1
|
Liu J, Chen Y, Tang H, Chen H, Qiu R, Yuan H. Theoretical Investigations on the Molecular Magnetic Behavior of Actinide Molecules [AnPc 2] 0/- (An = U, Cf): Prediction of the High Magnetic Blocking Barrier and Magnetic Blocking Temperature in [CfPc 2] . J Phys Chem A 2025; 129:717-732. [PMID: 39780501 DOI: 10.1021/acs.jpca.4c06757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Searching for single-molecule magnets (SMM) with large effective blocking barriers, long relaxation times, and high magnetic blocking temperatures is vitally important not only for the fundamental research of magnetism at the molecular level but also for the realization of new-generation magnetic memory unit. Actinides (An) atoms possess extremely strong spin-orbit coupling (SOC) due to their 5f orbitals, and their ground multiplets are largely split into several sublevels because of the strong interplay between the SOC of An atoms and the crystal field (CF) formed by ligand atoms. Compared to TM-based SMMs, more dispersed energy level widths of An-based SMMs will give a larger total zero field splitting (ZFS) and thus provide a necessary condition to derive a higher Ueff. In combination of the density functional theory (DFT) as well as the CF model Hamiltonian and ab initio calculation, we have investigated the structural stability and electronic structures as well as the magnetodynamic behavior of [AnPc2]0/- (An = U, Cf) molecules. We find that An atoms can strongly interact with its ligand N atoms in forming An-N ionic bonds, and 5f electrons are more localized in the Cf atom than in the U atom, giving U4+(5f2) and Cf3+(5f9) valence states. Although the UPc2 molecule has a modest value of Ueff = 514 cm-1, it is not a good SMM due to the easy occurrence of quantum tunneling of magnetization (QTM). Based on the consistent results of CF Hamiltonian and ab initio calculations on the [CfPc2]- molecule, we propose that almost prohibited QTM within the Kramers doublets (KDs) as well as very low transition probabilities between different states via hindered spin-flip transitions would result in a high Ueff = 1401 cm-1. The estimated high magnetic blocking temperature (TB) of 58 K renders [CfPc2]- an excellent SMM candidate, implying that magnetic hysteresis could be observed in future experiments.
Collapse
Affiliation(s)
- Jie Liu
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaqing Chen
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Huan Tang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | | | - Ruizhi Qiu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621907, China
- College of Artificial Intelligence, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, Chongqing 400715, China
| |
Collapse
|
2
|
Athanasopoulou AA, Abbasi P, Alexandropoulos DI, Hayward JJ, Beavers CM, Teat SJ, Wernsdorfer W, Mayans J, Escuer A, Pilkington M, Stamatatos TC. A Nanosized {Ni II 18} Cluster with a 'Flying Saucer' Topology Exhibiting Slow Relaxation of Magnetisation Phenomena at Both 15 K and 1.3 K. Chemistry 2025; 31:e202403462. [PMID: 39535449 DOI: 10.1002/chem.202403462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
A high-nuclearity {Ni18} complex (1) with a unique 'flying saucer' motif has been prepared from the organic chelate, α-methyl-2-pyridine-methanol (mpmH), in conjunction with bridging azido (N3 -) and peroxido (O2 2-) ligands. Magnetic susceptibility measurements revealed the presence of both ferro- and antiferromagnetic exchange interactions between the metal centres in 1, and the stabilization of spin states with appreciable S values at two different temperature regimes. The end-on bridging azido and alkoxido groups are in all likelihood the ferromagnetic mediators, while the η3:η3:μ6-bridging peroxides most likely promote the antiparallel alignment of the metals' spin vectors, yielding an overall non-zero spin ground state for the centrosymmetric compound 1. Furthermore, the {Ni18} nanosized cluster behaves as a single-molecule magnet, exhibiting magnetic hysteresis at low temperatures and two relaxation processes at 15 K and 1.3 K, a very rare phenomenon in polynuclear magnetic 3d-metal clusters.
Collapse
Affiliation(s)
- Angeliki A Athanasopoulou
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, L2S 3A1, St. Catharines, Ontario, Canada
| | - Parisa Abbasi
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, L2S 3A1, St. Catharines, Ontario, Canada
| | - Dimitris I Alexandropoulos
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, L2S 3A1, St. Catharines, Ontario, Canada
- Department of Chemistry, University of Patras, Patras, 26504, Greece
| | - John J Hayward
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, L2S 3A1, St. Catharines, Ontario, Canada
| | - Christine M Beavers
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Wolfgang Wernsdorfer
- Institut Néel, CNRS & Université Grenoble Alpes BP 166, 25 avenue des Martyrs, 38042, Grenoble Cedex 9, France
- Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, D-76131, Karlsruhe, Germany
- Institut für Nanotechnologie, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Júlia Mayans
- Departament de Quimica Inorganica i Organica and Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona Marti i Franques 1-11, 08028, Barcelona, Spain
| | - Albert Escuer
- Departament de Quimica Inorganica i Organica and Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona Marti i Franques 1-11, 08028, Barcelona, Spain
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, L2S 3A1, St. Catharines, Ontario, Canada
| | - Theocharis C Stamatatos
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, L2S 3A1, St. Catharines, Ontario, Canada
- Department of Chemistry, University of Patras, Patras, 26504, Greece
| |
Collapse
|
3
|
Albavera-Mata A, Liu S, Cheng HP, Hennig RG, Trickey SB. Magnetic and Thermodynamic Computations for Supramolecular Assemblies between a Cr(III) and Fe(III) Single-Ion Magnet and an Fe(II) Spin-Crossover Complex. J Phys Chem A 2024; 128:10929-10935. [PMID: 39642178 DOI: 10.1021/acs.jpca.4c06723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Experimental results on two supramolecular complexes in which a CrIII or FeIII d-orbital single-ion magnet center is embedded between a pair of FeII spin-crossover moieties make those two complexes interesting as possible candidates for use in quantum information technologies. We report detailed computational results for their structure and electronic properties and use the resulting data to parametrize a spin Hamiltonian that facilitates comparison with experimental results and their interpretation. Consistent with experimental results on decoherence in [Fe(ox)3]@[Fe2L3]+, we find it to be easy-plane type while the [Cr(ox)3]@[Fe2L3]+ system is easy-axis type.
Collapse
Affiliation(s)
- Angel Albavera-Mata
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Shuanglong Liu
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hai-Ping Cheng
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Richard G Hennig
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - S B Trickey
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, United States
- Department of Physics and Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Diogo EBT, da Silva Júnior EN, Oliveira WXC, Stumpf HO, Fabris F, de Almeida AA, Knobel M, Ferreira FF, Nunes WC, Pedroso EF, Julve M, Pereira CLM. Isostructural Oxamate Complexes with Visible Luminescence (Eu 3+) and Field-Induced Single-Molecule Magnet (Nd 3+). Chem Asian J 2024; 19:e202400887. [PMID: 39283592 DOI: 10.1002/asia.202400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/08/2024] [Indexed: 11/02/2024]
Abstract
The search for new metal-organic compounds as candidates for quantum information processing technologies is in the spotlight. Several metal ions and organic linkers have been used to obtain such compounds. Herein, we describe the synthesis, crystal structures, and cryomagnetic properties of two air-stable isostructural neodymium(III) and europium(III) one-dimensional (1D) coordination polymers of formula [Nd(Hmpa)3(DMSO)2]n (1) and [Eu(Hmpa)3(DMSO)2]n (2) [Hmpa=N-(4-methylphenyl)oxamate, and DMSO=dimethylsulfoxide]. These complexes were prepared by reacting n-Bu4N(Hmpa) proligand [n-Bu4N+=tetra-n-butylammonium] and the correspondent LnCl3 ⋅ 6H2O salt (Ln=Nd or Eu) in the open air and mild conditions. The crystal structures of 1 and 2 reveal the Ln3+ ion surrounded by two DMSO molecules and three oxamate ligands, one of them connecting to adjacent mononuclear entities through carboxylate bridges featuring a homometallic chain, while the other two establishing double N-H ⋅ ⋅ ⋅ O hydrogen bonds among adjacent polymers to give a resultant supramolecular 2D network. Cryomagnetic measurements in the static (dc) and dynamic current (ac) regimes reveal that 1 behaves as a field-induced single-molecule magnet below 8.8 K. A photoluminescence study shows that Hmpa ligands efficiently sensitize the luminescence of Eu3+ complex in the visible region in the solid state at room temperature.
Collapse
Affiliation(s)
- Emilay B T Diogo
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Willian X C Oliveira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Humberto O Stumpf
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Fernando Fabris
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, 13083-859, Brazil
| | - Adriele A de Almeida
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, 13083-859, Brazil
| | - Marcelo Knobel
- Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 777, Cidade Universitária Zeferino Vaz, Barão Geraldo, Campinas, SP, 13083-859, Brazil
| | - Fabio F Ferreira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Av. dos Estados 5001, Santo André, SP, 09210-580, Brazil
| | - Wallace C Nunes
- Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/n°, Niterói, RJ, 24210-346, Brazil
| | - Emerson F Pedroso
- Departamento de Química, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas, 5253, Belo Horizonte, MG, 30421-169, Brazil
| | - Miguel Julve
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980, Paterna, València, Spain
| | - Cynthia L M Pereira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| |
Collapse
|
5
|
Pohle MH, Lohmiller T, Böhme M, Rams M, Ziegenbalg S, Görls H, Schnegg A, Plass W. THz-EPR-based Magneto-Structural Correlations for Cobalt(II) Single-Ion Magnets With Bis-Chelate Coordination. Chemistry 2024; 30:e202401545. [PMID: 39136581 DOI: 10.1002/chem.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 10/18/2024]
Abstract
New cobalt(II)-based complexes with [N2O2] coordination formed by two bis-chelate ligands were synthesized and characterized by a multi-technique approach. The complexes possess an easy-axis anisotropy (D<0) and magnetic measurements show a field-induced slow relaxation of magnetization. The spin-reversal barriers, i. e., the splitting of the two lowest Kramers doublets (UZFS), have been measured by THz-EPR spectroscopy, which allows to distinguish the two crystallographically independent species present in one of the complexes. Based on these experimental UZFS energies together with those for related complexes reported in literature, it was possible to establish magneto-structural correlations. UZFS linearly depends on the elongation parameter ϵT of the (pseudo-)tetrahedral coordination, which is given by the ratio between the average obtuse and acute angles at the cobalt(II) ion, while UZFS was found to be virtually independent of the twist angle of the chelate planes. With increasing deviation from the orthogonality of the latter, the rhombicity (|E/D|) increases.
Collapse
Affiliation(s)
- Maximilian H Pohle
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Thomas Lohmiller
- EPR4 Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489, Berlin, Germany
- Current address: Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
6
|
Pilichos E, Font-Bardia M, Aullón G, Mayans J, Escuer A. Family of Quasi-Isotropic Mn II and Mn 2II Complexes Exhibiting Slow Relaxation of the Magnetization. Inorg Chem 2024; 63:20415-20426. [PMID: 39411954 PMCID: PMC11523239 DOI: 10.1021/acs.inorgchem.4c02826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Slow relaxation of magnetization has been studied for a family of mononuclear MnII complexes and one ferromagnetic dinuclear system, all of them presenting very weak anisotropy. Complexes with formula [{NiL1Mn(H2O)2(MeOH)}{NiL1}2](ClO4)2 (1), [Mn{NiL1}2](ClO4)2 (2), [Mn{NiL2}2](ClO4)2 (RR-L22-, 3RR, SS-L22-, 3SS), [Mn{NiL3}2](ClO4)2 (RR-L32-, 4RR, SS-L32-, 4SS) and (μ1,1-N3)2[Ni2Mn2(L1)2(N3)2] (5) are derived from compartmental Schiff bases, in which the NiII environment is square planar and thus diamagnetic. All of the systems have been structurally and magnetically characterized. Zero field splitting (D) values for the MnII cations have been obtained from EPR spectroscopy and NEVPT2 calculations. The slow relaxation of the magnetization for 1-5 has been studied by means of ac magnetometry and rationalized on the basis of their low, but not zero, anisotropy, providing the first example of a polynuclear MnII complex, with S = 5 ground state, exhibiting slow relaxation.
Collapse
Affiliation(s)
- Evangelos Pilichos
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, Barcelona 08028, Spain
| | - Mercè Font-Bardia
- Departament
de Mineralogia, Cristal·lografia i Dipòsits Minerals, Universitat de Barcelona, Martí Franqués s/n, 08028 Barcelona, Spain
- Unitat
de Difracció de R-X. Centre Científic
i Tecnològic de la Universitat de Barcelona, Solé i Sabarís 1-3., 08028 Barcelona, Spain
| | - Gabriel Aullón
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institut de Química Teòrica i
Computacional, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Júlia Mayans
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, Barcelona 08028, Spain
| | - Albert Escuer
- Departament
de Química Inorgànica i Orgànica, Secció
Inorgànica and Institute of Nanoscience and Nanotecnology, Universitat de Barcelona, Marti i Franques 1-11, Barcelona 08028, Spain
| |
Collapse
|
7
|
Peng XH, Shang T, Zheng J, Liu M, Zheng Q, Guo FS. Enhancing the magnetic properties of Dy(III) single-molecule magnets in octahedral coordination symmetry by tuning the equatorial ligands. Dalton Trans 2024; 53:16709-16715. [PMID: 39344482 DOI: 10.1039/d4dt02482f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Conventionally, octahedral (Oh) coordination symmetry of lanthanide centers is not ideal for constructing high-performance single-molecule magnets (SMMs). However, introducing a strong ligand field in the axial direction to increase crystal field splitting can potentially overcome this limitation. Herein, we successfully obtained two dysprosium(III) single-molecule magnets, [Dy(OCtBu3)X2(py)3] (X = Cl (1), I (2), py = pyridine), in Oh coordination symmetry. The two complexes differ only in the coordinating anions on the equatorial plane, yet their magnetic performances are distinctly different. When chloride is replaced by a weaker donor iodide, the energy barrier is dramatically improved from 29 cm-1 (1) to 860 cm-1 (2), highlighting the importance of weakening the transverse ligand field and maximizing the axial ligand field for high-performance SMMs.
Collapse
Affiliation(s)
- Xiao-Han Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Tao Shang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Jieyu Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ming Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Qi Zheng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| | - Fu-Sheng Guo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Xiyuan Avenue 2006, Chengdu 611731, China.
| |
Collapse
|
8
|
Zhou X, Qin H, Zeng Z, Luo S, Yang T, Cen P, Liu X. Modulation of the magnetic properties of mononuclear Dy(III) complexes by tuning the coordination geometry and local symmetry. Dalton Trans 2024; 53:16219-16228. [PMID: 39298127 DOI: 10.1039/d4dt02135e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Precise control of the crystal field and local symmetry around the paramagnetic spin center is crucial for the design and synthesis of single-molecule magnets (SMMs). Herein, three mononuclear Dy(III)-based complexes, [Dy(LN6)(CH3COO)2](BPh4)(CH2Cl2) (1), [Dy(LN6)(2,6-Cl-4-NO2-PhO)(H2O)2]2(PF6)2(H2O)(2,6-Cl-4-NO2-PhO)2 (2) and [Dy(LN6)(2,6-Cl-4-NO2-PhO)2](BPh4)(CH2Cl2)2 (3) (LN6 = N6-hexagonal plane accomplished by a neutral Schiff base ligand formed from 2,6-diacetylpyridine and ethylenediamine), are successfully isolated. In these complexes, the Dy(III) centers are coordinated with six neutral N atoms from a nonrigid equatorial ligand, while different oxygen-bearing ligands are arranged at the axial positions of the central ions by gradual regularization of the axial ligands. As a result, Dy(III) ions in the three complexes exhibit various coordination geometries, forming a ten-coordinate tetradecahedron for 1, a nine-coordinate muffin configuration for 2 and a distorted eight-coordinate hexagonal bipyramid for 3. Magnetic studies reveal that all complexes exhibit no SIM behaviour under zero dc field, due to the predominant quantum tunneling of magnetization (QTM), which can be effectively suppressed by additional dc fields. Experiments, coupled with theoretical calculations, demonstrate that varying local symmetries and coordination geometries are synergistically responsible for the disparities of QTM and uniaxial anisotropy, resulting in notably different magnetic properties.
Collapse
Affiliation(s)
- Xuejuan Zhou
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Huiliang Qin
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Zhaopeng Zeng
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
| | - Tao Yang
- Ningxia People's Hospital, Yinchuan 753009, China
| | - Peipei Cen
- College of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiangyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
9
|
Schulz A, Hadlington TJ. Analogous carbene-stabilised [M I-(η 6-tol)] + cations (M = Fe, Co, Ni): synthetic access and [carbene·M I] + transfer. Dalton Trans 2024; 53:15795-15800. [PMID: 39308331 DOI: 10.1039/d4dt02372b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
A series of low-coordinate cationic 3d metal(I) complexes of the general formula [IPr·M(η6-tol)]+ is reported (M = Fe, Co, Ni; IPr = [(H)CN(Dip)C:]; Dip = 2,6-iPr2-C6H3), employing the weakly coordinating [BArF4]- counter-anion. The central metal in these complexes is stabilised solely by neutral carbene (i.e. IPr) and arene (i.e. toluene) ligands, making them rare examples of such cationic 3d metal(I) complexes, the electronic nature of which is explored by SQUID magnetometry. The utility of these species in [IPr·MI]+ transfer chemistry is demonstrated through the addition of a further equivalent of IPr, leading to formally two-coordinate cationic complexes, [(IPr2)·MI]+.
Collapse
Affiliation(s)
- Annika Schulz
- Lehrstuhl für anorganische Chemie mit Schwerpunkt neue Materialien, School of Natural Sciences, Technische Universität München, Lichtenberg Strasse 4, 85747 Garching.
| | - Terrance J Hadlington
- Lehrstuhl für anorganische Chemie mit Schwerpunkt neue Materialien, School of Natural Sciences, Technische Universität München, Lichtenberg Strasse 4, 85747 Garching.
| |
Collapse
|
10
|
Biswas S, Havlicek L, Nemec I, Salitros I, Mandal L, Neugebauer P, Kuppusamy SK, Ruben M. Levamisole Based Co(II) Single-Ion Magnet. Chem Asian J 2024; 19:e202400574. [PMID: 38870468 DOI: 10.1002/asia.202400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
A new Co(II) complex, [Co(NCS)2(L)2] (1) has been synthesized based on levamisole (L) as a new ligand. Single-crystal X-ray diffraction analyses confirm that the Co(II) ion is having a distorted tetrahedral coordination geometry in the complex. Notably strong intramolecular S⋅⋅⋅S and S⋅⋅⋅N interactions has been confirmed by employing Quantum Theory of Atoms in Molecules (QTAIM). These intramolecular interactions occur among the sulfur and nitrogen atoms of the levamisole ligands and also the nitrogen atoms of the thiocyanate. Direct current (dc) magnetic analyses reveal presence of zero field splitting (ZFS) and large magnetic anisotropy on Co(II). Detailed ab initio ligand field theory calculations quantitatively predicted the magnitude of ZFS. Prominent field-induced single-ion magnet (SIM) behavior was observed for 1 from dynamic magnetization measurements. Slow magnetic relaxation follows an Orbach mechanism with the effective energy barrier Ueff=29.6 (7) K and relaxation time τo=1.4 (4)×10-9 s.
Collapse
Affiliation(s)
- Soumava Biswas
- Dr. Vishwanath Karad MIT World Peace University Survey No, 124, Paud Rd, Kothrud, Pune, 411038, Maharashtra, India
| | - Lubomir Havlicek
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Institute of Physics of Materials, Czech Academy of Sciences, Zizkova 22, 61662, Brno, Czech Republic
| | - Ivan Nemec
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 77147, Olomouc, Czech Republic
| | - Ivan Salitros
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava., Bratislava, SK-81237, Slovakia
| | - Leena Mandal
- Department of Chemistry, Polba Mahavidyalaya, Polba Hooghly, PIN-712148, West Bengal, India
| | - Petr Neugebauer
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 61200, Brno, Czech Republic
| | - Senthil Kumar Kuppusamy
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
11
|
Pissas M, Ferentinos E, Kyritsis P, Sanakis Y. Field-Induced Slow Magnetization Relaxation of a Tetrahedral S=2 Fe IIS 4-Containing Complex. Chempluschem 2024; 89:e202400109. [PMID: 38727531 DOI: 10.1002/cplu.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Indexed: 06/09/2024]
Abstract
In the work described herein, the spin relaxation properties of the mononuclear tetrahedral S=2 [Fe{(SPiPr2)2N}2] complex (1) were studied by employing static and dynamic magnetic measurements at liquid helium temperatures. In the absence of an external direct current (DC) magnetic field, 1 exhibits fast magnetization relaxation. However, in the presence of external magnetic fields of a few kOe, slow relaxation is induced as monitored by alternating current (AC) magnetic susceptibility measurements up to 10 kHz, in the temperature range 2-5 K. Analysis of the temperature dependence of the corresponding relaxation time reveals contributions by Quantum Tunnelling of Magnetization, and the Direct and Orbach processes in the magnetization relaxation mechanism of 1. The energy barrier, Ueff, of the Orbach process, as determined by this analysis, is compared with that related to the zero-field splitting parameters of 1 which were previously determined by high- frequency and -field electron paramagnetic resonance and Mössbauer spectroscopies.
Collapse
Affiliation(s)
- Michael Pissas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341, Ag. Paraskevi, Attiki, Greece
| | - Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15571, Athens, Greece
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, 15571, Athens, Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341, Ag. Paraskevi, Attiki, Greece
| |
Collapse
|
12
|
Juráková J, Santana VT, Pavlik J, Moncoľ J, Nemec I, Clemente-León M, Kuppusamy SK, Ruben M, Čižmár E, Šalitroš I. Magnetic anisotropy and slow relaxation of magnetisation in double salts containing four- and six-coordinate cobalt(II) complex ions. Dalton Trans 2024; 53:12962-12972. [PMID: 39026489 DOI: 10.1039/d4dt01509f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Four novel Co(II) coordination compounds 1-4 of the general formula [Co(Ln)2][Co(NCY)4]·mCH3CN (where Ln are tridentate ligands L1 = 2,6-bis(1-hexyl-1H-benzimidazol-2-yl)pyridine for 1 and 2; L2 = 2,6-bis(1-octyl-1H-benzimidazol-2-yl)pyridine for 3; L3 = 2,6-bis(1-dodecyl-1H-benzimidazol-2-yl)pyridine for 4, Y = O for 1, 3, and 4 and Y = S for 2; m = 0 for 1 and 3, m = 0.5 for 2 and m = 2 for 4) were prepared and characterised. The molecular structures of all four compounds consist of the hexacoordinate complex cation [Co(Ln)2]2+ and tetracoordinate complex anion [Co(NCY)4]2-, with distorted octahedral and tetrahedral symmetry of coordination polyhedra, respectively. The electronic structures of all compounds feature an orbitally non-degenerate ground state well-separated from the lowest excited state, which allows the analysis of the magnetic anisotropy by the spin Hamiltonian model. ZFS parameters, derived from both CASSCF-NEVPT2 calculations and magnetic data analysis, indicate that tetrahedral anions [Co(NCY)4]2- exhibit small axial parameters |D| spanning the range of 2.2 to 7.7 cm-1, while octahedral cations [Co(Ln)2]2+ display significantly larger |D| parameters in the range of 37 to 95 cm-1. For 1-3, the Fourier-transform infrared magnetic spectroscopy (FIRMS) revealed a reasonable transmission with a magnetic absorption around the expected value for the ZFS accompanied by features allowing to identify phonon frequencies and simulate spin-phonon couplings. Dynamic magnetic investigations unveiled the field-induced slow relaxation of magnetisation, with maximal relaxation times (τ) of 92(2) μs for 2 at 2 K and BDC = 0.3 T. The temperature evolution of τ was analysed using a combination of Orbach, direct and Raman relaxations (Ueff = 8(1) K (5.6 cm-1)) or Orbach, direct and spin-phonon induced relaxations (Ueff = 10.3(9) K (7.2 cm-1)). The rest of the complexes, namely 1, 3, and 4 show field-induced slow relaxation of magnetisation with τ smaller than 16 μs.
Collapse
Affiliation(s)
- Jana Juráková
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Vinicius Tadeu Santana
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ján Pavlik
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Ján Moncoľ
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Ivan Nemec
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Miguel Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Senthil Kumar Kuppusamy
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Mario Ruben
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P.J. Šafárik University, Park Angelinum 9, 04154 Košice, Slovakia
| | - Ivan Šalitroš
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| |
Collapse
|
13
|
Jabeur W, Korb M, Hamdi M, Holub M, Princík D, Zeleňák V, Sanchez-Coronilla A, Shalash M, Čižmár E, Naïli H. Structural, optical and magnetic properties of a new metal-organic Co II-based complex. RSC Adv 2024; 14:25048-25061. [PMID: 39135970 PMCID: PMC11317920 DOI: 10.1039/d4ra02149e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
A mononuclear cobalt(ii) complex [C5H8N3]2[CoCl4(C5H7N3)2] (I) was synthesized and structurally characterized. Single crystal X-ray diffraction analysis indicates that monometallic Co(ii) ions acted as coordination nodes in a distorted octahedral geometry, giving rise to a supramolecular architecture. The latter is made up of a ½ unit form composed of an anionic element [Co0.5Cl2(C5H7N3)]- and one 2-amino-4-methylpyrimidinium cation [C5H8N3]+. The crystalline arrangement of this compound adopts the sandwich form where inorganic parts are sandwiched between the organic sheets following the [100] direction. More information regarding the structure hierarchy has been supplied based on Hirshfeld surface analysis; the X⋯H (X = N, Cl) interactions play a crucial role in stabilizing the self-assembly process of I, complemented by the intervention of π⋯π electrostatic interaction created between organic entities. Thermal analyses were carried out to study the thermal behavior process. Static magnetic measurements and ab initio calculations of compound I revealed the easy-axis anisotropy character of the central Co(ii) ion. Two-channel field-induced slow-magnetic relaxation was observed; the high-frequency channel is characterized by underbarrier relaxation with U eff = 16.5 cm-1, and the low-frequency channel involves a direct relaxation process affected by the phonon-bottleneck effect.
Collapse
Affiliation(s)
- Wiem Jabeur
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University POBOX 1171 3000 Sfax Tunisia
| | - Marcus Korb
- The University of Western Australia, School of Molecular Sciences 35 Stirling Highway, Crawley Perth Western Australia 6009 Australia
| | - Mohamed Hamdi
- Department of Chemistry, College of Sciences and Arts Turaif, Northern Border University Arar Saudi Arabia
| | - Mariia Holub
- Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice SK-041 54 Košice Slovakia
| | - Dávid Princík
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Košice SK-041 54 Slovakia
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University Košice SK-041 54 Slovakia
| | | | - Marwan Shalash
- Department of Chemistry, College of Sciences and Arts Turaif, Northern Border University Arar Saudi Arabia
| | - Erik Čižmár
- Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice SK-041 54 Košice Slovakia
| | - Houcine Naïli
- Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences of Sfax, Sfax University POBOX 1171 3000 Sfax Tunisia
| |
Collapse
|
14
|
Gharu A, Vignesh KR. Theoretical exploration of single-molecule magnetic and single-molecule toroic behaviors in peroxide-bridged double-triangular {MII3LnIII3} (M = Ni, Cu and Zn; Ln = Gd, Tb and Dy) complexes. Dalton Trans 2024. [PMID: 39087311 DOI: 10.1039/d4dt01800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Detailed state-of-the-art ab initio and density functional theory (DFT) calculations have been undertaken to understand both Single-Molecule Magnetic (SMM) and Single-Molecule Toroic (SMT) behaviors of fascinating 3d-4f {M3Ln3} triangular complexes having the molecular formula [MII3LnIII3(O2)L3(PyCO2)3](OH)2(ClO4)2·8H2O (with M = Zn; Ln = Dy (1), Tb (2) & Gd (3) and M = Cu; Ln = Dy (4), Tb (5) & Gd (6)) and [Ni3Ln3(H2O)3(mpko)9(O2)(NO3)3](ClO4)·3CH3OH·3CH3CN (Ln = Dy (7), Tb (8), and Gd (9)) [mpkoH = 1-(pyrazin-2-yl)ethanone oxime]. All these complexes possess a peroxide ligand that bridges the {LnIII3} triangle in a μ3-η3:η3 fashion and the oxygen atoms/oxime of co-ligands that connect each MII ion to the {LnIII3} triangle. Through our computational studies, we tried to find the key role of the peroxide bridge and how it affects the SMM and SMT behavior of these complexes. Primarily, ab initio Complete Active Space Self-Consistent Field (CASSCF) SINGLE_ANISO + RASSI-SO + POLY_ANISO calculations were performed on 1, 2, 4, 5, 7, and 8 to study the anisotropic behavior of each Ln(III) ion, to derive the magnetic relaxation mechanism and to calculate the LnIII-LnIII and CuII/NiII-LnIII magnetic coupling constants. DFT calculations were also performed to validate these exchange interactions (J) by computing the GdIII-GdIII and CuII/NiII-GdIII interactions in 3, 6, and 9. Our calculations explained the experimental magnetic relaxation processes and the magnetic exchange interactions for all the complexes, which also strongly imply that the peroxide bridge plays a role in the SMM behavior observed in these systems. On the other hand, this peroxide bridge does not support the SMT behavior. To investigate the effect of bridging ions in {M3Ln3} systems, we modeled a {ZnII3DyIII3} complex (1a) with a hydroxide ion replacing the bridged peroxide ion in complex 1 and considered a hydroxide-bridged {CoIII3DyIII3} complex (10) having the formula [Co3Dy3(OH)4(OOCCMe3)6(teaH)3(H2O)3](NO3)2·H2O. We discovered that as compared to the LoProp charges of the peroxide ion, the greater negative charges on the bridging hydroxide ion reduce quantum tunneling of magnetization (QTM) effects, enabling more desirable SMM characteristics and also leading to good SMT behavior.
Collapse
Affiliation(s)
- Amit Gharu
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| | - Kuduva R Vignesh
- Department of Chemical Sciences, IISER Mohali, Sector-81, Knowledge city, S.A.S. Nagar, Mohali-140306, Punjab, India.
| |
Collapse
|
15
|
Phelps R, Agapaki E, Brechin EK, Johansson JO. Tracking the conical intersection dynamics for the photoinduced Jahn-Teller switch of a Mn(iii) complex. Chem Sci 2024; 15:11956-11964. [PMID: 39092124 PMCID: PMC11290422 DOI: 10.1039/d4sc00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Octahedral Mn(iii) ions predominantly exhibit an axially elongated Jahn-Teller (JT) distortion, which is responsible for their large uniaxial magnetic anisotropy. As a result, they are often used in the synthesis of single-molecule magnets (SMMs). Modulation of the JT distortion using femtosecond laser pulses could offer a route to controlling the magnetisation direction, and therefore is promising for the development of data storage devices that work on ultrafast timescales. Photoinduced switching of the distortion from an axially elongated to an axially compressed structure has been demonstrated for various Mn(iii) complexes. However, the dynamics around the region of the conical intersection for the photoinduced JT switch remains unclear. Here, ultrafast transient absorption spectra were recorded for solutions of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)manganese(iii) (Mn(dpm)3) in ethanol to further explore the dynamics of the photoinduced JT switch. We observe the generation of a vibrational wavepacket on the excited state surface, which has a frequency of approximately 155 cm-1 and encompasses a JT-active vibrational mode. This coherent motion is maintained after passage through the conical intersection back to the ground state, which launches wavepackets along the ground state potential energy surface (PES) with frequencies of approximately 180 and 110 cm-1 that we assign to the elongated and compressed state, respectively. Inspection of the relative phases of the frequencies reveals phase shifts that are consistent with a one-mode reaction coordinate, and passes through the conical intersection at 1/4 and 3/4 of the excited state vibrational period. Our results provide direct insights into the non-adiabatic dynamics of Mn(iii) complexes, which can be used to guide the synthesis of optically controlled SMMs.
Collapse
Affiliation(s)
- Ryan Phelps
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road EH9 3FJ Edinburgh UK
| | - Eleftheria Agapaki
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road EH9 3FJ Edinburgh UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road EH9 3FJ Edinburgh UK
| | - J Olof Johansson
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road EH9 3FJ Edinburgh UK
| |
Collapse
|
16
|
Halder D, Jana Y, Piwowarska D, Gnutek P, Rudowicz C. Tailoring single-ion magnet properties of coordination polymer C 11H 18DyN 3O 9 (Dy-CP) using the radial effective charge model (RECM) and superposition model (SPM). Phys Chem Chem Phys 2024; 26:19947-19959. [PMID: 38993160 DOI: 10.1039/d4cp01861c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
We investigate Dy-based coordination polymer C11H18DyN3O9 (Dy-CP) exhibiting single-ion magnet (SIM) properties, e.g., quantum tunnelling of magnetization (QTM), magnetic anisotropy, magnetic relaxation, and effective energy barrier (Ueff). To elucidate the underlying mechanisms, crystal field parameters (CFPs) for Dy3+ ions were modelled using the radial effective charge model (RECM) and superposition model (SPM), and the computational packages SIMPRE and SPECTRE. The modelled CFPs enable the prediction of the energy levels and associated wave functions, which successfully explain the field-induced Dy-CP SIM properties. The so-calculated magnetic susceptibility and isothermal magnetization match the experimental data reasonably well. The smaller energy separations of the first (Δ0-1 ∼ 31 cm-1) and the second (Δ0-2 = 74 cm-1) excited Kramers doublets suggest small Ueff = 65 cm-1 for Dy-CP. The magnetic moments of Dy3+ ions exhibit an easy-axis type magnetic anisotropy in the ground state, but change orientation in the excited states due to mixing of states from different Kramers doublets. Low-symmetry CF components play a crucial role in connecting different |±MJ〉 states within the ground multiplet, resulting in QTM and magnetic relaxation to the ground state occurring via the excited states. The RECM and SPM calculated CFP sets are standardized employing the 3DD package to enable meaningful comparison and assessing their mutual equivalence. The results demonstrate the correlation between structural and electronic features of the molecule and site symmetry and distortion of the local coordination polyhedra with SIM properties, offering insights for rational design of new SIMs. The importance of considering low-symmetry aspects in CFP modelling for accurate predictions of magnetic properties is highlighted. This study provides deeper understanding of field-induced behaviour in rare-earth-based SIMs and approaches for rationalization of experimentally measured SIMs' properties.
Collapse
Affiliation(s)
- Dinabandhu Halder
- Department of Physics, University of Kalyani, Kalyani-741235, Nadia, WB, India.
| | - Yatramohan Jana
- Department of Physics, University of Kalyani, Kalyani-741235, Nadia, WB, India.
| | - Danuta Piwowarska
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland
| | - Paweł Gnutek
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland
| | - Czesław Rudowicz
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland.
| |
Collapse
|
17
|
Pajuelo-Corral O, Ortiz-Gómez I, García JA, Rodríguez-Diéguez A, Vitórica-Yrezábal IJ, Salinas-Castillo A, Seco JM, Cepeda J. A family of Cd(II) coordination polymers constructed from 6-aminopicolinate and bipyridyl co-linkers: study of their growth in paper and photoluminescence sensing of Fe 3+ and Zn 2+ ions. Dalton Trans 2024; 53:12138-12151. [PMID: 38989768 DOI: 10.1039/d4dt00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In this work, we report on five novel coordination polymers (CPs) based on the linkage of the [Cd(6apic)2] building block [where 6apic = 6-aminopicolinate] by different bipyridine-type organic spacers, forming different coordination compounds with the following formulae: [Cd(μ-6apic)2]n (1), {[Cd(6apic)2(μ-bipy)]·H2O}n (2), {[Cd(6apic)2(μ-bpe)]·2H2O}n (3), [Cd(6apic)(μ-6apic)(μ-bpa)0.5]n (4) and {[Cd2(6apic)4(μ-tmbp)]·7H2O}n (5) [where bipy = 4,4'-bipyridine, bpe = 1,2-di(4-pyridyl)ethylene, bpa = 1,2-di(4-pyridyl)ethane (bpa) and tmbp = 1,3-di(4-pyridyl)propane]. Most of the synthesized compounds form infinite metal-organic rods through the linkage of the building block by the bipyridine-type linker, except in the case of compound 4 whose assembly forms a densely packed 3D architecture. All compounds were fully characterized and their photoluminescence properties were studied experimentally and computationally through density functional theory (DFT) calculations. All compounds display, upon UV excitation, a similar blue emission of variable intensity depending on the linker employed for the connection of the building units, among which compound 2 deserves to be highlighted for its room temperature phosphorescence (RTP) with an emission lifetime of 32 ms that extends to 79 ms at low temperature. These good photoluminescence properties, in addition to its stability in water over a wide pH range (between 2 and 10), motivated us to study compound 2 as a sensor for the detection of metal ions in water, and it showed high sensitivity to Fe3+ through a fluorescence turn-off mechanism and an unspecific turn-on response to Zn2+. Furthermore, the compound is processed as a paper-based analytical device (PAD) in which the phosphorescence emission is preserved, improving the sensing capacity toward Fe3+ ions.
Collapse
Affiliation(s)
- Oier Pajuelo-Corral
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, 20018 Donostia-San Sebastián, Spain.
| | - Inmaculada Ortiz-Gómez
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jose Angel García
- Departamento de Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | | | | | - Alfonso Salinas-Castillo
- ECsens, Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Jose M Seco
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain.
| | - Javier Cepeda
- Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
18
|
Chantarangkul C, Patigo A, McMurtrie JC, Clérac R, Rouzières M, Gómez-Coca S, Ruiz E, Harding P, Harding DJ. Thermal Jahn-Teller Distortion Changes and Slow Relaxation of Magnetization in Mn(III) Schiff Base Complexes. Inorg Chem 2024; 63:12858-12869. [PMID: 38934463 PMCID: PMC11256760 DOI: 10.1021/acs.inorgchem.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
The impact that the anion and alkyl group has on the electronic structures and magnetic properties of four mononuclear Mn(III) complexes is explored in [Mn(salEen-Br)2]Y (salEen-Br = 2-{[2-(ethylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 1 and BF4-·1/3CH2Cl2 2) and [Mn(salBzen-Br)2]Y (salBzen-Br = 2-{[2-(benzylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 3 and BF4- 4). X-ray structures of [Mn(salEen-Br)2]ClO4·0.45C6H14 1-hexane, [Mn(salEen-Br)2]BF4·0.33CH2Cl2·0.15C6H14 2-dcm-hexane, and 3-4 reveal that they crystallize in ambient conditions in the monoclinic P21/c space group. Lowering the temperature, 2-dcm-hexane uniquely exhibits a structural phase transition toward a monoclinic P21/n crystal structure determined at 100 K with the unit cell trebling in size. Remarkably, at room temperature, the axially elongated Jahn-Teller axis in 2-dcm-hexane is poorly defined but becomes clearer at low temperature after the phase transition. Magnetic susceptibility measurements of 1-4 reveal that only 3 and 4 show slow relaxation of magnetization with Δeff/kB = 27.9 and 20.7 K, implying that the benzyl group is important for observing single-molecule magnet (SMM) properties. Theoretical calculations demonstrate that the alkyl group subtly influences the orbital levels and therefore very likely the observed SMM properties.
Collapse
Affiliation(s)
- Chantalaksana Chantarangkul
- Functional
Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Apinya Patigo
- Functional
Materials and Nanotechnology Centre of Excellence, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - John C. McMurtrie
- Queensland
University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Rodolphe Clérac
- University
of Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mathieu Rouzières
- University
of Bordeaux, CNRS, CRPP, UMR 5031, F-33600 Pessac, France
| | - Silvia Gómez-Coca
- Departament
de Química Inorgànica i Orgànica, Institut de
Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Eliseo Ruiz
- Departament
de Química Inorgànica i Orgànica, Institut de
Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Phimphaka Harding
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| | - David J. Harding
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| |
Collapse
|
19
|
Alessio M, Paran GP, Utku C, Grüneis A, Jagau TC. Coupled-cluster treatment of complex open-shell systems: the case of single-molecule magnets. Phys Chem Chem Phys 2024; 26:17028-17041. [PMID: 38836327 PMCID: PMC11186456 DOI: 10.1039/d4cp01129e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
We investigate the reliability of two cost-effective coupled-cluster methods for computing spin-state energetics and spin-related properties of a set of open-shell transition-metal complexes. Specifically, we employ the second-order approximate coupled-cluster singles and doubles (CC2) method and projection-based embedding that combines equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) with density functional theory (DFT). The performance of CC2 and EOM-CCSD-in-DFT is assessed against EOM-CCSD. The chosen test set includes two hexaaqua transition-metal complexes containing Fe(II) and Fe(III), and a large Co(II)-based single-molecule magnet with a non-aufbau ground state. We find that CC2 describes the excited states more accurately, reproducing EOM-CCSD excitation energies within 0.05 eV. However, EOM-CCSD-in-DFT excels in describing transition orbital angular momenta and spin-orbit couplings. Moreover, for the Co(II) molecular magnet, using EOM-CCSD-in-DFT eigenstates and spin-orbit couplings, we compute spin-reversal energy barriers, as well as temperature-dependent and field-dependent magnetizations and magnetic susceptibilities that closely match experimental values within spectroscopic accuracy. These results underscore the efficiency of CC2 in computing state energies of multi-configurational, open-shell systems and highlight the utility of the more cost-efficient EOM-CCSD-in-DFT for computing spin-orbit couplings and magnetic properties of complex and large molecular magnets.
Collapse
Affiliation(s)
- Maristella Alessio
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | | | - Cansu Utku
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Thomas-C Jagau
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
20
|
Nath M, Joshi S, Mishra S. Ab initio calculation of magnetic anisotropy and thermal spin transition in the variable temperature crystal conformations of [Co(terpy) 2] 2. Phys Chem Chem Phys 2024; 26:15405-15416. [PMID: 38747204 DOI: 10.1039/d4cp00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The structure-property correlation of [Co(terpy)2]2+, which shows a spin crossover at 270 K, has been computationally investigated based on its variable temperature crystal structures. Among the employed DFT functionals, only the re-parametrized hybrid B3LYP* functional could describe the correct spin transition temperature. Explicit consideration of metal-ligand sigma bonding with dynamic electron correlation is found to be necessary for an accurate determination of the SCO temperature with multi-reference calculations. The metal-ligand axial bond distances are found to be the most significant internal coordinates in deciding SCO. A small structural change along the axial distance causes a change in the t2g orbital splitting pattern and a reorientation of the magnetization axes at the SCO temperature. The complex shows an unusual triaxial magnetic anisotropy, with an easy axis of magnetization developing at higher temperatures. The strong coupling of low-frequency wagging motion of the two terpyridine ligands with the spin states of the complex provides an effective pathway for the relaxation of magnetization, resulting in a small magnetic anisotropy barrier.
Collapse
Affiliation(s)
- Moromi Nath
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
21
|
Cui HH, Xu H, Zhang T, Chen Q, Luo S, Wang M, Wang J, Chen L, Zhang M, Tang Y. Magnetic Anisotropy and Relaxation in Four-Coordinate Cobalt(II) Single-Ion Magnets with a [Co IIO 4] Core. Inorg Chem 2024; 63:9050-9057. [PMID: 38709957 DOI: 10.1021/acs.inorgchem.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A mononuclear four-coordinate Co(II) complex with a [CoIIO4] core, namely, PPN[Li(MeOH)4][Co(L)2] (1) (PPN = bis(phosphoranediyl)iminium; H2L = perfluoropinacol), has been studied by X-ray crystallography, magnetic characterization, and theoretical calculations. This complex presents a severely distorted coordination geometry. The O-Co-O bite angle is 83.42°/83.65°, and the dihedral twist angle between the O-Co-O chelate planes is 55.6°. The structural distortion results in a large easy-axis magnetic anisotropy with D = -104(1) cm-1 and a transverse component with |E| = +4(2) cm-1. Alternating current (ac) susceptibility measurements demonstrate that 1 exhibits slow relaxation of magnetization at zero static field. However, the frequency-dependent out-of-phase (χ"M) susceptibilities of 1 at 0 Oe do not show a characteristic maximum. Upon the application of a dc field or the dilution with a diamagnetic Zn matrix, the quantum tunneling of magnetization (QTM) process can be successfully suppressed. Notably, after dilution with the Zn matrix, the obtained sample exhibits a structure different from that of the pristine complex. In this altered sample, the asymmetric unit does not contain the Li(MeOH)4+ cation, resulting in an O-Co-O bite angle of 86.05° and a dihedral twist angle of 75.84°, thereby leading to an approximate D2d symmetry. Although such differences are not desirable for magnetic studies, this study still gives some insights. Theoretical calculations reveal that the D parameter is governed by the O-Co-O bite angle, in line with our previous report for other tetrahedral Co(II) complex with a [CoIIN4] core. On the other hand, the rhombic component is found to increase as the dihedral angle deviates from 90°. These findings provide valuable guidelines for fine-tuning the magnetic properties of Co(II) complexes.
Collapse
Affiliation(s)
- Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Hongjuan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tengkun Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Qiukai Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shuchang Luo
- School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Miao Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Mingxing Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
22
|
Zhang P, Tian YC, Wang Z, Lee WZ, Ye S. Magneto-Structural Correlation of Five-Coordinate Trigonal Bipyramidal High Spin Cobalt(II) Complexes. Chemistry 2024; 30:e202400336. [PMID: 38438303 DOI: 10.1002/chem.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Here, we combined magnetometry, multi-frequency electronic paramagnetic resonance, and wave function based ab initio calculations to investigate magnetic properties of two high spin Co(II) complexes Co(BDPRP) (BDPRP=2,6-bis((2-(S)-di(4-R)phenylhydroxylmethyl-1-pyrrolidi-nyl)methyl)pyridine, R=H for 8; R=tBu for 9). Complexes 8 and 9 featuring effective D3h symmetry were found to possess D=24.0 and 32.0 cm-1, respectively, in their S=3/2 ground states of1 e ' ' d x z / y z 4 1 e ' d x y / x 2 - y 2 2 1 a 1 ' d z 2 1 ${{\left(1{{\rm e}}^{{\rm { {^\prime}}}{\rm { {^\prime}}}}\right({d}_{xz/yz}\left)\right)}^{4}{\left(1{{\rm e}}^{{\rm { {^\prime}}}}\right({d}_{{xy/{x}^{2}-y}^{2}}\left)\right)}^{2}{\left(1{{\rm a}}_{1}^{{\rm { {^\prime}}}}\right({d}_{{z}^{2}}\left)\right)}^{1}}$ . Ligand field analyses revealed that the low-lying d-d excited states make either positive or vanishing contributions to D. Hence, total positive D values were measured for 8 and 9, as well as related D3h high spin Co(II) complexes. In contrast, negative D values are usually observed for C3v congeners. In-depth analyses suggested that lowering symmetry from D3h to C3v induces orbital mixing between1 e d x z / y z ${1{\rm e}\left({d}_{xz/yz}\right)}$ and2 e d x y / x 2 - y 2 ${2{\rm e}\left({d}_{{xy/{x}^{2}-y}^{2}}\right)}$ and admixes excited state4 A 2 1 e → 2 e ${{}^{4}{{\rm A}}_{2}\left(1e\to 2e\right)}$ into the ground state. Both factors turn the total D value progressively negative with the increasing distance (δ) of the Co(II) center out of the equatorial plane. Therefore, δ determines the sign and magnitude of final D values of five-coordinate trigonal bipyramidal S=3/2 Co(II) complexes as measured for a series of such species with varying δ.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yao-Cheng Tian
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Way-Zen Lee
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
23
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Jensen S, Løge IA, Bendix J, Diekhöner L. An approach for patterned molecular adsorption on ferromagnets, achieved via Moiré superstructures. Phys Chem Chem Phys 2024; 26:13710-13718. [PMID: 38669006 DOI: 10.1039/d4cp00809j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
We have used a scanning tunneling microscope operated under ultrahigh vacuum conditions to investigate an oxo-vanadium-salen complex V(O)salen, that has potential applications as qubits in future quantum-based technologies. The adsorption and self-assembly of V(O)salen on a range of single crystal metal surfaces and nanoislands and the influence of substrate morphology and reactivity has been measured. On the close-packed flat Ag(111) and Cu(111) surfaces, the molecules adsorb isolated or form small clusters arranged randomly on the surface, whereas structured adsorption occurs on two types of Co nanoislands; Co grown on Ag(111) and Ag capped Co islands grown on Cu(111), both forming a Moiré pattern at the surface. The adsorption configuration can by scanning tunneling spectroscopy be linked to the geometric and electronic properties of the substrates and traced back to a Co d-related surface state, illustrating how the modulated reactivity can be used to engineer a pattern of adsorbed molecules on the nanoscale.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Materials and Production, Aalborg University, Skjernvej 4a, 9220 Aalborg, Denmark.
| | - Isaac Appelquist Løge
- Department of Materials and Production, Aalborg University, Skjernvej 4a, 9220 Aalborg, Denmark.
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lars Diekhöner
- Department of Materials and Production, Aalborg University, Skjernvej 4a, 9220 Aalborg, Denmark.
| |
Collapse
|
25
|
Shcherbakov IN, Krotkii II, Kazachkova VI, Lyubchenko SN, Efimov NN, Tsaturyan AA, Lazarenko VA. Field induced slow magnetic relaxation in a linear homotrinuclear manganese heterospin coordination compound with S = 7/2 ground state and intriguing spin density distribution. Dalton Trans 2024; 53:6860-6864. [PMID: 38584467 DOI: 10.1039/d3dt04123a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We report a first example of field-induced (HDC = 2500 Oe) slow magnetization relaxation in the homotrinuclear linear heterospin manganese coordination compound with S = 7/2 ground state, based on the bidentate 3,5-di-tert-butyl-1,2-benzoquinone-1-monooxime (HL) ligand with composition {[MnL3]Mn[MnL3]}.
Collapse
Affiliation(s)
- Igor N Shcherbakov
- Southern Federal University, Chemistry Department, Rostov-On-Don, 344006, Russian Federation.
| | - Ilya I Krotkii
- Southern Federal University, Chemistry Department, Rostov-On-Don, 344006, Russian Federation.
| | - Victoria I Kazachkova
- Southern Federal University, Chemistry Department, Rostov-On-Don, 344006, Russian Federation.
| | - Sergey N Lyubchenko
- Southern Federal University, Chemistry Department, Rostov-On-Don, 344006, Russian Federation.
| | - Nikolay N Efimov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Arshak A Tsaturyan
- Université Jean Monnet Saint-Etienne, CNRS, Institut d'Optique Graduate School, Laboratoire Hubert Curien UMR 5516, 42023, Saint-Étienne, France
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka Ave., Rostov-On-Don, 344090, Russia
| | - Vladimir A Lazarenko
- National Research Center "Kurchatov Institute", Moscow, 123182, Russian Federation
| |
Collapse
|
26
|
Suhr S, Hunger D, Walter RRM, Köhn A, van Slageren J, Sarkar B. Air-Stable Dinuclear Complexes of Four-Coordinate Zn II and Ni II Ions with a Radical Bridge: A Detailed Look at Redox Activity and Antiferromagnetic Coupling. Inorg Chem 2024; 63:6042-6050. [PMID: 38502792 DOI: 10.1021/acs.inorgchem.4c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Air-stable dinuclear complexes [(bmsab)NiII(tmsab)NiII(bmsab)]3- and [(bmsab)ZnII(tmsab)ZnII(bmsab)]3- (bmsab = bis(methanesulfoneamido)benzene, tmsab = tetra(methanesulfonamido)benzene) were prepared via a synthetic route based on heteroleptic precursor complexes. The new complexes combine a distorted tetrahedral coordination environment with an open-shell bridging ligand. The ZnII species was subjected to a detailed investigation of the (spectro-)electrochemical processes. The NiII species is a rare example of a complex that combines strong exchange coupling (J > 440 cm-1) with pronounced positive zero-field splitting (D = +72 cm-1). Combining SQUID magnetometry and (HF)EPR spectroscopy with ab initio calculations allowed for accurate quantification of the exchange interaction.
Collapse
Affiliation(s)
- Simon Suhr
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - David Hunger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Robert R M Walter
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Andreas Köhn
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Joris van Slageren
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| | - Biprajit Sarkar
- Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, Stuttgart 70569, Germany
| |
Collapse
|
27
|
Lococciolo G, Gupta SK, Dechert S, Demeshko S, Duboc C, Atanasov M, Neese F, Meyer F. Oxygen-Donor Metalloligands Induce Slow Magnetization Relaxation in Zero Field for a Cobalt(II) Complex with {CoO 4} Motif. Inorg Chem 2024; 63:5652-5663. [PMID: 38470330 DOI: 10.1021/acs.inorgchem.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Most 3d metal-based single-molecule magnets (SMMs) use N-ligands or ligands with even softer donors to impart a particular coordination geometry and increase the zero-field splitting parameter |D|, while complexes with hard O-donor ligands showing slow magnetization relaxation are rare. Here, we report that a diamagnetic NiII complex of a tetradentate ligand featuring two N-heterocyclic carbene and two alkoxide-O donors, [LO,ONi], can serve as a {O,O'}-chelating metalloligand to give a trinuclear complex [(LO,ONi)Co(LO,ONi)](OTf)2 (2) with an elongated tetrahedral {CoIIO4} core, D = -74.3 cm-1, and a spin reversal barrier Ueff = 86.9 cm-1 in the absence of an external dc field. The influence of diamagnetic NiII on the electronic structure of the {CoO4} unit in comparison to [Co(OPh)4]2- (A) has been probed with multireference ab initio calculations. These reveal a contrapolarizing effect of the NiII, which forms stronger metal-alkoxide bonds than the central CoII, inducing a change in ligand field splitting and a 5-fold increase in the magnetic anisotropy in 2 compared to A, with an easy magnetization axis along the Ni-Co-Ni vector. This demonstrates a strategy to enhance the SMM properties of 3d metal complexes with hard O-donors by modulating the ligand field character via the coordination of diamagnetic ions and the benefit of robust metalloligands in that regard.
Collapse
Affiliation(s)
- Giuseppe Lococciolo
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sandeep K Gupta
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| | - Carole Duboc
- Université Grenoble Alpes, CNRS UMR 5250, DCM, Grenoble F-38000, France
| | - Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad. Georgi Bontchev Street 11, Sofia 1113, Bulgaria
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstraße 4, Göttingen 37077, Germany
| |
Collapse
|
28
|
Rabelo R, Toma L, Julve M, Lloret F, Pasán J, Cangussu D, Ruiz-García R, Cano J. How the spin state tunes the slow magnetic relaxation field dependence in spin crossover cobalt(II) complexes. Dalton Trans 2024; 53:5507-5520. [PMID: 38416047 DOI: 10.1039/d4dt00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A novel family of cobalt(II) compounds with tridentate pyridine-2,6-diiminephenyl type ligands featuring electron-withdrawing substituents of general formula [Co(n-XPhPDI)2](ClO4)2·S [n-XPhPDI = 2,6-bis(N-n-halophenylformimidoyl)pyridine with n = 4 (1-3) and 3 (4); X = I (1), Br (2 and 4) and Cl (3); S = MeCN (1 and 2) and EtOAc (3)] has been synthesised and characterised by single-crystal X-ray diffraction, electron paramagnetic resonance, and static (dc) and dynamic (ac) magnetic measurements combined with theoretical calculations. The structures of 1-4 consist of mononuclear bis(chelating) cobalt(II) complex cations, [CoII(n-XPhPDI)2]2+, perchlorate anions, and acetonitrile (1 and 2) or ethyl acetate (3) molecules of crystallisation. This unique series of mononuclear six-coordinate octahedral cobalt(II) complexes displays both thermally-induced low-spin (LS)/high-spin (HS) transition and field-induced slow magnetic relaxation in both LS and HS states. A complete LS ↔ HS transition occurs for 1 and 2, while it is incomplete for 4, one-third of the complexes being HS at low temperatures. In contrast, 3 remains HS in all the temperature range. 1 and 2 show dual spin relaxation dynamics under the presence of an applied dc magnetic field (Hdc), with the occurrence of faster- (FR) and slower-relaxing (SR) processes at lower (Hdc = 1.0 kOe) and higher fields (Hdc = 2.5 kOe), respectively. On the contrary, 3 and 4 exhibit only SR and FR relaxations, regardless of Hdc. Overall, the distinct field-dependence of the single-molecule magnet (SMM) behaviour along with this family of spin-crossover (SCO) cobalt(II)-n-XPhPDI complexes is dominated by Raman mechanisms and, occasionally, with additional temperature-independent Intra-Kramer [LS or HS (D > 0)] or Quantum Tunneling of Magnetisation mechanisms [HS (D < 0)] also contributing.
Collapse
Affiliation(s)
- Renato Rabelo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança Campus Samambaia, Goiânia, GO, Brazil
| | - Luminita Toma
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químico (MAT4LL), Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança Campus Samambaia, Goiânia, GO, Brazil
| | - Rafael Ruiz-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| | - Joan Cano
- Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980 Paterna, València, Spain.
| |
Collapse
|
29
|
Hand AT, Watson-Sanders BD, Xue ZL. Spectroscopic techniques to probe magnetic anisotropy and spin-phonon coupling in metal complexes. Dalton Trans 2024; 53:4390-4405. [PMID: 38380640 DOI: 10.1039/d3dt03609j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Magnetism of molecular quantum materials such as single-molecule magnets (SMMs) has been actively studied for potential applications in the new generation of high-density data storage using SMMs and quantum information science. Magnetic anisotropy and spin-phonon coupling are two key properties of d- and f-metal complexes. Here, phonons refer to both intermolecular and intramolecular vibrations. Direct determination of magnetic anisotropy and experimental studies of spin-phonon coupling are critical to the understanding of molecular magnetism. This article discusses our recent approach in using three complementary techniques, far-IR and Raman magneto-spectroscopies (FIRMS and RaMS, respectively) and inelastic neutron scatterings (INS), to determine magnetic excited states. Spin-phonon couplings are observed in FIRMS and RaMS. DFT phonon calculations give energies and symmetries of phonons as well as calculated INS spectra which help identify magnetic peaks in experimental INS spectra.
Collapse
Affiliation(s)
- Adam T Hand
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
30
|
Villa-Pérez C, Zabala-Lekuona A, Vitorica-Yrezabal IJ, Seco JM, Cepeda J, Echeverría GA, Soria DB. Spin canting and slow magnetic relaxation in mononuclear cobalt(II) sulfadiazine ternary complexes. Dalton Trans 2024. [PMID: 38252541 DOI: 10.1039/d3dt02359a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Monomeric [Co(SDZ)2phen] (1) and [Co(SDZ)(bq)Cl] (2) complexes (SDZ = sulfadiazine, phen = 1,10-phenanthroline, and bq = 2,2'-biquinoline) have been synthesized and characterized. X-ray diffraction studies indicate that SDZ acts as a bidentate ligand coordinating through the sulfonamide and the pyrimidine N atoms in both compounds. In complex 1, the coordination sphere consists of two SDZ ligands and a bis-chelating phen ligand, giving rise to a CoN6 coordination sphere. On the other hand, 2 has a CoN4Cl core, with two N-atoms from SDZ and two from the bq ligand. Both compounds have been studied by dc and ac magnetometry and shown to display slow magnetic relaxation under an optimum external dc field (1 kOe) at low temperatures. Moreover, compound 2 displays long range magnetic ordering provided by spin-canted antiferromagnetism, which has been characterized by further field-dependent magnetic susceptibility measurements, FC/ZFC curves, hysteresis loops and frequency-independent ac curves. The signs of the calculated D parameters, positive in 1 and negative in 2, have been rationalized according to the two lowest-lying transitions in the orbital energy diagrams derived from ab initio ligand field theory (AILFT). In a subsequent attempt to reveal the possible hidden zero-field SMM behaviour, Ni(II)-based 3 and Co(II)-doped Ni(II)-based (with a Ni : Co ratio of 0.9 : 0.1) heterometallic compound 2Ni were synthesized.
Collapse
Affiliation(s)
- Cristian Villa-Pérez
- CEQUINOR (CONICET, CCT - La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Bv. 120 no. 1465, 1900, La Plata, Argentina.
| | - Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal no. 3, 20018, Donostia, Spain.
| | - Iñigo J Vitorica-Yrezabal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - José Manuel Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal no. 3, 20018, Donostia, Spain.
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal no. 3, 20018, Donostia, Spain.
| | - Gustavo Alberto Echeverría
- IFLP (CONICET, CCT - La Plata), Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115, 1900, La Plata, Argentina
| | - Delia Beatriz Soria
- CEQUINOR (CONICET, CCT - La Plata), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Bv. 120 no. 1465, 1900, La Plata, Argentina.
| |
Collapse
|
31
|
Choroba K, Palion-Gazda J, Machura B, Bieńko A, Wojtala D, Bieńko D, Rajnák C, Boča R, Ozarowski A, Ozerov M. Large Magnetic Anisotropy in Mono- and Binuclear cobalt(II) Complexes: The Role of the Distortion of the Coordination Sphere in Validity of the Spin-Hamiltonian Formalism. Inorg Chem 2024; 63:1068-1082. [PMID: 38166196 DOI: 10.1021/acs.inorgchem.3c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
To get a better insight into understanding the factors affecting the enhancement of the magnetic anisotropy in single molecule (single ion) magnets, two cobalt(II) complexes based on a tridentate ligand 2,6-di(thiazol-2-yl)pyridine substituted at the 4-position with N-methyl-pyrrol-2-yl have been synthesized and studied by X-ray crystallography, AC and DC magnetic data, FIRMS and HFEPR spectra, and theoretical calculations. The change of the counteranion in starting Co(II) salts results in the formation of pentacoordinated mononuclear [Co(mpyr-dtpy)Cl2]·2MeCN (1) complex and binuclear [Co(mpyr-dtpy)2][Co(NCS)4] (2) compound. The observed marked distortion of trigonal bipyramid geometry in 1 and cationic octahedral and anionic tetrahedral units in 2 brings up a question about the validity of the spin-Hamiltonian formalism and the possibility of determining the value and sign of the zero-field splitting D parameter. Both complexes exhibit field-induced slow magnetic relaxation with two or three relaxation channels at BDC = 0.3 T. The high-frequency relaxation time in the reciprocal form τ(HF)-1 = CTn develops according to the Raman relaxation mechanism (for 2, n = 8.8) and the phonon-bottleneck-like mechanism (for 1, n = 2.3). The high-frequency relaxation time at T = 2.0 K and BDC = 0.30 T is τ(HF) = 96 and 47 μs for 1 and 2, respectively.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna St. 9, Katowice 40-006, Poland
| | - Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna St. 9, Katowice 40-006, Poland
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna St. 9, Katowice 40-006, Poland
| | - Alina Bieńko
- Faculty of Chemistry, Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Daria Wojtala
- Faculty of Chemistry, Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Dariusz Bieńko
- Faculty of Chemistry, Wroclaw University of Science Technology, Wybrzeze Wyspiańskiego 27, Wroclaw 50-370, Poland
| | - Cyril Rajnák
- Faculty of Health Science and Faculty of Natural Sciences, University of SS Cyril and Methodius, Trnava SK-917 01, Slovakia
| | - Roman Boča
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna St. 9, Katowice 40-006, Poland
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
32
|
Giraldo JN, Hrubý J, Vavrečková Š, Fellner OF, Havlíček L, Henry D, de Silva S, Herchel R, Bartoš M, Šalitroš I, Santana VT, Barbara P, Nemec I, Neugebauer P. Tetracoordinate Co(II) complexes with semi-coordination as stable single-ion magnets for deposition on graphene. Phys Chem Chem Phys 2023; 25:29516-29530. [PMID: 37901907 PMCID: PMC10631493 DOI: 10.1039/d3cp01426f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
We present a theoretical and experimental study of two tetracoordinate Co(II)-based complexes with semi-coordination interactions, i.e., non-covalent interactions involving the central atom. We argue that such interactions enhance the thermal and structural stability of the compounds, making them appropriate for deposition on substrates, as demonstrated by their successful deposition on graphene. DC magnetometry and high-frequency electron spin resonance (HF-ESR) experiments revealed an axial magnetic anisotropy and weak intermolecular antiferromagnetic coupling in both compounds, supported by theoretical predictions from complete active space self-consistent field calculations complemented by N-electron valence state second-order perturbation theory (CASSCF-NEVPT2), and broken-symmetry density functional theory (BS-DFT). AC magnetometry demonstrated that the compounds are field-induced single-ion magnets (SIMs) at applied static magnetic fields, with slow relaxation of magnetization governed by a combination of quantum tunneling, Orbach, and direct relaxation mechanisms. The structural stability under ambient conditions and after deposition was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Theoretical modeling by DFT of different configurations of these systems on graphene revealed n-type doping of graphene originating from electron transfer from the deposited molecules, confirmed by electrical transport measurements and Raman spectroscopy.
Collapse
Affiliation(s)
- Jorge Navarro Giraldo
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Jakub Hrubý
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Šárka Vavrečková
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
- Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic
| | - Ondřej F Fellner
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - Lubomír Havlíček
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
- Institute of Physics of Materials, Czech Academy of Sciences, Žižkova 22, 61662 Brno, Czech Republic
| | - DaVonne Henry
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Shehan de Silva
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - Miroslav Bartoš
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Ivan Šalitroš
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Vinicius T Santana
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - Paola Barbara
- Department of Physics, Georgetown University, Washington, DC, USA
| | - Ivan Nemec
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - Petr Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| |
Collapse
|
33
|
Dey A, Ali J, Moorthy S, Gonzalez JF, Pointillart F, Singh SK, Chandrasekhar V. Field induced single ion magnet behavior in Co II complexes in a distorted square pyramidal geometry. Dalton Trans 2023; 52:14807-14821. [PMID: 37791680 DOI: 10.1039/d3dt01769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
We report three CoII-based complexes with the general formula [CoII(L)(X)2] by changing the halide/pseudo-halide ions [X = NCSe (1SeCN); Cl (2Cl) and Br (3Br)]. The obtained τ5 and CShM values confirm a distorted square pyramidal geometry around the CoII ion in all these complexes. In these three complexes, the central CoII ion is situated above the basal plane of the square pyramidal geometry. The extent of distortion from the ideal SPY-5 geometry differs upon changing the coordinating halide/pseudo-halide ion in these complexes. This essentially results in the alteration of the anisotropic parameter D and hence impacts the magnetic properties in these complexes. This phenomenon has been corroborated with the aid of theoretical investigations. All these complexes display field-induced SIM behaviour with magnetic relaxation occurring through a combination of processes depending on the applied dc magnetic field values and dilution.
Collapse
Affiliation(s)
- Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru 561203, India.
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, 35000 Rennes, France.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285, Telangana, India.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500 046, India.
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
34
|
Wang M, Han Z, Gou X, Shi W, Zhang YQ, Cheng P. Alkyl Chains Modulated Magnetization Dynamics of Mononuclear Trigonal Prismatic Co II Complexes. Chemistry 2023; 29:e202301693. [PMID: 37498805 DOI: 10.1002/chem.202301693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Four benzeneboron-capped mononuclear CoII complexes with different alkyl substitutions on the fourth position of phenylboronic acid were obtained. The CoII ions are all wrapped by the pocket-like ligands and located in trigonal prismatic coordination geometries. Alternating-current magnetic susceptibility measurements reveal that they show different magnetization dynamics, such as distinct relaxation rates at the same temperature, the faster QTM rates for the ethyl and propyl substituted complexes, as well as different relaxation processes. Magneto-structural correlation study reveals that the various deviations of coordination geometry of CoII ion, diverse crystal packings and possible different vibration modes of substituents caused by modifying alkyl chains are the key factors affecting the magnetization dynamics. This work demonstrates that the alkyl chains even locating far away from the metal center can have a large impact on the magnetic behavior of the CoII complex with a very rigid coordination geometry, offering a new perspective towards transition metal based single-molecule magnets.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaoshuang Gou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yi-Quan Zhang
- School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic MatterCollege of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
35
|
Armenis AS, Alexandropoulos DI, Worrell A, Cunha-Silva L, Dunbar KR, Stamatatos TC. Peripheral site modification in a family of dinuclear [Dy 2(hynad) 2-6(NO 3) 0-6(sol) 0-2] 0/2- single-molecule magnets bearing a {Dy 2(μ-OR) 2} 4+ diamond-shaped core and exhibiting dissimilar magnetic dynamics. Dalton Trans 2023; 52:13565-13577. [PMID: 37724338 DOI: 10.1039/d3dt02596a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The first use of the organic chelate N-hydroxy-1,8-naphthalimide (hynadH) in DyIII chemistry has unveiled access to a synthetic 'playground' composed of four new dinuclear complexes, all of which possess the same planar {Dy2(μ-OR)2}4+ diamond-shaped core, resulting from the bridging and chelating capacity of the hynad- groups. The structural stability of the central {Dy2} core has allowed for the modulation of the peripheral coordination sites of the metal ions, and specifically the NO3-/hynad- ratio of capping groups, thus affording the compounds [Dy2(hynad)2(NO3)4(DMF)2] (1), (Me4N)2[Dy2(hynad)2(NO3)6] (2), [Dy2(hynad)4(NO3)2(H2O)2] (3), and [Dy2(hynad)6(H2O)2] (4). Because of the chemical and structural modifications in the series 1-4, the DyIII coordination polyhedra are also dissimilar, comprising the muffin (1 and 3), tetradecahedral (2), and spherical tricapped trigonal prismatic (4) geometries. Complexes 1, 2, and 4 exhibit a ferromagnetic response at low temperatures, while 3 is antiferromagnetically coupled. All compounds exhibit out-of-phase (χ''M) ac signals as a function of ac frequency and temperature, thus behaving as single-molecule magnets (SMMs), in the absence or presence of applied dc fields. Interestingly, the hynad--rich and nitrato-free complex 4, demonstrates the largest energy barrier (Ueff = 69.62(1) K) for the magnetization reversal which is attributed to the presence of the two axial triangular faces of the spherical tricapped trigonal prism by the negatively charged O-atoms of the hynad- ligands.
Collapse
Affiliation(s)
| | | | - Anne Worrell
- Department of Chemistry, 1812 Sir Isaac Brock Way, Brock University, L2S 3A1 St Catharines, Ontario, Canada.
| | - Luís Cunha-Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Theocharis C Stamatatos
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE - HT), Platani, P.O. Box 1414, 26504, Patras, Greece
| |
Collapse
|
36
|
Silva Junior HC, Menezes HNS, Ferreira GB, Guedes GP. Rapid and Accurate Prediction of the Axial Magnetic Anisotropy in Cobalt(II) Complexes Using a Machine-Learning Approach. Inorg Chem 2023; 62:14838-14842. [PMID: 37676736 DOI: 10.1021/acs.inorgchem.3c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Estimating the magnetic anisotropy for single-ion magnets is complex due to its multireference nature. This study demonstrates that deep neural networks (DNNs) can provide accurate axial magnetic anisotropy (D) values, closely matching the complete-active-space self-consistent-field (CASSCF) quality using density functional theory (DFT) data. We curated an 86-parameter database (UFF1) with electronic data from over 33000 cobalt(II) compounds. The DNN achieved an R2 of 0.906 and a mean absolute error of 18.1 cm-1 in comparison to reference CASSCF D values. Remarkably, it is 11 times more accurate than DFT methods and 7700 times faster. This approach hints at DNNs predicting the anisotropy in larger molecules, even when trained on smaller ligands.
Collapse
Affiliation(s)
- Henrique C Silva Junior
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Heloisa N S Menezes
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Glaucio B Ferreira
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24020-141, Brazil
| |
Collapse
|
37
|
Canton SE, Biednov M, Pápai M, Lima FA, Choi T, Otte F, Jiang Y, Frankenberger P, Knoll M, Zalden P, Gawelda W, Rahaman A, Møller KB, Milne C, Gosztola DJ, Zheng K, Retegan M, Khakhulin D. Ultrafast Jahn-Teller Photoswitching in Cobalt Single-Ion Magnets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206880. [PMID: 37196414 PMCID: PMC10375196 DOI: 10.1002/advs.202206880] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Indexed: 05/19/2023]
Abstract
Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.
Collapse
Affiliation(s)
- Sophie E. Canton
- European XFELHolzkoppel 422869SchenefeldGermany
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
| | | | - Mátyás Pápai
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
- Wigner Research Centre for PhysicsP.O. Box 49BudapestH‐1525Hungary
| | | | - Tae‐Kyu Choi
- European XFELHolzkoppel 422869SchenefeldGermany
- XFEL DivisionPohang Accelerator LaboratoryJigok‐ro 127‐80Pohang37673Republic of Korea
| | | | | | | | | | | | - Wojciech Gawelda
- European XFELHolzkoppel 422869SchenefeldGermany
- Departamento de QuímicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCalle Faraday 9Madrid28049Spain
- Faculty of PhysicsAdam Mickiewicz UniversityPoznan61‐614Poland
| | - Ahibur Rahaman
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
- Chemical Physics and NanoLundLund UniversityBox 124Lund22100Sweden
| | - Klaus B. Møller
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
| | | | - David J. Gosztola
- Center for Nanoscale MaterialsArgonne National Laboratory9700 South Cass AvenueLemontIL60439USA
| | - Kaibo Zheng
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
- Chemical Physics and NanoLundLund UniversityBox 124Lund22100Sweden
| | - Marius Retegan
- European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble38000France
| | | |
Collapse
|
38
|
Joshi S, Roy Chowdhury S, Mishra S. Spin-state energetics and magnetic anisotropy in penta-coordinated Fe(III) complexes with different axial and equatorial ligand environments. Phys Chem Chem Phys 2023. [PMID: 37367302 DOI: 10.1039/d3cp02182c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The penta-coordinated trigonal-bi-pyramidal (TBP) Fe(III) complex (PMe2Ph)2FeCl3 shows a reduced magnetic anisotropy in its intermediate-spin (IS) state as compared to its methyl-analog (PMe3)2Fe(III)Cl3. In this work, the ligand environment in (PMe2Ph)2FeCl3 is systematically altered by replacing the axial -P with -N and -As, the equatorial -Cl with other halides, and the axial methyl group with an acetyl group. This has resulted in a series of Fe(III) TBP complexes modelled in their IS and high-spin (HS) states. Lighter ligands -N and -F stabilize the complex in the HS state, while the magnetically anisotropic IS state is stabilized by -P and -As at the axial site, and -Cl, -Br, and -I at the equatorial site. Larger magnetic anisotropies appear for complexes with nearly degenerate ground electronic states that are well separated from the higher excited states. This requirement, largely controlled by the d-orbital splitting pattern due to the changing ligand field, is achieved with a certain combination of axial and equatorial ligands, such as -P and -Br, -As and -Br, and -As and -I. In most cases, the acetyl group at the axial site enhances the magnetic anisotropy compared to its methyl counterpart. In contrast, the presence of -I at the equatorial site compromises the uniaxial type of anisotropy of the Fe(III) complex leading to an enhanced rate of quantum tunneling of magnetization.
Collapse
Affiliation(s)
- Shalini Joshi
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| | | | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
39
|
Zhang L, Kozhevnikov A, Schulthess T, Trickey SB, Cheng HP. All-electron APW+lo calculation of magnetic molecules with the SIRIUS domain-specific package. J Chem Phys 2023; 158:234801. [PMID: 37326162 DOI: 10.1063/5.0139497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
We report APW+lo (augmented plane wave plus local orbital) density functional theory (DFT) calculations of large molecular systems using the domain specific SIRIUS multi-functional DFT package. The APW and FLAPW (full potential linearized APW) task and data parallelism options and the advanced eigen-system solver provided by SIRIUS can be exploited for performance gains in ground state Kohn-Sham calculations on large systems. This approach is distinct from our prior use of SIRIUS as a library backend to another APW+lo or FLAPW code. We benchmark the code and demonstrate performance on several magnetic molecule and metal organic framework systems. We show that the SIRIUS package in itself is capable of handling systems as large as a several hundred atoms in the unit cell without having to make technical choices that result in the loss of accuracy with respect to that needed for the study of magnetic systems.
Collapse
Affiliation(s)
- Long Zhang
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, USA
| | | | | | - S B Trickey
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, USA
| | - Hai-Ping Cheng
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
- Center for Molecular Magnetic Quantum Materials, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
40
|
Li Y, Zeng Z, Guo Y, Liu X, Zhang YQ, Ouyang Z, Wang Z, Liu X, Zheng YZ. Synergy of Magnetic Anisotropy and Ferromagnetic Interaction Triggering a Dimeric Cr(II) Zero-Field Single-Molecule Magnet. Inorg Chem 2023; 62:6297-6305. [PMID: 37040590 DOI: 10.1021/acs.inorgchem.2c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
A novel CrII-dimeric complex, [CrIIN(SiiPr3)2(μ-Cl)(THF)]2 (1), has been successfully constructed using a bulky silyl-amide ligand. Single-crystal structure analysis reveals that complex 1 exhibits a binuclear motif, with a Cr2Cl2 rhombus core, where two equivalent tetra-coordinate CrII centers in the centrosymmetric unit display quasi-square planar geometry. The crystal structure has been well simulated and explored by density functional theory calculations. The axial zero-field splitting parameter (D < 0) with a small rhombic (E) value is unambiguously determined by systematic investigations of magnetic measurements, high-frequency electron paramagnetic resonance spectroscopy, and ab initio calculations. Remarkably, ac magnetic susceptibility data unveil that 1 features slow dynamic magnetic relaxation typical of single-molecule magnet behavior with Ueff = 22 K in the absence of a dc field. This increases up to 35 K under a corresponding static field. Moreover, magnetic studies and theoretical calculations point out that a non-negligible ferromagnetic coupling (FMC) exists in the dimeric Cr-Cr units of 1. The coexistence of magnetic anisotropy and FMC contributes to the first case of CrII-based single-molecule magnets (SMMs) under zero dc field.
Collapse
Affiliation(s)
- Yuzhu Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhaopeng Zeng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xingman Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
41
|
Swain A, Sharma T, Rajaraman G. Strategies to quench quantum tunneling of magnetization in lanthanide single molecule magnets. Chem Commun (Camb) 2023; 59:3206-3228. [PMID: 36789911 DOI: 10.1039/d2cc06041h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Enhancing blocking temperature (TB) is one of the holy grails in Single Molecule Magnets(SMMs), as any future potential application in this class of molecules is directly correlated to this parameter. Among many factors contributing to a reduction of TB value, Quantum Tunnelling of Magnetisation (QTM), a phenomenon that is a curse or a blessing based on the application sought after, tops the list. Theoretical tools based on density functional and ab initio CASSCF/RASSI-SO methods have played a prominent role in estimating various spin Hamiltonian parameters and establishing the mechanism of magnetization relaxation in this class of molecules. Particularly, various strategies to quench QTM effects go hand-in-hand with experiments, and different methods proposed to quell QTM effects are scattered in the literature. In this perspective, we have explored various approaches that are proposed in the literature to quench QTM effects, and these include the role of (i) local symmetry of lanthanides, (ii) super-exchange interaction in {3d-4f} complexes, (iii) direct-exchange interaction in {radical-4f} and metal-metal bonded complexes to suppress the QTM, (iv) utilizing external stimuli such as an electric field or pressure to modulate the QTM and (v) avoiding QTM effects by stabilising toroidal states in 4f and {3d-4f} clusters. We believe the strategies summarized here will help to design new-generation SMMs.
Collapse
Affiliation(s)
- Abinash Swain
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | - Tanu Sharma
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India.
| | | |
Collapse
|
42
|
Pohle MH, Böhme M, Lohmiller T, Ziegenbalg S, Blechschmidt L, Görls H, Schnegg A, Plass W. Magnetic Anisotropy and Relaxation of Pseudotetrahedral [N 2 O 2 ] Bis-Chelate Cobalt(II) Single-Ion Magnets Controlled by Dihedral Twist Through Solvomorphism. Chemistry 2023; 29:e202202966. [PMID: 36468847 DOI: 10.1002/chem.202202966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The methanol solvomorph 1 ⋅ 2MeOH of the cobalt(II) complex [Co(LSal,2-Ph )2 ] (1) with the sterically demanding Schiff-base ligand 2-(([1,1'-biphenyl]-2-ylimino)methyl)phenol (HLSal,2-Ph ) shows the thus far largest dihedral twist distortion between the two chelate planes compared to an ideal pseudotetrahedral arrangement. The cobalt(II) ion in 1 ⋅ 2MeOH exhibits an easy-axis anisotropy leading to a spin-reversal barrier of 55.3 cm-1 , which corresponds to an increase of about 17 % induced by the larger dihedral twist compared to the solvent-free complex 1. The magnetic relaxation for 1 ⋅ 2MeOH is significantly slower compared to 1. An in-depth frequency-domain Fourier-transform (FD-FT) THz-EPR study not only allowed the direct measurement of the magnetic transition between the two lowest Kramers doublets for the cobalt(II) complexes, but also revealed the presence of spin-phonon coupling. Interestingly, a similar dihedral twist correlation is also observed for a second pair of cobalt(II)-based solvomorphs, which could be benchmarked by FD-FT THz-EPR.
Collapse
Affiliation(s)
- Maximilian H Pohle
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Thomas Lohmiller
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany.,present address: Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Sven Ziegenbalg
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Louis Blechschmidt
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Alexander Schnegg
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany.,EPR Research Group, MPI for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
43
|
Mičová R, Rajnák C, Titiš J, Samoľová E, Zalibera M, Bieńko A, Boča R. Slow magnetic relaxation in two mononuclear Mn(II) complexes not governed by the over-barrier Orbach process. Chem Commun (Camb) 2023; 59:2612-2615. [PMID: 36757181 DOI: 10.1039/d2cc06510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two hexacoordinate Mn(II) complexes containing a chelating residue of hexafluoroacetylacetone and (Cl-substituted) 4-benzylpyridine show DC magnetic functions typical for S = 5/2 spin systems: g ∼ 2, D - small. The AC susceptibility confirms a field supported slow magnetic relaxation in which the over-barrier Orbach relaxation process does not play a role. Both systems possess two or three slow relaxation channels.
Collapse
Affiliation(s)
- Romana Mičová
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Cyril Rajnák
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Ján Titiš
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| | - Erika Samoľová
- X-Ray Crystallography Facility, UC San Diego, 5128 Urey Hall MC 0358, 9500 Gilman Drive, La Jolla CA, USA.,Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Michal Zalibera
- Department of Physical Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Roman Boča
- Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia.
| |
Collapse
|
44
|
Weller R, Atanasov M, Demeshko S, Chen TY, Mohelsky I, Bill E, Orlita M, Meyer F, Neese F, Werncke CG. On the Single-Molecule Magnetic Behavior of Linear Iron(I) Arylsilylamides. Inorg Chem 2023; 62:3153-3161. [PMID: 36744742 DOI: 10.1021/acs.inorgchem.2c04050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rational design of 3d-metal-based single-molecule magnets (SMM) requires a fundamental understanding of their intrinsic electronic and structural properties and how they translate into experimentally observable features. Here, we determined the magnetic properties of the linear iron(I) silylamides K{crypt}[FeL2] and [KFeL2] (L = -N(Dipp)SiMe3; crypt = 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosan). For the former, slow-relaxation of the magnetization with a spin reversal barrier of Ueff = 152 cm-1 as well as a closed-waist magnetic hysteresis and magnetic blocking below 2.5 K are observed. For the more linear [KFeL2], in which the potassium cation is encapsulated by the aryl substituents of the amide ligands, the relaxation barrier and the blocking temperature increase to Ueff = 184 cm-1 and TB = 4.5 K, respectively. The increase is rationalized by a more pronounced axial anisotropy in [KFeL2] determined by dc-SQUID magnetometry. The effective relaxation barrier of [KFeL2] is in agreement with the energy spacing between the ground and first-excited magnetic states, as obtained by field-dependent IR-spectroscopy (178 cm-1), magnetic measurements (208 cm-1), as well as theoretical analysis (212 cm-1). In comparison with the literature, the results show that magnetic coercivity in linear iron(I) silylamides is driven by the degree of linearity in conjunction with steric encumbrance, whereas the ligand symmetry is a marginal factor.
Collapse
Affiliation(s)
- Ruth Weller
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35043Marburg, Germany
| | - Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470Mülheim an der Ruhr, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad.Georgi Bontchev Street, Bl.11, 1113Sofia, Bulgaria
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077Göttingen, Germany
| | - Ting-Yi Chen
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077Göttingen, Germany
| | - Ivan Mohelsky
- LAB National des Champs Magnétiques Intenses, LNCMI─CNRS, 25 Martyrs Avenue, BP 166, 38042Grenoble Cedex 9, France
| | - Eckhard Bill
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470Mülheim an der Ruhr, Germany
| | - Milan Orlita
- LAB National des Champs Magnétiques Intenses, LNCMI─CNRS, 25 Martyrs Avenue, BP 166, 38042Grenoble Cedex 9, France.,Institute of Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116Prague, Czech Republic
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077Göttingen, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470Mülheim an der Ruhr, Germany
| | - C Gunnar Werncke
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35043Marburg, Germany
| |
Collapse
|
45
|
Ferentinos E, Tzeli D, Sottini S, Groenen EJJ, Ozerov M, Poneti G, Kaniewska-Laskowska K, Krzystek J, Kyritsis P. Magnetic anisotropy and structural flexibility in the field-induced single ion magnets [Co{(OPPh 2)(EPPh 2)N} 2], E = S, Se, explored by experimental and computational methods. Dalton Trans 2023; 52:2036-2050. [PMID: 36692040 PMCID: PMC9926333 DOI: 10.1039/d2dt03335f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/14/2023] [Indexed: 01/25/2023]
Abstract
During the last few years, a large number of mononuclear Co(II) complexes of various coordination geometries have been explored as potential single ion magnets (SIMs). In the work presented herein, the Co(II) S = 3/2 tetrahedral [Co{(OPPh2)(EPPh2)N}2], E = S, Se, complexes (abbreviated as CoO2E2), bearing chalcogenated mixed donor-atom imidodiphosphinato ligands, were studied by both experimental and computational techniques. Specifically, direct current (DC) magnetometry provided estimations of their zero-field splitting (zfs) axial (D) and rhombic (E) parameter values, which were more accurately determined by a combination of far-infrared magnetic spectroscopy and high-frequency and -field EPR spectroscopy studies. The latter combination of techniques was also implemented for the S = 3/2 tetrahedral [Co{(EPiPr2)2N}2], E = S, Se, complexes, confirming the previously determined magnitude of their zfs parameters. For both pairs of complexes (E = S, Se), it is concluded that the identity of the E donor atom does not significantly affect their zfs parameters. High-resolution multifrequency EPR studies of CoO2E2 provided evidence of multiple conformations, which are more clearly observed for CoO2Se2, in agreement with the structural disorder previously established for this complex by X-ray crystallography. The CoO2E2 complexes were shown to be field-induced SIMs, i.e., they exhibit slow relaxation of magnetization in the presence of an external DC magnetic field. Advanced quantum-chemical calculations on CoO2E2 provided additional insight into their electronic and structural properties.
Collapse
Affiliation(s)
- Eleftherios Ferentinos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece.
| | - Demeter Tzeli
- Physical Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., GR-11635 Athens, Greece
| | - Silvia Sottini
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Edgar J J Groenen
- Huygens-Kamerlingh Onnes Laboratory, Department of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA.
| | - Giordano Poneti
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Brazil.
| | - Kinga Kaniewska-Laskowska
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA.
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, GR-15771 Athens, Greece.
| |
Collapse
|
46
|
Approaching the uniaxiality of magnetic anisotropy in single-molecule magnets. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
47
|
Meng L, Deng YF, Holmes SM, Zhang YZ. Thermo- and photo-induced electron transfer in a series of [Fe 2Co 2] capsules. Dalton Trans 2023; 52:1616-1622. [PMID: 36648100 DOI: 10.1039/d2dt03328c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a family of [Fe2Co2] molecular capsules that display tunable electron transfer-coupled spin transition (ETCST) behavior were reported via a smart approach through Schiff-base condensation of aldehyde-functionalized 2,2-bipyridines (bpyCHO) and 1,7-heptanediamine (H2N(CH2)7NH2). Here, three more capsule complexes {[(TpR)Fe(CN)3]2[Co(bpyCN(CH2)nNCbpy)]2[ClO4]2}·n(solvent) (1, TpR = Tp*, n = 5, sol = 8DMF; 2, TpR = TpMe, n = 9, sol = 5MeCN; and 3, TpR = Tp*, n = 11, sol = 5MeCN), where Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate and TpMe = hydridotris(3-methylpyrazol-1-yl)borate are reported, demonstrating a successful extension of such an approach with other alkyldiamines of different lengths. Combined X-ray crystallographic, infrared spectroscopic and magnetic studies reveal incomplete electron transfer with either changing temperature or upon light exposure.
Collapse
Affiliation(s)
- Lingyi Meng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| | - Stephen M Holmes
- Department of Chemistry and Biochemistry and Centre for Nanoscience, University of Missouri-St Louis, St Louis, Missouri 63121, USA.
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.
| |
Collapse
|
48
|
Interplay of Anisotropic Exchange Interactions and Single-Ion Anisotropy in Single-Chain Magnets Built from Ru/Os Cyanidometallates(III) and Mn(III) Complex. Molecules 2023; 28:molecules28031516. [PMID: 36771182 PMCID: PMC9921754 DOI: 10.3390/molecules28031516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Two novel 1D heterobimetallic compounds {[MnIII(SB2+)MIII(CN)6]·4H2O}n (SB2+ = N,N'-ethylenebis(5-trimethylammoniomethylsalicylideneiminate) based on orbitally degenerate cyanidometallates [OsIII(CN)6]3- (1) and [RuIII(CN)6]3- (2) and MnIII Schiff base complex were synthesized and characterized structurally and magnetically. Their crystal structures consist of electrically neutral, well-isolated chains composed of alternating [MIII(CN)6]3- anions and square planar [MnIII(SB2+)]3+ cations bridged by cyanide groups. These -ion magnetic anisotropy of MnIII centers. These results indicate that the presence of compounds exhibit single-chain magnet (SCM) behavior with the energy barriers of Δτ1/kB = 73 K, Δτ2/kB = 41.5 K (1) and Δτ1/kB = 51 K, Δτ2 = 27 K (2). Blocking temperatures of TB = 2.8, 2.1 K and magnetic hysteresis with coercive fields (at 1.8 K) of 8000, 1600 Oe were found for 1 and 2, respectively. Theoretical analysis of the magnetic data reveals that their single-chain magnet behavior is a product of a complicated interplay of extremely anisotropic triaxial exchange interactions in MIII(4d/5d)-CN-MnIII fragments: -JxSMxSMnx-JySMySMny-JzSMzSMnz, with opposite sign of exchange parameters Jx = -22, Jy = +28, Jz = -26 cm-1 and Jx = -18, Jy = +20, Jz = -18 cm-1 in 1 and 2, respectively) and single orbitally degenerate [OsIII(CN)6]3- and [RuIII(CN)6]3- spin units with unquenched orbital angular momentum in the chain compounds 1 and 2 leads to a peculiar regime of slow magnetic relaxation, which is beyond the scope of the conventional Glaubers's 1D Ising model and anisotropic Heisenberg model.
Collapse
|
49
|
Manakin YV, Mironov VS, Bazhenova TA, Yakushev IA, Gilmutdinov IF, Simonov SV, Yagubskii EB. (Et 4N)[W III(DAPBH)(CN) 2], the first pentagonal-bipyramidal W(III) complex with unquenched orbital angular momentum: a novel Ising-type magnetic building block for single-molecule magnets. Chem Commun (Camb) 2023; 59:643-646. [PMID: 36537239 DOI: 10.1039/d2cc05998c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first pentagonal-bipyramidal tungsten(III) complex (Et4N)[WIII(DAPBH)(CN)2] with a N3O2-type Schiff-base ligand and two apical cyanide groups was synthesized and characterized structurally and magnetically. The complex has a low-spin (S = 1/2) ground state and features unquenched orbital angular momentum ML = ±1 causing very strong Ising-type magnetic anisotropy.
Collapse
Affiliation(s)
- Yu V Manakin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia.
| | - V S Mironov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia. .,Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" RAS, Moscow, Russia.
| | - T A Bazhenova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia.
| | - I A Yakushev
- Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia.,National Research Center "Kurchatov Institute", Moscow, Russia
| | - I F Gilmutdinov
- Institute of Physics, Kazan Federal University, Kazan, Russia
| | - S V Simonov
- Institute of Solid State Physics, Chernogolovka, Russia
| | - E B Yagubskii
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka, Russia.
| |
Collapse
|
50
|
Aerogel-Based Single-Ion Magnets: A Case Study of a Cobalt(II) Complex Immobilized in Silica. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010418. [PMID: 36615607 PMCID: PMC9824035 DOI: 10.3390/molecules28010418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
The chemical immobilization of cobalt(II) ions in a silica aerogel matrix enabled the synthesis of the first representative example of aerogel-based single-ion magnets. For the synthesis of the lyogels, methyl-trimethoxysilane and N-3-(trimethoxysilyl)propyl ethylenediamine were co-hydrolyzed, then the ethylenediamine groups that were immobilized on the silica matrix enabled the subsequent binding of cobalt(II) ions. Lyogels with various amounts of ethylenediamine moieties (0.1-15 mol %) were soaked in isopropanol solutions of cobalt(II) nitrate and further supercritically dried in carbon dioxide to obtain aerogels with a specific surface area of 210-596 m2·g-1, an apparent density of 0.403-0.740 cm3·g-1 and a porosity of 60-78%. The actual cobalt content in the aerogels was 0.01-1.50 mmol per 1 g of SiO2, which could easily be tuned by the concentration of ethylenediamine moieties in the silica matrix. The introduction of cobalt(II) ions into the ethylenediamine-modified silica aerogel promoted the stability of the diamine moieties at the supercritical drying stage. The molecular prototype of the immobilized cobalt(II) complex, bearing one ethylenediamine ligand [Co(en)(MeCN)(NO3)2], was synthesized and structurally characterized. Using magnetometry in the DC mode, it was shown that cobalt(II)-modified silica aerogels exhibited slow magnetic relaxation in a nonzero field. A decrease in cobalt(II) concentration in aerogels from 1.5 mmol to 0.14 mmol per 1 g of SiO2 resulted in a weakening of inter-ion interactions; the magnetization reversal energy barrier likewise increased from 4 to 18 K.
Collapse
|