rotaxanes provides a way to combine chromophoric, electron-donor and electron-acceptor moieties in the same molecular entity, in order to reproduce the features of photosynthetic reaction centers. To this aim, the photoinduced electron transfer processes involving a 1,8-naphthalimide chromophore, embedded in several rotaxane-based dyads, were investigated by steady-state and time-resolved absorption and luminescence spectroscopic experiments in the 300 fs-10 ns time window. Different rotaxanes built around the dialkylammonium/ dibenzo[24]crown-8 ether supramolecular motif were designed and synthesized to decipher the relevance of key structural factors, such as the chemical deactivation of the ammonium-crown ether recognition, the presence of a secondary site for the ring along the axle, and the covalent functionalization of the macrocycle with a phenothiazine electron donor. Indeed, the conformational freedom of these compounds gives rise to a rich dynamic behavior induced by light and may provide opportunities for investigating and understanding phenomena that take place in complex (bio)molecular architectures.
Collapse
Affiliation(s)
- Benoit Colasson
- Université de Paris, UMR 8601, LCBPT, CNRS, 45 rue des Saints-Pères, 75006, Paris, France.,Photochemical Nanosciences Laboratory, Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Alberto Credi
- Dipartimento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, viale Fanin 50, 40127, Bologna, Italy.,CLAN-Center for Light Activated Nanostructures, Università di Bologna and Consiglio Nazionale delle Ricerche, via P. Gobetti 101, 40129, Bologna, Italy.,Istituto ISOF-CNR, via P. Gobetti 101, 40129, Bologna, Italy
| | - Barbara Ventura
- Istituto ISOF-CNR, via P. Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
15
|
Barendt TA, Myers WK, Cornes SP, Lebedeva MA, Porfyrakis K, Marques I, Félix V, Beer PD. The Green Box: An Electronically Versatile Perylene Diimide Macrocyclic Host for Fullerenes. J Am Chem Soc 2019; 142:349-364. [DOI: 10.1021/jacs.9b10929] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Barendt
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - William K. Myers
- Centre for Advanced ESR, Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Stuart P. Cornes
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Maria A. Lebedeva
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Kyriakos Porfyrakis
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Igor Marques
- Department of Chemistry, CICECO − Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Vítor Félix
- Department of Chemistry, CICECO − Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Paul D. Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
16
|
Nevonen DE, Rohde GT, Nemykin VN. New Insight into an Old Problem: Analysis, Interpretation, and Theoretical Modeling of the Absorption and Magnetic Circular Dichroism Spectra of Monomeric and Dimeric Zinc Phthalocyanine Cation Radical. Inorg Chem 2019; 58:14120-14135. [PMID: 31589034 DOI: 10.1021/acs.inorgchem.9b02138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The chemically or spectroelectrochemically generated formation and aggregation of zinc(II) tetra-tert-butylphthalocyanine cation radical [ZnPctBu]+•, which was highly soluble in common organic solvents, were investigated using UV-vis and magnetic circular dichroism (MCD) spectroscopies with an emphasis on the influence of the axial ligand on the fingerprint (∼500 nm) and NIR (720∼1000 nm) spectral envelopes. MCD spectroscopy is suggestive that the NIR band at ∼1000 nm observed for the antiferromagnetically coupled cation radical dimer, [ZnPctBu]22+, has no degeneracy, the monomer-dimeric equilibrium is temperature dependent, and higher degree aggregates can be formed at specific conditions. Sixteen different exchange-correlation functionals were tested to accurately predict the energies, intensities, and profiles of the UV-vis and MCD spectra of the phthalocyanine cation radical monomer and dimer. It was found that the M05 exchange-correlation functional (along with several other functionals that include 27-42% of Hartree-Fock exchange) provided an excellent agreement (∼0.1 eV for the degenerate excited states observed by MCD spectroscopy) between theory and experiment for the phthalocyanine cation-radical monomer and dimer. Not only did time-dependent density functional theory (TDDFT) calculations with M05 exchange-correlation functional correctly predict the nondegenerate NIR charge-transfer band at ∼1000 nm, all degenerate excited states, monomer and dimer energies, and oscillator strengths, but also they correctly described the nature of the experimentally observed at ∼500 nm MCD B-term (fingerprint band) detected for both the monomeric and dimeric phthalocyanine cation radicals. The TDDFT data explain the similarities in the UV-vis and MCD spectra of the monomeric and dimeric species observed between the UV and fingerprint spectral envelopes as well as correctly predicted the antiferromagnetic coupling between the two singly oxidized phthalocyanine macrocycles in the dimer.
Collapse
Affiliation(s)
- Dustin E Nevonen
- Department of Chemistry , University of Manitoba , 144 Dysart Road , Winnipeg , Manitoba R3T 2N2 , Canada
| | | | - Victor N Nemykin
- Department of Chemistry , University of Manitoba , 144 Dysart Road , Winnipeg , Manitoba R3T 2N2 , Canada
| |
Collapse
|
17
|
Barrejón M, Mateo-Alonso A, Prato M. Carbon Nanostructures in Rotaxane Architectures. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900252] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Myriam Barrejón
- Instituto de Nanociencia; Nanotecnología y Materiales Moleculares (INAMOL); Universidad de Castilla La-Mancha; 45071 Toledo Spain
| | - Aurelio Mateo-Alonso
- POLYMAT; University of the Basque Country UPV/EHU; Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque; Basque Foundation for Science; 48013 Bilbao Spain
| | - Maurizio Prato
- Ikerbasque; Basque Foundation for Science; 48013 Bilbao Spain
- Department of Chemical and Pharmaceutical Sciences; Università degli Studi di Trieste; Via Licio Giorgieri 1 34127 Trieste Italy
- Carbon Bionanotechnology Group CICbiomaGUNE; Paseo Miramón 182 20014 Donostia-San Sebastián Spain
| |
Collapse
|
18
|
Affiliation(s)
- Sean W. Hewson
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology; 4001 Brisbane, Queensland Australia
| | - Kathleen M. Mullen
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology; 4001 Brisbane, Queensland Australia
| |
Collapse
|
19
|
Husain A, Ganesan A, Ghazal B, Durmuş M, Zhang XF, Makhseed S. Dual-directional alkyne-terminated macrocycles: Enroute to non-aggregating molecular platforms. Org Chem Front 2019. [DOI: 10.1039/c9qo00695h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Derivatized phthalocyanines (Pcs) and their heteroatom analogues, azaphthalocyanines (AzaPcs), bearing a variety of highly active ligands, have many advantageous properties that make them suitable as novel macrocyclic platforms.
Collapse
Affiliation(s)
- Ali Husain
- Department of Chemistry
- Kuwait University
- Safat
- Kuwait
| | | | - Basma Ghazal
- Department of Chemistry
- Kuwait University
- Safat
- Kuwait
| | - Mahmut Durmuş
- Gebze Technical University
- Department of Chemistry
- 41400 Gebze-Kocaeli
- Turkey
| | | | | |
Collapse
|
20
|
Xu J, Tong X, Yu P, Wenya GE, McGrath T, Fong MJ, Wu J, Wang ZM. Ultrafast Dynamics of Charge Transfer and Photochemical Reactions in Solar Energy Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800221. [PMID: 30581691 PMCID: PMC6299728 DOI: 10.1002/advs.201800221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/05/2018] [Indexed: 05/31/2023]
Abstract
For decades, ultrafast time-resolved spectroscopy has found its way into an increasing number of applications. It has become a vital technique to investigate energy conversion processes and charge transfer dynamics in optoelectronic systems such as solar cells and solar-driven photocatalytic applications. The understanding of charge transfer and photochemical reactions can help optimize and improve the performance of relevant devices with solar energy conversion processes. Here, the fundamental principles of photochemical and photophysical processes in photoinduced reactions, in which the fundamental charge carrier dynamic processes include interfacial electron transfer, singlet excitons, triplet excitons, excitons fission, and recombination, are reviewed. Transient absorption (TA) spectroscopy techniques provide a good understanding of the energy/electron transfer processes. These processes, including excited state generation and interfacial energy/electron transfer, are dominate constituents of solar energy conversion applications, for example, dye-sensitized solar cells and photocatalysis. An outlook for intrinsic electron/energy transfer dynamics via TA spectroscopic characterization is provided, establishing a foundation for the rational design of solar energy conversion devices.
Collapse
Affiliation(s)
- Jing‐Yin Xu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Peng Yu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Gideon Evans Wenya
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Thomas McGrath
- Department of PhysicsLancaster UniversityLancasterLancashireLA14YWUK
| | | | - Jiang Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- Department of Electronic and Electrical EngineeringUniversity College LondonTorrington PlaceLondonWC1E7JEUK
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| |
Collapse
|
21
|
Mimicry and functions of photosynthetic reaction centers. Biochem Soc Trans 2018; 46:1279-1288. [DOI: 10.1042/bst20170298] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/24/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
The structure and function of photosynthetic reaction centers (PRCs) have been modeled by designing and synthesizing electron donor–acceptor ensembles including electron mediators, which can mimic multi-step photoinduced charge separation occurring in PRCs to obtain long-lived charge-separated states. PRCs in photosystem I (PSI) or/and photosystem II (PSII) have been utilized as components of solar cells to convert solar energy to electric energy. Biohybrid photoelectrochemical cells composed of PSII have also been developed for solar-driven water splitting into H2 and O2. Such a strategy to bridge natural photosynthesis with artificial photosynthesis is discussed in this minireview.
Collapse
|
22
|
Gangada S, Chakali M, Mandal H, Duvva N, Chitta R, Lingamallu G, Bangal PR. Excitation-dependent electron exchange energy and electron transfer dynamics in a series of covalently tethered N,N-bis(4'-tert-butylbiphenyl-4-yl)aniline - [C 60] fullerene dyads via varying π-conjugated spacers. Phys Chem Chem Phys 2018; 20:21352-21367. [PMID: 30095832 DOI: 10.1039/c8cp03521k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Femtosecond time-resolved fluorescence and transient absorption studies are reported for three newly synthesized covalently linked N,N-bis(4'-tert-butylbiphenyl-4-yl)aniline (BBA) and pyrrolidinofullerenes (C60)-based donor-π conjugated bridge-acceptor dyads (D-B-A) as functions of the bridge length (7.1, 9.5 and 11.2 Å for Dyad-1, Dyad-2 and Dyad-3), dielectric constants of the medium and pump wavelengths. In polar solvent, ultrafast fluorescence quenching (kEET ≥ 2 × 1012 s-1) of the BBA moiety upon excitation of the BBA moiety (320 nm) is observed in the dyads and is assigned to a mechanism involving electron exchange energy transfer (EET) from 1BBA* to C60 followed by electron transfer from BBA to 1C60*. Cohesive rise and decay dynamics of conjugated BBA˙+-C60˙- anion pairs confirm the involvement of a distance independent adiabatic charge-separation (CS) process (kCS ≥ 2.2 × 1011 s-1) with near unity quantum efficiency (φCS ≥ 99.7%) and a distance-dependent non-adiabatic charge-recombination (CR) process [kCR ∼ (1010-108) s-1]. In contrast, excitation of the C60 moiety (λex = 430 to 700 nm) illustrates photoinduced electron transfer from BBA to 1C60*, involving non-adiabatic (diabatic) and distance-dependent CS (kCS in the range of 0.59-1.78 × 1011 s-1) with 98.86-99.6% (Dyad-3-Dyad-1) quantum efficiency and a CR process with kCR values [kCR ∼ (1010-108) s-1] up to three orders greater than kCS of the respective dyads. Both the processes, CS and CR, upon C60 excitation and the CR process upon BBA excitation show distance dependent rate constants with exponential factor β ≤ 0.5 Å-1, and electron transfer is concluded to occur through a covalently linked conjugated π bridge. Global and target analysis of fsTA data reveal the occurrence of two closely lying CS states, thermally hot (CShot) and thermally relaxed (CSeq) states, and two CR processes with two orders of different rate constants. Careful analysis of the kinetic and thermodynamic data allowed us to estimate the total reorganization energy and electronic coupling matrix (V), which decrease exponentially with distance. These novel features of the distance independent adiabatic CS process and the distance-dependent diabatic CR process upon donor excitation are due to extending the π-conjugation between BBA and C60. The demonstrated results may provide a benchmark in the design of light-harvesting molecular devices where ultrafast CS processes and long-lived CS states are essential requirements.
Collapse
Affiliation(s)
- Suneel Gangada
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan - 305817, India.
| | | | | | | | | | | | | |
Collapse
|
23
|
Luo Y, Wächtler M, Barthelmes K, Winter A, Schubert US, Dietzek B. Coexistence of distinct intramolecular electron transfer pathways in polyoxometalate based molecular triads. Phys Chem Chem Phys 2018; 20:11740-11748. [PMID: 29651486 DOI: 10.1039/c8cp01007b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyoxometalate (POM)-associated charge-separated states, formed by the photoinduced oxidation of a covalently attached photosensitizer and reduction of the POM, have attracted much attention due to the remarkable catalytic properties of the reduced POMs. However, short lifetimes of the POM-associated charge-separated state, which in some cases lead to the backward electron transfer being more rapid than the formation of the charge-separated state itself, are generally observed. Recently, we reported on the first example of a relative long-lived (τ = 470 ns) charge-separated state in a Ru(ii) bis(terpyridine)-POM molecular dyad. In this manuscript, further studies on extended molecular structures - two molecular triads - which contain an additional electron donor, phenothiazine (PTZ) or π-extended tetrathiafulvalene (exTTF), are discussed. We show that the excitation of the photosensitizer leads to the population of two distinct MLCT states, which differ in the distribution of excess electron density on the two distinct tpy ligands. These two MLCT states decay separately and, thus, constitute the starting points for distinct intramolecular electron-transfer pathways leading to the simultaneous population of two partially charge-separated states, i.e. PTZ˙+-Ru(tpy)2˙--POM and PTZ-RuIII(tpy)2-POM˙-. These independent decay pathways are unaffected by the choice of the electron donor. Thus, the initial charge distribution within the coordination environment of the photocenter determines the nature of the subsequent (partially) charge separated state that is formed in the triads. These results might open new avenues to design molecular interfaces, in which the directionality of electron transfer can be tuned by the choice of initial excitation.
Collapse
Affiliation(s)
- Yusen Luo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Barendt TA, Rašović I, Lebedeva MA, Farrow GA, Auty A, Chekulaev D, Sazanovich IV, Weinstein JA, Porfyrakis K, Beer PD. Anion-Mediated Photophysical Behavior in a C60 Fullerene [3]Rotaxane Shuttle. J Am Chem Soc 2018; 140:1924-1936. [DOI: 10.1021/jacs.7b12819] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Timothy A. Barendt
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Ilija Rašović
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Maria A. Lebedeva
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - George A. Farrow
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Alexander Auty
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Dimitri Chekulaev
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Igor V. Sazanovich
- Laser for Science Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0QX, United Kingdom
| | - Julia A. Weinstein
- Department
of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Kyriakos Porfyrakis
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Paul D. Beer
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
25
|
Barthelmes K, Sittig M, Winter A, Schubert US. Molecular Dyads and Triads Based on Phenothiazine and π-Extended Tetrathiafulvalene Donors, Bis(terpyridine)ruthenium(II) Complexes, and Polyoxometalates. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Barthelmes
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Maria Sittig
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
| | - Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena); Friedrich Schiller University Jena; Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
26
|
Santra S, Ghosh P. Rotamer-Induced Dynamic Nature of a [2]Rotaxane and Control of the Dynamics by External Stimuli. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Saikat Santra
- Department of Inorganic Chemistry; Indian Association for the Cultivation of Science; 2A and 2B Raja S.C. Mullick Road Kolkata India
| | - Pradyut Ghosh
- Department of Inorganic Chemistry; Indian Association for the Cultivation of Science; 2A and 2B Raja S.C. Mullick Road Kolkata India
| |
Collapse
|
27
|
Luo Y, Barthelmes K, Wächtler M, Winter A, Schubert US, Dietzek B. Energy versus Electron Transfer: Controlling the Excitation Transfer in Molecular Triads. Chemistry 2017; 23:4917-4922. [PMID: 28198051 DOI: 10.1002/chem.201700413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 01/23/2023]
Abstract
The photochemistry of RuII coordination compounds is generally discussed to originate from the lowest lying triplet metal-to-ligand charge-transfer state (3 MLCT). However, when heteroleptic complexes are considered, for example, in the design of molecular triads for efficient photoinduced charge separation, a complex structure of 1 MLCT states, which can be populated in a rather narrow spectral window (typically around 450 nm) is to be considered. In this contribution we show that the localization of MLCT excited states on different ligands can affect the following ps to ns decay pathways to an extent that by tuning the excitation wavelength, intermolecular energy transfer from a RuII -terpyridine unit to a fullerene acceptor can be favored over electron transfer within the molecular triad. These results might have important implications for the design of molecular dyads, triads, pentads and so forth with respect to a specifically targeted response of these complexes to photoexcitation.
Collapse
Affiliation(s)
- Yusen Luo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Kevin Barthelmes
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Andreas Winter
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Ulrich S Schubert
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany.,Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743, Jena, Germany.,Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
28
|
Lee SH, Blake IM, Larsen AG, McDonald JA, Ohkubo K, Fukuzumi S, Reimers JR, Crossley MJ. Synthetically tuneable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria. Chem Sci 2016; 7:6534-6550. [PMID: 27928494 PMCID: PMC5125414 DOI: 10.1039/c6sc01076h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022] Open
Abstract
Porphyrin-based photosynthetic reaction centre (PRC) mimics, ZnPQ-Q2HP-C60 and MP2Q-Q2HP-C60 (M = Zn or 2H), designed to have a similar special-pair electron donor and similar charge-separation distances, redox processes and photochemical reaction rates to those in the natural PRC from purple bacteria, have been synthesised and extensive photochemical studies performed. Mechanisms of electron-transfer reactions are fully investigated using femtosecond and nanosecond transient absorption spectroscopy. In benzonitrile, all models show picosecond-timescale charge-separations and the final singlet charge-separations with the microsecond-timescale. The established lifetimes are long compared to other processes in organic solar cells or other organic light harvesting systems. These rigid, synthetically flexible molecules provide the closest mimics to the natural PRC so far synthesised and present a future direction for the design of light harvesters with controllable absorption, redox, and kinetics properties.
Collapse
Affiliation(s)
- Sai-Ho Lee
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Iain M Blake
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Allan G Larsen
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - James A McDonald
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| | - Kei Ohkubo
- Department of Material and Life Science , Graduate School of Engineering , Osaka University , Suita , Osaka 565-0871 , Japan .
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 120-750 , Korea ; Faculty of Science and Engineering , Meijo University , Nagoya , Aichi 468-0073 , Japan
| | - Jeffrey R Reimers
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia . ; International Centre for Quantum and Molecular Structure , Shanghai University , 200444 , Shanghai , China . ; School of Mathematical and Physical Sciences , The University of Technology Sydney , 2007 , NSW , Australia .
| | - Maxwell J Crossley
- School of Chemistry F11 , The University of Sydney , 2006 , NSW , Australia .
| |
Collapse
|
29
|
Efficient Energy-Conversion Materials for the Future: Understanding and Tailoring Charge-Transfer Processes in Carbon Nanostructures. Chem 2016. [DOI: 10.1016/j.chempr.2016.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Lebedeva MA, Chamberlain TW, Scattergood PA, Delor M, Sazanovich IV, Davies ES, Suyetin M, Besley E, Schröder M, Weinstein JA, Khlobystov AN. Stabilising the lowest energy charge-separated state in a {metal chromophore - fullerene} assembly: a tuneable panchromatic absorbing donor-acceptor triad. Chem Sci 2016; 7:5908-5921. [PMID: 30034733 PMCID: PMC6024556 DOI: 10.1039/c5sc04271b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/19/2016] [Indexed: 11/21/2022] Open
Abstract
Photoreduction of fullerene and the consequent stabilisation of a charge-separated state in a donor-acceptor assembly have been achieved, overcoming the common problem of a fullerene-based triplet state being an energy sink that prevents charge-separation. A route to incorporate a C60-fullerene electron acceptor moiety into a catecholate-Pt(ii)-diimine photoactive dyad, which contains an unusually strong electron donor, 3,5-di-tert-butylcatecholate, has been developed. The synthetic methodology is based on the formation of the aldehyde functionalised bipyridine-Pt(ii)-3,5-di-tert-butylcatechol dyad which is then added to the fullerene cage via a Prato cycloaddition reaction. The resultant product is the first example of a fullerene-diimine-Pt-catecholate donor-acceptor triad, C60bpy-Pt-cat. The triad exhibits an intense solvatochromic absorption band in the visible region due to catechol-to-diimine charge-transfer, which, together with fullerene-based transitions, provides efficient and tuneable light harvesting of the majority of the UV/visible spectral range. Cyclic voltammetry, EPR and UV/vis/IR spectroelectrochemistry reveal redox behaviour with a wealth of reversible reduction and oxidation processes forming multiply charged species and storing multiple redox equivalents. Ultrafast transient absorption and time resolved infrared spectroscopy, supported by molecular modelling, reveal the formation of a charge-separated state [C60˙-bpy-Pt-cat˙+] with a lifetime of ∼890 ps. The formation of cat˙+ in the excited state is evidenced directly by characteristic absorption bands in the 400-500 nm region, while the formation of C60˙- was confirmed directly by time-resolved infrared spectroscopy, TRIR. An IR-spectroelectrochemical study of the mono-reduced building block (C60-bpy)PtCl2, revealed a characteristic C60˙- vibrational feature at 1530 cm-1, which was also detected in the TRIR spectra. This combination of experiments offers the first direct IR-identification of C60˙- species in solution, and paves the way towards the application of transient infrared spectroscopy to the study of light-induced charge-separation in C60-containing assemblies, as well as fullerene films and fullerene/polymer blends in various OPV devices. Identification of the unique vibrational signature of a C60-anion provides a new way to follow photoinduced processes in fullerene-containing assemblies by means of time-resolved vibrational spectroscopy, as demonstrated for the fullerene-transition metal chromophore assembly with the lowest energy charge-separated excited state.
Collapse
Affiliation(s)
- Maria A Lebedeva
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
- Department of Materials , University of Oxford , 16 Parks Road , Oxford , OX1 3PS , UK .
| | - Thomas W Chamberlain
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
- School of Chemistry , University of Leeds , Leeds , LS2 9JT , UK
| | | | - Milan Delor
- Department of Chemistry , University of Sheffield , S3 7HF , UK .
| | - Igor V Sazanovich
- Department of Chemistry , University of Sheffield , S3 7HF , UK .
- Laser for Science Facility , Rutherford Appleton Laboratory , Harwell Science and Innovation Campus , Oxfordshire , OX11 0QX , UK
| | - E Stephen Davies
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
| | - Mikhail Suyetin
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
| | - Elena Besley
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
| | - Martin Schröder
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK
| | | | - Andrei N Khlobystov
- School of Chemistry , University of Nottingham , Nottingham , NG7 2RD , UK .
- Nanoscale and Microscale Research Centre , University of Nottingham , University Park , Nottingham , NG7 2RD , UK
| |
Collapse
|
31
|
Hahn U, Nierengarten JF. The copper–catalyzed alkyne-azide cycloaddition for the construction of fullerene–porphyrin conjugates. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Click chemistry has become a very popular and efficient concept for synthetic chemists for the construction of new molecules. Among the click chemistry approaches known to date, it is undoubted that the copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) has played a key role. Such reactions in general offer virtually unlimited possibilities to prepare new molecules for [Formula: see text]. materials science applications. As such, the synthesis of porphyrin–fullerene conjugates obtained via CuAAC are summarized within the present review article.
Collapse
Affiliation(s)
- Uwe Hahn
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Jean-François Nierengarten
- Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| |
Collapse
|
32
|
Nagai H, Suzaki Y, Osakada K. Chemical Modification of a [2]Rotaxane Composed of Dithiacrown Ether and Dialkylammonium with Organic and Inorganic Compounds. CHEM LETT 2016. [DOI: 10.1246/cl.160345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Rudolf M, Kirner SV, Guldi DM. A multicomponent molecular approach to artificial photosynthesis – the role of fullerenes and endohedral metallofullerenes. Chem Soc Rev 2016; 45:612-30. [DOI: 10.1039/c5cs00774g] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this review article, we highlight recent advances in the field of solar energy conversion at a molecular level.
Collapse
Affiliation(s)
- M. Rudolf
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-University Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - S. V. Kirner
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-University Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - D. M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM)
- Friedrich-Alexander-University Erlangen-Nuremberg
- 91058 Erlangen
- Germany
- Physical Biosciences Division
| |
Collapse
|