1
|
Westmoreland DE, Feliciano PR, Kang G, Cui C, Kim A, Stubbe J, Nocera DG, Drennan CL. 2.6-Å resolution cryo-EM structure of a class Ia ribonucleotide reductase trapped with mechanism-based inhibitor N 3CDP. Proc Natl Acad Sci U S A 2024; 121:e2417157121. [PMID: 39475643 PMCID: PMC11551348 DOI: 10.1073/pnas.2417157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides using radical-based chemistry. For class Ia RNRs, the radical species is stored in a separate subunit (β2) from the subunit housing the active site (α2), requiring the formation of a short-lived α2β2 complex and long-range radical transfer (RT). RT occurs via proton-coupled electron transfer (PCET) over a long distance (~32-Å) and involves the formation and decay of multiple amino acid radical species. Here, we use cryogenic electron microscopy and a mechanism-based inhibitor 2'-azido-2'-deoxycytidine-5'-diphosphate (N3CDP) to trap a wild-type α2β2 complex of Escherichia coli class Ia RNR. We find that one α subunit has turned over and that the other is trapped, bound to β in a midturnover state. Instead of N3CDP in the active site, forward RT has resulted in N2 loss, migration of the third nitrogen from the ribose C2' to C3' positions, and attachment of this nitrogen to the sulfur of cysteine-225. In this study, an inhibitor has been visualized as an adduct to an RNR. Additionally, this structure reveals the positions of PCET residues following forward RT, complementing the previous structure that depicted a preturnover PCET pathway and suggesting how PCET is gated at the α-β interface. This N3CDP-trapped structure is also of sufficient resolution (2.6 Å) to visualize water molecules, allowing us to evaluate the proposal that water molecules are proton acceptors and donors as part of the PCET process.
Collapse
Affiliation(s)
- Dana E Westmoreland
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Patricia R Feliciano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gyunghoon Kang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Chang Cui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Albert Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - JoAnne Stubbe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Catherine L Drennan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- HHMI, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
2
|
Westmoreland DE, Feliciano PR, Kang G, Cui C, Kim A, Stubbe J, Nocera DG, Drennan CL. 2.6-Å resolution cryo-EM structure of a class Ia ribonucleotide reductase trapped with mechanism-based inhibitor N 3CDP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617422. [PMID: 39416103 PMCID: PMC11482829 DOI: 10.1101/2024.10.09.617422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides using radical-based chemistry. For class Ia RNRs, the radical species is stored in a separate subunit (β2) from the subunit housing the active site (α2), requiring the formation of a short-lived α2β2 complex and long-range radical transfer (RT). RT occurs via proton-coupled electron transfer (PCET) over a long distance (~32-Å) and involves the formation and decay of multiple amino acid radical species. Here, we use cryogenic-electron microscopy and a mechanism-based inhibitor 2'-azido-2'-deoxycytidine-5'-diphosphate (N3CDP) to trap a wild-type α2β2 complex of E. coli class Ia RNR. We find that one α subunit has turned over and that the other is trapped, bound to β in a mid-turnover state. Instead of N3CDP in the active site, forward RT has resulted in N2 loss, migration of the third nitrogen from the ribose C2' to C3' positions, and attachment of this nitrogen to the sulfur of cysteine-225. To the best of our knowledge, this is the first time an inhibitor has been visualized as an adduct to an RNR. Additionally, this structure reveals the positions of PCET residues following forward RT, complementing the previous structure that depicted a pre-turnover PCET pathway and suggesting how PCET is gated at the α-β interface. This N3CDP-trapped structure is also of sufficient resolution (2.6 Å) to visualize water molecules, allowing us to evaluate the proposal that water molecules are proton acceptors and donors as part of the PCET process.
Collapse
Affiliation(s)
- Dana E. Westmoreland
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Patricia R. Feliciano
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gyunghoon Kang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Chang Cui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Albert Kim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - JoAnne Stubbe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Catherine L. Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
3
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Vitali V, Ackermann K, Hagelueken G, Bode BE. Spectroscopically Orthogonal Labelling to Disentangle Site-Specific Nitroxide Label Distributions. APPLIED MAGNETIC RESONANCE 2023; 55:187-205. [PMID: 38357007 PMCID: PMC10861635 DOI: 10.1007/s00723-023-01611-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 02/16/2024]
Abstract
Biomolecular applications of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) are becoming increasingly valuable in structural biology. Site-directed spin labelling of proteins is routinely performed using nitroxides, with paramagnetic metal ions and other organic radicals gaining popularity as alternative spin centres. Spectroscopically orthogonal spin labelling using different types of labels potentially increases the information content available from a single sample. When analysing experimental distance distributions between two nitroxide spin labels, the site-specific rotamer information has been projected into the distance and is not readily available, and the contributions of individual labelling sites to the width of the distance distribution are not obvious from the PDS data. Here, we exploit the exquisite precision of labelling double-histidine (dHis) motifs with CuII chelate complexes. The contribution of this label to the distance distribution widths in model protein GB1 has been shown to be negligible. By combining a dHis CuII labelling site with cysteine-specific nitroxide labelling, we gather insights on the label rotamers at two distinct sites, comparing their contributions to distance distributions based on different in silico modelling approaches and structural models. From this study, it seems advisable to consider discrepancies between different in silico modelling approaches when selecting labelling sites for PDS studies. Supplementary Information The online version contains supplementary material available at 10.1007/s00723-023-01611-1.
Collapse
Affiliation(s)
- Valentina Vitali
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Via Della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
| | - Gregor Hagelueken
- Institute of Structural Biology, Biomedical Center, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST Scotland
| |
Collapse
|
5
|
Hammes-Schiffer S. Exploring Proton-Coupled Electron Transfer at Multiple Scales. NATURE COMPUTATIONAL SCIENCE 2023; 3:291-300. [PMID: 37577057 PMCID: PMC10416817 DOI: 10.1038/s43588-023-00422-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 08/15/2023]
Abstract
The coupling of electron and proton transfer is critical for chemical and biological processes spanning a wide range of length and time scales and often occurring in complex environments. Thus, diverse modeling strategies, including analytical theories, quantum chemistry, molecular dynamics, and kinetic modeling, are essential for a comprehensive understanding of such proton-coupled electron transfer reactions. Each of these computational methods provides one piece of the puzzle, and all these pieces must be viewed together to produce the full picture.
Collapse
|
6
|
Cui C, Song DY, Drennan CL, Stubbe J, Nocera DG. Radical Transport Facilitated by a Proton Transfer Network at the Subunit Interface of Ribonucleotide Reductase. J Am Chem Soc 2023; 145:5145-5154. [PMID: 36812162 PMCID: PMC10561588 DOI: 10.1021/jacs.2c11483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Ribonucleotide reductases (RNRs) play an essential role in the conversion of nucleotides to deoxynucleotides in all organisms. The Escherichia coli class Ia RNR requires two homodimeric subunits, α and β. The active form is an asymmetric αα'ββ' complex. The α subunit houses the site for nucleotide reduction initiated by a thiyl radical (C439•), and the β subunit houses the diferric-tyrosyl radical (Y122•) that is essential for C439• formation. The reactions require a highly regulated and reversible long-range proton-coupled electron transfer pathway involving Y122•[β] ↔ W48?[β] ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]. In a recent cryo-EM structure, Y356[β] was revealed for the first time and it, along with Y731[α], spans the asymmetric α/β interface. An E52[β] residue, which is essential for Y356 oxidation, allows access to the interface and resides at the head of a polar region comprising R331[α], E326[α], and E326[α'] residues. Mutagenesis studies with canonical and unnatural amino acid substitutions now suggest that these ionizable residues are important in enzyme activity. To gain further insights into the roles of these residues, Y356• was photochemically generated using a photosensitizer covalently attached adjacent to Y356[β]. Mutagenesis studies, transient absorption spectroscopy, and photochemical assays monitoring deoxynucleotide formation collectively indicate that the E52[β], R331[α], E326[α], and E326[α'] network plays the essential role of shuttling protons associated with Y356 oxidation from the interface to bulk solvent.
Collapse
Affiliation(s)
- Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - David Y. Song
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Catherine L. Drennan
- Department of Chemistr, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - JoAnne Stubbe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
- Department of Chemistr, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
7
|
Zhong J, Reinhardt CR, Hammes-Schiffer S. Direct Proton-Coupled Electron Transfer between Interfacial Tyrosines in Ribonucleotide Reductase. J Am Chem Soc 2023; 145:4784-4790. [PMID: 36802630 PMCID: PMC10344599 DOI: 10.1021/jacs.2c13615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ribonucleotide reductase (RNR) regulates DNA synthesis and repair in all organisms. The mechanism of Escherichia coli RNR requires radical transfer over a proton-coupled electron transfer (PCET) pathway spanning ∼32 Å across two protein subunits. A key step along this pathway is the interfacial PCET reaction between Y356 in the β subunit and Y731 in the α subunit. Herein, this PCET reaction between two tyrosines across an aqueous interface is explored with classical molecular dynamics and quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The simulations suggest that the water-mediated mechanism involving double proton transfer through an intervening water molecule is thermodynamically and kinetically unfavorable. The direct PCET mechanism between Y356 and Y731 becomes feasible when Y731 is flipped toward the interface and is predicted to be approximately isoergic with a relatively low free energy barrier. This direct mechanism is facilitated by the hydrogen bonding of water to both Y356 and Y731. These simulations provide fundamental insights into radical transfer across aqueous interfaces.
Collapse
Affiliation(s)
- Jiayun Zhong
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Clorice R. Reinhardt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
8
|
Levitz TS, Drennan CL. Starting a new chapter on class Ia ribonucleotide reductases. Curr Opin Struct Biol 2022; 77:102489. [PMID: 36272229 DOI: 10.1016/j.sbi.2022.102489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/21/2023]
Abstract
Ribonucleotide reductases (RNRs) use radical-based chemistry to convert ribonucleotides into deoxyribonucleotides, an essential step in DNA biosynthesis and repair. There are multiple RNR classes, the best studied of which is the class Ia RNR that is found in Escherichia coli, eukaryotes including humans, and many pathogenic and nonpathogenic prokaryotes. This review covers recent advances in our understanding of class Ia RNRs, including a recent reporting of a structure of the active state of the E. coli enzyme and the impacts that the structure has had on spurring research into the mechanism of long-range radical transfer. Additionally, the review considers other recent structural and biochemical research on class Ia RNRs and the potential of that work for the development of anticancer and antibiotic therapeutics.
Collapse
Affiliation(s)
- Talya S Levitz
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. https://twitter.com/@TalyaLevitz
| | - Catherine L Drennan
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Meyer A, Kehl A, Cui C, Reichardt FAK, Hecker F, Funk LM, Pan KT, Urlaub H, Tittmann K, Stubbe J, Bennati M. 19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase. J Am Chem Soc 2022; 144:11270-11282. [PMID: 35652913 PMCID: PMC9248007 DOI: 10.1021/jacs.2c02906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ribonucleotide reductases
(RNRs) catalyze the reduction of ribonucleotides
to deoxyribonucleotides, thereby playing a key role in DNA replication
and repair. Escherichia coli class
Ia RNR is an α2β2 enzyme complex
that uses a reversible multistep radical transfer (RT) over 32 Å
across its two subunits, α and β, to initiate, using its
metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled
electron-transfer (PCET) process. An unresolved step is the RT involving
Y356(β) and Y731(α) across the α/β
interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731-α2, GDP (substrate) and TTP (allosteric effector), a Y356• intermediate was trapped and its identity was
verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz
pulse electron–electron double resonance spectroscopies. 94
GHz 19F electron-nuclear double resonance spectroscopy
allowed measuring the interspin distances between Y356• and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the
double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published
cryo-EM structure of a holo RNR complex. For both mutant combinations,
the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with
3,5-F2Y731 within the H-bond distance to Y356•, whereas the second one is consistent
with the conformation observed in the cryo-EM structure. The observations
unexpectedly suggest the possibility of a colinear PCET, in which
electron and proton are transferred from the same donor to the same
acceptor between Y356 and Y731. The results
highlight the important role of state-of-the-art EPR spectroscopy
to decipher this mechanism.
Collapse
Affiliation(s)
- Andreas Meyer
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Annemarie Kehl
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Fehmke A K Reichardt
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Lisa-Marie Funk
- Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany
| | - Kuan-Ting Pan
- Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Bioanalytics, University Medical Center, 37075 Göttingen, Germany
| | - Henning Urlaub
- Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Bioanalytics, University Medical Center, 37075 Göttingen, Germany
| | - Kai Tittmann
- Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany
| | - JoAnne Stubbe
- Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Marina Bennati
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Chemistry, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Zhong J, Reinhardt CR, Hammes-Schiffer S. Role of Water in Proton-Coupled Electron Transfer between Tyrosine and Cysteine in Ribonucleotide Reductase. J Am Chem Soc 2022; 144:7208-7214. [PMID: 35426309 PMCID: PMC9197590 DOI: 10.1021/jacs.1c13455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and is critical for DNA synthesis and repair in all organisms. Its mechanism requires radical transfer along a ∼32 Å pathway through a series of proton-coupled electron transfer (PCET) steps. Previous simulations suggested that a glutamate residue (E623) mediates the PCET reaction between two stacked tyrosine residues (Y730 and Y731) through a proton relay mechanism. This work focuses on the adjacent PCET reaction between Y730 and a cysteine residue (C439). Quantum mechanical/molecular mechanical free energy simulations illustrate that when Y730 and Y731 are stacked, E623 stabilizes the radical on C439 through hydrogen bonding with the Y730 hydroxyl group. When Y731 is flipped away from Y730, a water molecule stabilizes the radical on C439 through hydrogen bonding with Y730 and lowers the free energy barrier for radical transfer from Y730 to C439 through electrostatic interactions with the transferring hydrogen but does not directly accept the proton. These simulations indicate that the conformational motions and electrostatic interactions of the tyrosines, cysteine, glutamate, and water strongly impact the thermodynamics and kinetics of these two coupled PCET reactions. Such insights are important for protein engineering efforts aimed at altering radical transfer in RNR.
Collapse
Affiliation(s)
- Jiayun Zhong
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Clorice R. Reinhardt
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Shi Q, Pei Z, Song J, Li SJ, Wei D, Coote ML, Lan Y. Diradical Generation via Relayed Proton-Coupled Electron Transfer. J Am Chem Soc 2022; 144:3137-3145. [PMID: 35133141 DOI: 10.1021/jacs.1c12360] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diradical generation followed by radical-radical cross-coupling is a powerful synthetic tool, but its detailed mechanism has yet to be established. Herein, we proposed and confirmed a new model named relayed proton-coupled electron transfer (relayed-PCET) for diradical generation, which could open a door for new radical-radical cross-coupling reactions. Quantum mechanics calculations were performed on a selected carbene-mediated diradical cross-coupling reaction model and a designed model, and the exact electronic structural changes during the radical processes have been observed for the first time.
Collapse
Affiliation(s)
- Qianqian Shi
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhipeng Pei
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
12
|
Affiliation(s)
- Brandon L. Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
Meichsner SL, Kutin Y, Kasanmascheff M. In‐Cell Characterization of the Stable Tyrosyl Radical in
E. coli
Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shari L. Meichsner
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Strasse 6 44227 Dortmund Germany
| |
Collapse
|
14
|
Meichsner SL, Kutin Y, Kasanmascheff M. In-Cell Characterization of the Stable Tyrosyl Radical in E. coli Ribonucleotide Reductase Using Advanced EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:19155-19161. [PMID: 33844392 PMCID: PMC8453577 DOI: 10.1002/anie.202102914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/11/2021] [Indexed: 12/21/2022]
Abstract
The E. coli ribonucleotide reductase (RNR), a paradigm for class Ia enzymes including human RNR, catalyzes the biosynthesis of DNA building blocks and requires a di‐iron tyrosyl radical (Y122.) cofactor for activity. The knowledge on the in vitro Y122. structure and its radical distribution within the β2 subunit has accumulated over the years; yet little information exists on the in vivo Y122.. Here, we characterize this essential radical in whole cells. Multi‐frequency EPR and electron‐nuclear double resonance (ENDOR) demonstrate that the structure and electrostatic environment of Y122. are identical under in vivo and in vitro conditions. Pulsed dipolar EPR experiments shed light on a distinct in vivo Y122. per β2 distribution, supporting the key role of Y. concentrations in regulating RNR activity. Additionally, we spectroscopically verify the generation of an unnatural amino acid radical, F3Y122., in whole cells, providing a crucial step towards unique insights into the RNR catalysis under physiological conditions.
Collapse
Affiliation(s)
- Shari L Meichsner
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
15
|
Hecker F, Stubbe J, Bennati M. Detection of Water Molecules on the Radical Transfer Pathway of Ribonucleotide Reductase by 17O Electron-Nuclear Double Resonance Spectroscopy. J Am Chem Soc 2021; 143:7237-7241. [PMID: 33957040 PMCID: PMC8154519 DOI: 10.1021/jacs.1c01359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/19/2022]
Abstract
The role of water in biological proton-coupled electron transfer (PCET) is emerging as a key for understanding mechanistic details at atomic resolution. Here we demonstrate 17O high-frequency electron-nuclear double resonance (ENDOR) in conjunction with H217O-labeled protein buffer to establish the presence of ordered water molecules at three radical intermediates in an active enzyme complex, the α2β2 E. coli ribonucleotide reductase. Our data give unambiguous evidence that all three, individually trapped, intermediates are hyperfine coupled to one water molecule with Tyr-O···17O distances in the range 2.8-3.1 Å. The availability of this structural information will allow for quantitative models of PCET in this prototype enzyme. The results also provide a spectroscopic signature for water H-bonded to a tyrosyl radical.
Collapse
Affiliation(s)
- Fabian Hecker
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - JoAnne Stubbe
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 20139, United States
| | - Marina Bennati
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department
of Chemistry, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Reinhardt CR, Sayfutyarova ER, Zhong J, Hammes-Schiffer S. Glutamate Mediates Proton-Coupled Electron Transfer Between Tyrosines 730 and 731 in Escherichia coli Ribonucleotide Reductase. J Am Chem Soc 2021; 143:6054-6059. [PMID: 33856807 PMCID: PMC8500205 DOI: 10.1021/jacs.1c02152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme in DNA synthesis for all living organisms. It reduces ribonucleotides to the corresponding deoxyribonucleotides by a reversible radical transfer mechanism. The active form of E. coli Ia RNR is composed of two subunits, α and β, which form an active asymmetric α2β2 complex. The radical transfer pathway involves a series of proton-coupled electron transfer (PCET) reactions spanning α and β over ∼32 Å. Herein, quantum mechanical/molecular mechanical free energy simulations of PCET between tyrosine residues Y730 and Y731 are performed on the recently solved cryo-EM structure of the active α2β2 complex, which includes a pre-turnover α/β pair with an ordered PCET pathway and a post-turnover α'/β' pair. The free energy surfaces in both the pre- and post-turnover states are computed. According to the simulations, forward radical transfer from Y731 to Y730 is thermodynamically favored in the pre-turnover state, and backward radical transfer is favored in the post-turnover state, consistent with the reversible mechanism. E623, a glutamate residue that is near these tyrosines only in the pre-turnover state, is discovered to play a key role in facilitating forward radical transfer by thermodynamically stabilizing the radical on Y730 through hydrogen-bonding and electrostatic interactions and lowering the free energy barrier via a proton relay mechanism. Introduction of fluorinated Y731 exhibits expected thermodynamic trends without altering the basic mechanism. These simulations suggest that E623 influences the directionality of PCET between Y731 and Y730 and predict that mutation of E623 will impact catalysis.
Collapse
Affiliation(s)
- Clorice R. Reinhardt
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520
| | - Elvira R. Sayfutyarova
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Jiayun Zhong
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| |
Collapse
|
17
|
Cui C, Greene BL, Kang G, Drennan CL, Stubbe J, Nocera DG. Gated Proton Release during Radical Transfer at the Subunit Interface of Ribonucleotide Reductase. J Am Chem Soc 2020; 143:176-183. [PMID: 33353307 DOI: 10.1021/jacs.0c07879] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The class Ia ribonucleotide reductase of Escherichia coli requires strict regulation of long-range radical transfer between two subunits, α and β, through a series of redox-active amino acids (Y122•[β] ↔ W48?[β] ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]). Nowhere is this more precarious than at the subunit interface. Here, we show that the oxidation of Y356 is regulated by proton release involving a specific residue, E52[β], which is part of a water channel at the subunit interface for rapid proton transfer to the bulk solvent. An E52Q variant is incapable of Y356 oxidation via the native radical transfer pathway or non-native photochemical oxidation, following photosensitization by covalent attachment of a photo-oxidant at position 355[β]. Substitution of Y356 for various FnY analogues in an E52Q-photoβ2, where the side chain remains deprotonated, recovered photochemical enzymatic turnover. Transient absorption and emission data support the conclusion that Y356 oxidation requires E52 for proton management, suggesting its essential role in gating radical transport across the protein-protein interface.
Collapse
Affiliation(s)
- Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Brandon L Greene
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1M1, Canada
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
Reinhardt CR, Li P, Kang G, Stubbe J, Drennan CL, Hammes-Schiffer S. Conformational Motions and Water Networks at the α/β Interface in E. coli Ribonucleotide Reductase. J Am Chem Soc 2020; 142:13768-13778. [PMID: 32631052 DOI: 10.1021/jacs.0c04325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the conversion of all four ribonucleotides to deoxyribonucleotides and are essential for DNA synthesis in all organisms. The active form of E. coli Ia RNR is composed of two homodimers that form the active α2β2 complex. Catalysis is initiated by long-range radical translocation over a ∼32 Å proton-coupled electron transfer (PCET) pathway involving Y356β and Y731α at the interface. Resolving the PCET pathway at the α/β interface has been a long-standing challenge due to the lack of structural data. Herein, molecular dynamics simulations based on a recently solved cryogenic-electron microscopy structure of an active α2β2 complex are performed to examine the structure and fluctuations of interfacial water, as well as the hydrogen-bonding interactions and conformational motions of interfacial residues along the PCET pathway. Our free energy simulations reveal that Y731 is able to sample both a flipped-out conformation, where it points toward the interface to facilitate interfacial PCET with Y356, and a stacked conformation with Y730 to enable collinear PCET with this residue. Y356 and Y731 exhibit hydrogen-bonding interactions with interfacial water molecules and, in some conformations, share a bridging water molecule, suggesting that the primary proton acceptor for PCET from Y356 and from Y731 is interfacial water. The conformational flexibility of Y731 and the hydrogen-bonding interactions of both Y731 and Y356 with interfacial water and hydrogen-bonded water chains appear critical for effective radical translocation along the PCET pathway. These simulations are consistent with biochemical and spectroscopic data and provide previously unattainable atomic-level insights into the fundamental mechanism of RNR.
Collapse
Affiliation(s)
- Clorice R Reinhardt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven Connecticut 06520, United States
| | - Pengfei Li
- Department of Chemistry, Yale University, New Haven Connecticut 06520, United States
| | - Gyunghoon Kang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States.,Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven Connecticut 06520, United States.,Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| |
Collapse
|
19
|
Kang G, Taguchi AT, Stubbe J, Drennan CL. Structure of a trapped radical transfer pathway within a ribonucleotide reductase holocomplex. Science 2020; 368:424-427. [PMID: 32217749 DOI: 10.1126/science.aba6794] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/16/2020] [Indexed: 12/27/2022]
Abstract
Ribonucleotide reductases (RNRs) are a diverse family of enzymes that are alone capable of generating 2'-deoxynucleotides de novo and are thus critical in DNA biosynthesis and repair. The nucleotide reduction reaction in all RNRs requires the generation of a transient active site thiyl radical, and in class I RNRs, this process involves a long-range radical transfer between two subunits, α and β. Because of the transient subunit association, an atomic resolution structure of an active α2β2 RNR complex has been elusive. We used a doubly substituted β2, E52Q/(2,3,5)-trifluorotyrosine122-β2, to trap wild-type α2 in a long-lived α2β2 complex. We report the structure of this complex by means of cryo-electron microscopy to 3.6-angstrom resolution, allowing for structural visualization of a 32-angstrom-long radical transfer pathway that affords RNR activity.
Collapse
Affiliation(s)
- Gyunghoon Kang
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Alexander T Taguchi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA, USA
| | - JoAnne Stubbe
- Department of Biology, Massachusetts Institute of Technology, Cambridge MA, USA. .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge MA, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA, USA
| |
Collapse
|
20
|
Meyer A, Dechert S, Dey S, Höbartner C, Bennati M. Measurement of Angstrom to Nanometer Molecular Distances with
19
F Nuclear Spins by EPR/ENDOR Spectroscopy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201908584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Andreas Meyer
- Research Group EPR Spectroscopy Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
| | - Sebastian Dechert
- Department of Chemistry Georg-August-University Tammannstr 37077 Göttingen Germany
| | - Surjendu Dey
- Institute of Organic Chemistry Julius-Maximilians-University Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry Julius-Maximilians-University Würzburg Am Hubland 97074 Würzburg Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- Department of Chemistry Georg-August-University Tammannstr 37077 Göttingen Germany
| |
Collapse
|
21
|
Meyer A, Dechert S, Dey S, Höbartner C, Bennati M. Measurement of Angstrom to Nanometer Molecular Distances with 19 F Nuclear Spins by EPR/ENDOR Spectroscopy. Angew Chem Int Ed Engl 2020; 59:373-379. [PMID: 31539187 PMCID: PMC6973229 DOI: 10.1002/anie.201908584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Indexed: 12/22/2022]
Abstract
Spectroscopic and biophysical methods for structural determination at atomic resolution are fundamental in studies of biological function. Here we introduce an approach to measure molecular distances in bio-macromolecules using 19 F nuclear spins and nitroxide radicals in combination with high-frequency (94 GHz/3.4 T) electron-nuclear double resonance (ENDOR). The small size and large gyromagnetic ratio of the 19 F label enables to access distances up to about 1.5 nm with an accuracy of 0.1-1 Å. The experiment is not limited by the size of the bio-macromolecule. Performance is illustrated on synthesized fluorinated model compounds as well as spin-labelled RNA duplexes. The results demonstrate that our simple but strategic spin-labelling procedure combined with state-of-the-art spectroscopy accesses a distance range crucial to elucidate active sites of nucleic acids or proteins in the solution state.
Collapse
Affiliation(s)
- Andreas Meyer
- Research Group EPR SpectroscopyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Sebastian Dechert
- Department of ChemistryGeorg-August-UniversityTammannstr37077GöttingenGermany
| | - Surjendu Dey
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Marina Bennati
- Research Group EPR SpectroscopyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Department of ChemistryGeorg-August-UniversityTammannstr37077GöttingenGermany
| |
Collapse
|
22
|
Greene BL, Stubbe J, Nocera DG. Selenocysteine Substitution in a Class I Ribonucleotide Reductase. Biochemistry 2019; 58:5074-5084. [PMID: 31774661 DOI: 10.1021/acs.biochem.9b00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ribonucleotide reductases (RNRs) employ a complex radical-based mechanism during nucleotide reduction involving multiple active site cysteines that both activate the substrate and reduce it. Using an engineered allo-tRNA, we substituted two active site cysteines with distinct function in the class Ia RNR of Escherichia coli for selenocysteine (U) via amber codon suppression, with efficiency and selectivity enabling biochemical and biophysical studies. Examination of the interactions of the C439U α2 mutant protein with nucleotide substrates and the cognate β2 subunit demonstrates that the endogenous Y122• of β2 is reduced under turnover conditions, presumably through radical transfer to form a transient U439• species. This putative U439• species is formed in a kinetically competent fashion but is incapable of initiating nucleotide reduction via 3'-H abstraction. An analogous C225U α2 protein is also capable of radical transfer from Y122•, but the radical-based substrate chemistry partitions between turnover and stalled reduction akin to the reactivity of mechanism-based inhibitors of RNR. The results collectively demonstrate the essential role of cysteine redox chemistry in the class I RNRs and establish a new tool for investigating thiyl radical reactivity in biology.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Biochemistry , University of California, Santa Barbara , Santa Barbara , California 93106 , United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
23
|
Yee EF, Dzikovski B, Crane BR. Tuning Radical Relay Residues by Proton Management Rescues Protein Electron Hopping. J Am Chem Soc 2019; 141:17571-17587. [PMID: 31603693 DOI: 10.1021/jacs.9b05715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Transient tyrosine and tryptophan radicals play key roles in the electron transfer (ET) reactions of photosystem (PS) II, ribonucleotide reductase (RNR), photolyase, and many other proteins. However, Tyr and Trp are not functionally interchangeable, and the factors controlling their reactivity are often unclear. Cytochrome c peroxidase (CcP) employs a Trp191•+ radical to oxidize reduced cytochrome c (Cc). Although a Tyr191 replacement also forms a stable radical, it does not support rapid ET from Cc. Here we probe the redox properties of CcP Y191 by non-natural amino acid substitution, altering the ET driving force and manipulating the protic environment of Y191. Higher potential fluorotyrosine residues increase ET rates marginally, but only addition of a hydrogen bond donor to Tyr191• (via Leu232His or Glu) substantially alters activity by increasing the ET rate by nearly 30-fold. ESR and ESEEM spectroscopies, crystallography, and pH-dependent ET kinetics provide strong evidence for hydrogen bond formation to Y191• by His232/Glu232. Rate measurements and rapid freeze quench ESR spectroscopy further reveal differences in radical propagation and Cc oxidation that support an increased Y191• formal potential of ∼200 mV in the presence of E232. Hence, Y191 inactivity results from a potential drop owing to Y191•+ deprotonation. Incorporation of a well-positioned base to accept and donate back a hydrogen bond upshifts the Tyr• potential into a range where it can effectively oxidize Cc. These findings have implications for the YZ/YD radicals of PS II, hole-hopping in RNR and cryptochrome, and engineering proteins for long-range ET reactions.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Boris Dzikovski
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States.,National Biomedical Center for Advanced ESR Technologies (ACERT) , Cornell University , Ithaca , New York 14850 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
24
|
Yang L, Yang P, Ma Y, Chang G. A novel carboxylic-functional indole-based aerogel for highly effective removal of heavy metals from aqueous solution via synergistic effects of face-point and point-point interactions. RSC Adv 2019; 9:24875-24879. [PMID: 35528687 PMCID: PMC9069875 DOI: 10.1039/c9ra04467a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
A new type of carboxylic-functional indole-based aerogel (CHIFA) has been successfully prepared via a facile sol–gel technology, which possessed a highly effective removal of heavy metals from aqueous solution through the synergistic effects of face–point and point–point interactions. A new type of carboxylic-functional indole-based aerogel (CHIFA) has been successfully prepared, which possessed highly effective removal of heavy metals from aqueous solution through the synergistic effects of face–point and point–point interactions.![]()
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory for Environment-friendly Energy Materials, School of Material Science and Engineering, National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology Mianyang 621010 P. R. China .,Department of Chemical and Biomolecular Engineering, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Peng Yang
- State Key Laboratory for Environment-friendly Energy Materials, School of Material Science and Engineering, National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology Mianyang 621010 P. R. China
| | - Yuanchi Ma
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Guanjun Chang
- State Key Laboratory for Environment-friendly Energy Materials, School of Material Science and Engineering, National Engineering Technology Center for Insulation Materials, Southwest University of Science and Technology Mianyang 621010 P. R. China .,Department of Chemical and Biomolecular Engineering, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
25
|
Tkach I, Bejenke I, Hecker F, Kehl A, Kasanmascheff M, Gromov I, Prisecaru I, Höfer P, Hiller M, Bennati M. 1H high field electron-nuclear double resonance spectroscopy at 263 GHz/9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:17-27. [PMID: 30991287 DOI: 10.1016/j.jmr.2019.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
We present and discuss the performance of 1H electron-nuclear double resonance (ENDOR) at 263 GHz/9.4 T by employing a prototype, commercial quasi optical spectrometer. Basic instrumental features of the setup are described alongside a comprehensive characterization of the new ENDOR probe head design. The performance of three different ENDOR pulse sequences (Davies, Mims and CP-ENDOR) is evaluated using the 1H BDPA radical. A key feature of 263 GHz spectroscopy - the increase in orientation selectivity in comparison with 94 GHz experiments - is discussed in detail. For this purpose, the resolution of 1H ENDOR spectra at 263 GHz is verified using a representative protein sample containing approximately 15 picomoles of a tyrosyl radical. Davies ENDOR spectra recorded at 5 K reveal previously obscured spectral features, which are interpreted by spectral simulations aided by DFT calculations. Our analysis shows that seven internal proton couplings are detectable for this specific radical if sufficient orientation selectivity is achieved. The results prove the fidelity of 263 GHz experiments in reporting orientation-selected 1H ENDOR spectra and demonstrate that new significant information can be uncovered in complex molecular systems, owing to the enhanced resolution combined with high absolute sensitivity and no compromise in acquisition time.
Collapse
Affiliation(s)
- Igor Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Isabel Bejenke
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Annemarie Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Chemistry, Georg-August University of Göttingen, Tammannstr. 2, Göttingen, Germany
| | - Müge Kasanmascheff
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Igor Gromov
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Ion Prisecaru
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Peter Höfer
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Markus Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Chemistry, Georg-August University of Göttingen, Tammannstr. 2, Göttingen, Germany.
| |
Collapse
|
26
|
Giannoulis A, Yang Y, Gong YJ, Tan X, Feintuch A, Carmieli R, Bahrenberg T, Liu Y, Su XC, Goldfarb D. DEER distance measurements on trityl/trityl and Gd(iii)/trityl labelled proteins. Phys Chem Chem Phys 2019; 21:10217-10227. [DOI: 10.1039/c8cp07249c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Trityl–trityl and trityl–Gd(iii) DEER distance measurements in proteins are performed using a new trityl spin label affording thioether–protein conjugation.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yin Yang
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Akiva Feintuch
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Raanan Carmieli
- Department of Chemical Research Support
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering
- Nankai University
- Tianjin 300071
- China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
27
|
Greene BL, Stubbe J, Nocera DG. Photochemical Rescue of a Conformationally Inactivated Ribonucleotide Reductase. J Am Chem Soc 2018; 140:15744-15752. [PMID: 30347141 DOI: 10.1021/jacs.8b07902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class Ia ribonucleotide reductase (RNR) of Escherichia coli contains an unusually stable tyrosyl radical cofactor in the β2 subunit (Y122•) necessary for nucleotide reductase activity. Upon binding the cognate α2 subunit, loaded with nucleoside diphosphate substrate and an allosteric/activity effector, a rate determining conformational change(s) enables rapid radical transfer (RT) within the active α2β2 complex from the Y122• site in β2 to the substrate activating cysteine residue (C439) in α2 via a pathway of redox active amino acids (Y122[β] ↔ W48[β]? ↔ Y356[β] ↔ Y731[α] ↔ Y730[α] ↔ C439[α]) spanning >35 Å. Ionizable residues at the α2β2 interface are essential in mediating RT, and therefore control activity. One of these mutations, E350X (where X = A, D, Q) in β2, obviates all RT, though the mechanism of control by which E350 mediates RT remains unclear. Herein, we utilize an E350Q-photoβ2 construct to photochemically rescue RNR activity from an otherwise inactive construct, wherein the initial RT event (Y122• → Y356) is replaced by direct photochemical radical generation of Y356•. These data present compelling evidence that E350 conveys allosteric information between the α2 and β2 subunits facilitating conformational gating of RT that specifically targets Y122• reduction, while the fidelity of the remainder of the RT pathway is retained.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
28
|
Gillet N, Elstner M, Kubař T. Coupled-perturbed DFTB-QM/MM metadynamics: Application to proton-coupled electron transfer. J Chem Phys 2018; 149:072328. [PMID: 30134697 DOI: 10.1063/1.5027100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new concept of free energy calculations of chemical reactions by means of extended sampling molecular dynamics simulations. Biasing potentials are applied on partial atomic charges, which may be combined with atomic coordinates either in a single collective variable or in multi-dimensional biasing simulations. The necessary additional gradients are obtained by solving coupled-perturbed equations within the approximative density-functional tight-binding method. The new computational scheme was implemented in a combination of Gromacs and Plumed. As a prospective application, proton-coupled electron transfer in a model molecular system is studied. Two collective variables are introduced naturally, one for the proton transfer and the other for the electron transfer. The results are in qualitative agreement with the extended free simulations performed for reference. Free energy minima as well as the mechanism of the process are identified correctly, while the topology of the transition region and the height of the energy barrier are only reproduced qualitatively. The application also illustrates possible difficulties with the new methodology. These may be inefficient sampling of spatial coordinates when atomic charges are biased exclusively and a decreased stability of the simulations. Still, the new approach represents a viable alternative for free energy calculations of a certain class of chemical reactions, for instance a proton-coupled electron transfer in proteins.
Collapse
Affiliation(s)
- Natacha Gillet
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
29
|
Calcium, conformational selection, and redox-active tyrosine YZ in the photosynthetic oxygen-evolving cluster. Proc Natl Acad Sci U S A 2018; 115:5658-5663. [PMID: 29752381 DOI: 10.1073/pnas.1800758115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In Photosystem II (PSII), YZ (Tyr161D1) participates in radical transfer between the chlorophyll donor and the Mn4CaO5 cluster. Under flashing illumination, the metal cluster cycles among five Sn states, and oxygen is evolved from water. The essential YZ is transiently oxidized and reduced on each flash in a proton-coupled electron transfer (PCET) reaction. Calcium is required for function. Of reconstituted divalent ions, only strontium restores oxygen evolution. YZ is predicted to hydrogen bond to calcium-bound water and to His190D1 in PSII structures. Here, we report a vibrational spectroscopic study of YZ radical and singlet in the presence of the metal cluster. The S2 state is trapped by illumination at 190 K; flash illumination then generates the S2YZ radical. Using reaction-induced FTIR spectroscopy and divalent ion depletion/substitution, we identify calcium-sensitive tyrosyl radical and tyrosine singlet bands in the S2 state. In calcium-containing PSII, two CO stretching bands are detected at 1,503 and 1,478 cm-1 These bands are assigned to two different radical conformers in calcium-containing PSII. At pH 6.0, the 1,503-cm-1 band shifts to 1,507 cm-1 in strontium-containing PSII, and the band is reduced in intensity in calcium-depleted PSII. These effects are consistent with a hydrogen-bonding interaction between the calcium site and one conformer of radical YZ. Analysis of the amide I region indicates that calcium selects for a PCET reaction in a subset of the YZ conformers, which are trapped in the S2 state. These results support the interpretation that YZ undergoes a redox-coupled conformational change, which is calcium dependent.
Collapse
|
30
|
Lee W, Kasanmascheff M, Huynh M, Quartararo A, Costentin C, Bejenke I, Nocera DG, Bennati M, Tommos C, Stubbe J. Properties of Site-Specifically Incorporated 3-Aminotyrosine in Proteins To Study Redox-Active Tyrosines: Escherichia coli Ribonucleotide Reductase as a Paradigm. Biochemistry 2018; 57:3402-3415. [PMID: 29630358 DOI: 10.1021/acs.biochem.8b00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Aminotyrosine (NH2Y) has been a useful probe to study the role of redox active tyrosines in enzymes. This report describes properties of NH2Y of key importance for its application in mechanistic studies. By combining the tRNA/NH2Y-RS suppression technology with a model protein tailored for amino acid redox studies (α3X, X = NH2Y), the formal reduction potential of NH2Y32(O•/OH) ( E°' = 395 ± 7 mV at pH 7.08 ± 0.05) could be determined using protein film voltammetry. We find that the Δ E°' between NH2Y32(O•/OH) and Y32(O•/OH) when measured under reversible conditions is ∼300-400 mV larger than earlier estimates based on irreversible voltammograms obtained on aqueous NH2Y and Y. We have also generated D6-NH2Y731-α2 of ribonucleotide reductase (RNR), which when incubated with β2/CDP/ATP generates the D6-NH2Y731•-α2/β2 complex. By multifrequency electron paramagnetic resonance (35, 94, and 263 GHz) and 34 GHz 1H ENDOR spectroscopies, we determined the hyperfine coupling (hfc) constants of the amino protons that establish RNH2• planarity and thus minimal perturbation of the reduction potential by the protein environment. The amount of Y in the isolated NH2Y-RNR incorporated by infidelity of the tRNA/NH2Y-RS pair was determined by a generally useful LC-MS method. This information is essential to the utility of this NH2Y probe to study any protein of interest and is employed to address our previously reported activity associated with NH2Y-substituted RNRs.
Collapse
Affiliation(s)
| | - Müge Kasanmascheff
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Michael Huynh
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | | | - Cyrille Costentin
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States.,Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591 , Université Paris Diderot, Sorbonne Paris Cité , Bâtiment Lavoisier, 15 rue Jean de Baïf , 75205 Paris Cedex 13 , France
| | - Isabel Bejenke
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 United States
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry , Am Fassberg 11 , Göttingen , 37077 Germany
| | - Cecilia Tommos
- Department of Biochemistry and Biophysics , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
31
|
Greene BL, Taguchi AT, Stubbe J, Nocera DG. Conformationally Dynamic Radical Transfer within Ribonucleotide Reductase. J Am Chem Soc 2017; 139:16657-16665. [PMID: 29037038 DOI: 10.1021/jacs.7b08192] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNR) catalyze the reduction of nucleotides to deoxynucleotides through a mechanism involving an essential cysteine based thiyl radical. In the E. coli class 1a RNR the thiyl radical (C439•) is a transient species generated by radical transfer (RT) from a stable diferric-tyrosyl radical cofactor located >35 Å away across the α2:β2 subunit interface. RT is facilitated by sequential proton-coupled electron transfer (PCET) steps along a pathway of redox active amino acids (Y122β ↔ [W48β?] ↔ Y356β ↔ Y731α ↔ Y730α ↔ C439α). The mutant R411A(α) disrupts the H-bonding environment and conformation of Y731, ostensibly breaking the RT pathway in α2. However, the R411A protein retains significant enzymatic activity, suggesting Y731 is conformationally dynamic on the time scale of turnover. Installation of the radical trap 3-amino tyrosine (NH2Y) by amber codon suppression at positions Y731 or Y730 and investigation of the NH2Y• trapped state in the active α2:β2 complex by HYSCORE spectroscopy validate that the perturbed conformation of Y731 in R411A-α2 is dynamic, reforming the H-bond between Y731 and Y730 to allow RT to propagate to Y730. Kinetic studies facilitated by photochemical radical generation reveal that Y731 changes conformation on the ns-μs time scale, significantly faster than the enzymatic kcat. Furthermore, the kinetics of RT across the subunit interface were directly assessed for the first time, demonstrating conformationally dependent RT rates that increase from 0.6 to 1.6 × 104 s-1 when comparing wild type to R411A-α2, respectively. These results illustrate the role of conformational flexibility in modulating RT kinetics by targeting the PCET pathway of radical transport.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Alexander T Taguchi
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
32
|
Nick TU, Ravichandran KR, Stubbe J, Kasanmascheff M, Bennati M. Spectroscopic Evidence for a H Bond Network at Y 356 Located at the Subunit Interface of Active E. coli Ribonucleotide Reductase. Biochemistry 2017. [PMID: 28640584 DOI: 10.1021/acs.biochem.7b00462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction catalyzed by E. coli ribonucleotide reductase (RNR) composed of α and β subunits that form an active α2β2 complex is a paradigm for proton-coupled electron transfer (PCET) processes in biological transformations. β2 contains the diferric tyrosyl radical (Y122·) cofactor that initiates radical transfer (RT) over 35 Å via a specific pathway of amino acids (Y122· ⇆ [W48] ⇆ Y356 in β2 to Y731 ⇆ Y730 ⇆ C439 in α2). Experimental evidence exists for colinear and orthogonal PCET in α2 and β2, respectively. No mechanistic model yet exists for the PCET across the subunit (α/β) interface. Here, we report unique EPR spectroscopic features of Y356·-β, the pathway intermediate generated by the reaction of 2,3,5-F3Y122·-β2/CDP/ATP with wt-α2, Y731F-α2, or Y730F-α2. High field EPR (94 and 263 GHz) reveals a dramatically perturbed g tensor. [1H] and [2H]-ENDOR reveal two exchangeable H bonds to Y356·: a moderate one almost in-plane with the π-system and a weak one. DFT calculation on small models of Y· indicates that two in-plane, moderate H bonds (rO-H ∼1.8-1.9 Å) are required to reproduce the gx value of Y356· (wt-α2). The results are consistent with a model, in which a cluster of two, almost symmetrically oriented, water molecules provide the two moderate H bonds to Y356· that likely form a hydrogen bond network of water molecules involved in either the reversible PCET across the subunit interface or in H+ release to the solvent during Y356 oxidation.
Collapse
Affiliation(s)
- Thomas U Nick
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Kanchana R Ravichandran
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Müge Kasanmascheff
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany
| | - Marina Bennati
- Research Group Electron-Spin Resonance Spectroscopy, Max Planck Institute for Biophysical Chemistry , 37077 Göttingen, Germany.,Department of Chemistry, University of Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
33
|
Ravichandran KR, Zong AB, Taguchi AT, Nocera DG, Stubbe J, Tommos C. Formal Reduction Potentials of Difluorotyrosine and Trifluorotyrosine Protein Residues: Defining the Thermodynamics of Multistep Radical Transfer. J Am Chem Soc 2017; 139:2994-3004. [PMID: 28171730 DOI: 10.1021/jacs.6b11011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox-active tyrosines (Ys) play essential roles in enzymes involved in primary metabolism including energy transduction and deoxynucleotide production catalyzed by ribonucleotide reductases (RNRs). Thermodynamic characterization of Ys in solution and in proteins remains a challenge due to the high reduction potentials involved and the reactive nature of the radical state. The structurally characterized α3Y model protein has allowed the first determination of formal reduction potentials (E°') for a Y residing within a protein (Berry, B. W.; Martı́nez-Rivera, M. C.; Tommos, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9739-9743). Using Schultz's technology, a series of fluorotyrosines (FnY, n = 2 or 3) was site-specifically incorporated into α3Y. The global protein properties of the resulting α3(3,5)F2Y, α3(2,3,5)F3Y, α3(2,3)F2Y and α3(2,3,6)F3Y variants are essentially identical to those of α3Y. A protein film square-wave voltammetry approach was developed to successfully obtain reversible voltammograms and E°'s of the very high-potential α3FnY proteins. E°'(pH 5.5; α3FnY(O•/OH)) spans a range of 1040 ± 3 mV to 1200 ± 3 mV versus the normal hydrogen electrode. This is comparable to the potentials of the most oxidizing redox cofactors in nature. The FnY analogues, and the ability to site-specifically incorporate them into any protein of interest, provide new tools for mechanistic studies on redox-active Ys in proteins and on functional and aberrant hole-transfer reactions in metallo-enzymes. The former application is illustrated here by using the determined α3FnY ΔE°'s to model the thermodynamics of radical-transfer reactions in FnY-RNRs and to experimentally test and support the key prediction made.
Collapse
Affiliation(s)
| | - Allan B Zong
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| | | | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University , 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | - Cecilia Tommos
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Hwang H, McCaslin TG, Hazel A, Pagba CV, Nevin CM, Pavlova A, Barry BA, Gumbart JC. Redox-Driven Conformational Dynamics in a Photosystem-II-Inspired β-Hairpin Maquette Determined through Spectroscopy and Simulation. J Phys Chem B 2017; 121:3536-3545. [DOI: 10.1021/acs.jpcb.6b09481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hyea Hwang
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tyler G. McCaslin
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anthony Hazel
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Cynthia V. Pagba
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christina M. Nevin
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bridgette A. Barry
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|