1
|
Lu Y, Huang YF. Spectroscopically Elucidating the Local Proton-Coupled Electron Transfer Loop from Amino to Nitro Groups via the Au Surface in a N 2 Atmosphere. Anal Chem 2024. [PMID: 39530224 DOI: 10.1021/acs.analchem.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proton-coupled electron transfer (PCET) has been significant in understanding the reactions in solution. In a solid-gas interface, it remains a challenge to identify electron transfer or proton transfer intermediates. Here, in a Au/N2 interface, we regulated and characterized the PCET from p-aminothiophenol (PATP) to p-nitrothiophenol (PNTP) in the plasmon-mediated conversion to p,p'-dimercaptoazobenzene by variable-temperature surface-enhanced Raman spectroscopy. The Raman bands of PATP and PNTP characteristically blue shifted and red shifted as the laser wavelength- and power density-regulated PCET from PATP to PNTP, respectively. These characteristic Raman band shifts were well reproduced by the density functional theoretical simulations of positively charged PATP and negatively charged PNTP, which explicitly evidenced the electron transfer intermediates of PATP or PNTP on the Au surface. PCET did not occur in the temperature cycle between 100 and 370 K without laser illumination. These results demonstrated a characteristic local PCET loop composed of electron transfer between PATP/PNTP and Au followed by intermolecular proton transfer between PATP and PNTP and the significance of conducting electron transfer on Au.
Collapse
Affiliation(s)
- Yang Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
2
|
Zhan X, Zhang L, Choi J, Tan X, Hong S, Wu TS, Xiong P, Soo YL, Hao L, Li MMJ, Xu L, Robertson AW, Jung Y, Sun X, Sun Z. A Universal Synthesis of Single-Atom Catalysts via Operando Bond Formation Driven by Electricity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401814. [PMID: 39269738 DOI: 10.1002/advs.202401814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Indexed: 09/15/2024]
Abstract
Single-atom catalysts (SACs), featuring highly uniform active sites, tunable coordination environments, and synergistic effects with support, have emerged as one of the most efficient catalysts for various reactions, particularly for electrochemical CO2 reduction (ECR). However, the scalability of SACs is restricted due to the limited choice of available support and problems that emerge when preparing SACs by thermal deposition. Here, an in situ reconstruction method for preparing SACs is developed with a variety of atomic sites, including nickel, cadmium, cobalt, and magnesium. Driven by electricity, different oxygen-containing metal precursors, such as MOF-74 and metal oxides, are directly atomized onto nitrogen-doped carbon (NC) supports, yielding SACs with variable metal active sites and coordination structures. The electrochemical force facilitates the in situ generation of bonds between the metal and the supports without the need for additional complex steps. A series of MNxOy (M denotes metal) SACs on NC have been synthesized and utilized for ECR. Among these, NiNxOy SACs using Ni-MOF-74 as a metal precursor exhibit excellent ECR performance. This universal and general SAC synthesis strategy at room temperature is simpler than most reported synthesis methods to date, providing practical guidance for the design of the next generation of high-performance SACs.
Collapse
Affiliation(s)
- Xinyu Zhan
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Libing Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junyoung Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xinyi Tan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing Key Laboratory of Environmental Science and Engineering, Beijing, 100081, China
| | - Song Hong
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Pei Xiong
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Leiduan Hao
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Molly Meng-Jung Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Liang Xu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Alex W Robertson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Yousung Jung
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaofu Sun
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenyu Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Lavate SS, Srivastava R. Exploring Flower-Structured Bifunctional VCu Layered Double Hydroxide and its Nanohybrid with g-C 3N 4 for Electrochemical and Photoelectrochemical Seawater Electrolysis. CHEMSUSCHEM 2024; 17:e202400774. [PMID: 38747265 DOI: 10.1002/cssc.202400774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Indexed: 10/22/2024]
Abstract
Seawater electrolysis holds great promise for sustainable green hydrogen generation, but its implementation is hindered by high energy consumption and electrode degradation. Two dimensional (2D) layered double hydroxide (LDH) exhibits remarkable stability, high catalytic activity, and excellent corrosion resistance in the harsh electrolytic environment. The synergistic effect between LDH and seawater ions enhances the oxygen evolution reaction, enabling efficient and sustainable green hydrogen generation. Here, we report a synthesis of low cost, novel 2D Vanadium Copper (VCu) LDH first time in the series of LDH's as a highly efficient bifunctional electrocatalyst. The electrochemical (EC) and photoelectrochemical (PEC) study of VCu LDH and VCu LDH/Graphite Carbon Nitride (g-C3N4) nanohybrid was performed in 0.5 M H2SO4 (acidic), 1 M KOH (basic), 0.5 M NaCl (artificial seawater), 0.5 M NaCl+1 M KOH (artificial alkaline seawater), real seawater and 1 M KOH+real seawater (alkaline real seawater) electrolyte medium. It was found that VCu LDH shows a remarkable lower overpotential of 72 mV hydrogen evolution reaction (HER) and 254 mV oxygen evolution reaction (OER) at current density of 10 mA/cm2 under alkaline real seawater electrolysis exhibiting bifunctional activity and also showing better stability.
Collapse
Affiliation(s)
- Sneha S Lavate
- Catalysis & Hydrogen Research Lab, Department of Petroleum Engineering School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382007
| | - Rohit Srivastava
- Catalysis & Hydrogen Research Lab, Department of Petroleum Engineering School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India, 382007
| |
Collapse
|
4
|
Wei J, Shao Y, Xu J, Yin F, Li Z, Qian H, Wei Y, Chang L, Han Y, Li J, Gan L. Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides. Nat Commun 2024; 15:9012. [PMID: 39424812 PMCID: PMC11489567 DOI: 10.1038/s41467-024-53310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Alkaline water electrolysis is a promising low-cost strategy for clean and sustainable hydrogen production but is largely limited by the sluggish anodic oxygen evolution reaction and the challenges in maintaining adequate separation between H2 and O2. Here, we reveal an anodic-cathodic sequential oxygen evolution process via electrochemical oxidation and subsequent reduction of Ni hydroxides, enabling much lower overpotentials than conventional anodic oxygen evolution. By using (isotope-labeled) differential electrochemical mass spectrometry and in situ Raman spectroscopy combined with density functional theory calculations, we evidence that the sequential oxygen evolution originates from the electrochemical oxidation of Ni hydroxides to NiOO- active species while undergoing a different, reductive step of NiOO- for the final release of O2 due to weakened Ni-O covalency. Based on this sequential process, we propose and demonstrate a hybrid water electrolysis and energy storage device, which enables time-decoupled hydrogen and oxygen evolution and electrochemical energy storage in the Ni hydroxides.
Collapse
Affiliation(s)
- Jie Wei
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yangfan Shao
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingbo Xu
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Fang Yin
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zejian Li
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Haitao Qian
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yinping Wei
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liang Chang
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yu Han
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jia Li
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
| | - Lin Gan
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
| |
Collapse
|
5
|
Chen L, Zhao W, Zhang J, Liu M, Jia Y, Wang R, Chai M. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403845. [PMID: 38940392 DOI: 10.1002/smll.202403845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.
Collapse
Affiliation(s)
- Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Juntao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Min Liu
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Yin Jia
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Ruzhi Wang
- Institute of Advanced Energy Materials and Devices, College of Material Science and Engineering; Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| |
Collapse
|
6
|
Li G, Li L, Zhang J, Shan S, Yuan C, Weng TC. Enhance the Proportion of Fe 3+ in NiFe-Layered Double Hydroxides by utilizing Citric Acid to Improve the Efficiency and Durability of the Oxygen Evolution Reaction. CHEMSUSCHEM 2024:e202401582. [PMID: 39307920 DOI: 10.1002/cssc.202401582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Indexed: 11/10/2024]
Abstract
NiFe-layered double hydroxides (NiFe-LDH) are a type of catalyst known for their exceptional catalytic performance during the oxygen evolution reaction (OER). In this study, citric acid was incorporated into the synthesis process of NiFe-LDH, resulting in the NiFe-LDH-CA catalyst with superior OER performance. The catalytic efficacy was evaluated using linear sweep voltammetry (LSV), which demonstrated a significant reduction in the overpotential for OER from 320 mV to 240 mV at a current density of 100 mA cm-2. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) indicate that the distribution of nickel valence states showed no significant difference between two samples. However, the NiFe-LDH-CA exhibits a markedly higher proportion of Fe3+ ions in its iron content. In-situ Raman spectroscopes reveal that Fe3+ broadens the redox potential of nickel and Pourbaix diagrams indicate that higher Fe3+ levels could facilitate the interaction with oxygen active sites. Based on the analysis of test data, we propose a hypothesis that the high proportion of Fe3+ in catalysts may accelerate the oxygen evolution process by modulating the redox potential of nickel and engaging with reactive oxygen species. This provides valuable insights into how to improve the reaction rate of nickel-based catalysts.
Collapse
Affiliation(s)
- Guoqi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200100, China
| | - Lin Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200100, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 200100, China
| | - Jihao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200100, China
| | - Shiran Shan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200100, China
| | - Chunze Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200100, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 200100, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200100, China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 200100, China
| |
Collapse
|
7
|
Nayak P, Singh AK, Nayak M, Kar S, Sahu K, Meena K, Topwal D, Indra A, Kar S. Structural modification of nickel tetra(thiocyano)corroles during electrochemical water oxidation. Dalton Trans 2024; 53:14922-14932. [PMID: 39194402 DOI: 10.1039/d4dt01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In this study, we present two fully characterized nickel tetrathiocyanocorroles, representing a novel class of 3d-metallocorroles. These nickel(II) ions form square planar complexes, exhibiting a d8-electronic configuration. These anionic complexes are stabilized by the electron-withdrawing SCN groups on the bipyrrole unit of the corrole. The reduced aromaticity in these anionic nickel(II) corrole complexes is evidenced by single crystal X-ray diffraction (XRD) data and a markedly altered absorption profile, with stronger Q bands compared to Soret bands. Notably, the UV-Vis and electrochemical data exhibit significant differences from previously reported nickel(II) corrole radical cation and nickel(II) porphyrin complexes. While these electrochemical data bear a resemblance to those of the anionic nickel(II) corrole by Gross et al., the UV-Vis data show substantial distinctions. Additionally, we explore the utilization of nickel(II)-corrole@CC (where CC denotes carbon cloth) as an electrocatalyst for the oxygen evolution reaction (OER) in an alkaline medium. During electrochemical water oxidation, the molecular catalyst is partially converted to nickel (oxy)hydroxide, Ni(O)OH. The structure reveals the coexistence of the molecular complex and Ni(O)OH in the active catalyst, achieving a turnover frequency (TOF) of 3.32 × 10-2 s-1. The synergy between the homogeneous and heterogeneous phases improves the OER activity, providing more active sites and edge sites and enhancing interfacial charge transfer.
Collapse
Affiliation(s)
- Panisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Ajit Kumar Singh
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Manisha Nayak
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Subhajit Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kasturi Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Kiran Meena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| | - Dinesh Topwal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
- Institute of Physics, Bhubaneswar 751005, India
| | - Arindam Indra
- Department of Chemistry, IIT(BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
8
|
Beglau THY, Fei Y, Janiak C. Microwave-Assisted Ultrafast Synthesis of Bimetallic Nickel-Cobalt Metal-Organic Frameworks for Application in the Oxygen Evolution Reaction. Chemistry 2024; 30:e202401644. [PMID: 38869378 DOI: 10.1002/chem.202401644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
Herein, a series of monometallic Ni-, Co- and Zn-MOFs and bimetallic NiCo-, NiZn- and CoZn-MOFs of formula M2(BDC)2DABCO and (M,M')2(BDC)2DABCO, respectively, (M, M'=metal) with the same pillar and layer linkers 1,4-diazabicyclo[2.2.2]octane (DABCO) and benzene-1,4-dicarboxylate (BDC) were prepared through a fast microwave-assisted thermal conversion synthesis method (MW) within only 12 min. In the bimetallic MOFs the ratio M:M' was 4 : 1. The mono- and bimetallic MOFs were selected to systematically explore the catalytic-activity of their derived metal oxide/hydroxides for the oxygen evolution reaction (OER). Among all tested bimetallic MOF-derived catalysts, the NiCoMOF exhibits superior catalytic activity for the OER with the lowest overpotentials of 301 mV and Tafel slopes of 42 mV dec-1 on a rotating disk glassy carbon electrode (RD-GCE) in 1 mol L-1 KOH electrolyte at a current density of 10 mA cm-2. In addition, NiCoMOF was insitu grown in just 25 min by the MW synthesis on the surface of nickel foam (NF) with, for example, a mass loading of 16.6 mgMOF/gNF, where overpotentials of 313 and 328 mV at current densities of 50 and 300 mA cm-2, respectively, were delivered and superior long-term stability for practical OER application. The low Tafel slope of 27 mV dec-1, as well as a low reaction resistance from electrochemical impedance spectroscopy (EIS) measurement (Rfar=2 Ω), confirm the excellent OER performance of this NiCoMOF/NF composite. During the electrocatalytic processes or even before upon KOH pre-treatment, the MOFs are transformed to the mixed-metal hydroxide phase α-/β-M(OH)2 which presents the active species in the reactions (turnover frequency TOF=0.252 s-1 at an overpotential of 320 mV). Compared to the TOF from β-M(OH)2 (0.002 s-1), our study demonstrates that a bimetallic MOF improves the electrocatalytic performance of the derived catalyst by giving an intimate and uniform mixture of the involved metals at the nanoscale.
Collapse
Affiliation(s)
- Thi Hai Yen Beglau
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Yanyan Fei
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| |
Collapse
|
9
|
Shah SS, Albadrani A, Fettouhi M, Aziz MA, Helal A. Synthesis and Oxygen Evolution Reaction Application of a Co-Cd Based Bimetallic Metal-Organic Framework. Chem Asian J 2024; 19:e202301039. [PMID: 38324734 DOI: 10.1002/asia.202301039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
In the realm of renewable energy technologies, the development of efficient and durable electrocatalysts is paramount, especially for applications like electrochemical water splitting. This research focuses on synthesizing a novel bimetallic metal-organic framework (BMMOF11) using earth-abundant elements, cobalt (Co) and cadmium (Cd). BMMOF11 showcases a distinctive structure with distorted octahedral chains of CoO and CdO, linked by benzene tricarboxylic acid (BTC). Our study primarily investigates the electrocatalytic efficiency of BMMOF11, particularly in water oxidation reactions. For practical analysis, BMMOF11 was anchored onto nickel foam, forming BMMOF11/NF, to evaluate its electrocatalytic properties. Electrochemical testing revealed that BMMOF11/NF begins water oxidation at an onset potential of 1.62 V versus RHE, demonstrating high activity with a lower overpotential of 0.4 V to achieve a current density of 10 mA/cm2. Moreover, BMMOF11/NF maintained stable water splitting performance, sustaining a current density of approximately 70 mA/cm2 under a voltage of 1.9 V relative to RHE. These findings indicate that BMMOF11/NF is a promising candidate for large-scale electrochemical water splitting, offering a blend of high activity and stability.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Ahmed Albadrani
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammed Fettouhi
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
10
|
Rao RR, Bucci A, Corby S, Moss B, Liang C, Gopakumar A, Stephens IEL, Lloret-Fillol J, Durrant JR. Unraveling the Role of Particle Size and Nanostructuring on the Oxygen Evolution Activity of Fe-Doped NiO. ACS Catal 2024; 14:11389-11399. [PMID: 39114087 PMCID: PMC11301624 DOI: 10.1021/acscatal.4c02329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Nickel-based oxides and oxyhydroxide catalysts exhibit state-of-the-art activity for the sluggish oxygen evolution reaction (OER) under alkaline conditions. A widely employed strategy to increase the gravimetric activity of the catalyst is to increase the active surface area via nanostructuring or decrease the particle size. However, the fundamental understanding about how tuning these parameters influences the density of oxidized species and their reaction kinetics remains unclear. Here, we use solution combustion synthesis, a low-cost and scalable approach, to synthesize a series of Fe0.1Ni0.9O samples from different precursor salts. Based on the precursor salt, the nanoparticle size can be changed significantly from ∼2.5 to ∼37 nm. The OER activity at pH 13 trends inversely with the particle size. Using operando time-resolved optical spectroscopy, we quantify the density of oxidized species as a function of potential and demonstrate that the OER kinetics exhibits a second-order dependence on the density of these species, suggesting that the OER mechanism relies on O-O coupling between neighboring oxidized species. With the decreasing particle size, the density of species accumulated is found to increase, and their intrinsic reactivity for the OER is found to decrease, attributed to the stronger binding of *O species (i.e., a cathodic shift of species energetics). This signifies that the high apparent OER activity per geometric area of the smaller nanoparticles is driven by their ability to accumulate a larger density of oxidized species. This study not only experimentally disentangles the influence of the density of oxidized species and intrinsic kinetics on the overall rate of the OER but also highlights the importance of tuning these parameters independently to develop more active OER catalysts.
Collapse
Affiliation(s)
- Reshma R. Rao
- Department
of Materials, Royal School of Mines, Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
- Grantham
Institute—Centre for Climate Change and the Environment, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Alberto Bucci
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Sacha Corby
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Benjamin Moss
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| | - Caiwu Liang
- Department
of Materials, Royal School of Mines, Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Aswin Gopakumar
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
| | - Ifan E. L. Stephens
- Department
of Materials, Royal School of Mines, Imperial
College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, Tarragona 43007, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig Lluıs Companys, 23, Barcelona 08010, Spain
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
11
|
Liu Y, Xiao L, Tan H, Zhang J, Dong C, Liu H, Du X, Yang J. Amorphous/Crystalline Phases Mixed Nanosheets Array Rich in Oxygen Vacancies Boost Oxygen Evolution Reaction of Spinel Oxides in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401504. [PMID: 38564787 DOI: 10.1002/smll.202401504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Indexed: 04/04/2024]
Abstract
As promising oxygen evolution reaction (OER) catalysts, spinel-type oxides face the bottleneck of weak adsorption for oxygen-containing intermediates, so it is challenging to make a further breakthrough in remarkably lowering the OER overpotential. In this study, a novel strategy is proposed to substantially enhance the OER activity of spinel oxides based on amorphous/crystalline phases mixed spinel FeNi2O4 nanosheets array, enriched with oxygen vacancies, in situ grown on a nickel foam (NF). This unique architecture is achieved through a one-step millisecond laser direct writing method. The presence of amorphous phases with abundant oxygen vacancies significantly enhances the adsorption of oxygen-containing intermediates and changes the rate-determining step from OH*→O* to O*→OOH*, which greatly reduces the thermodynamic energy barrier. Moreover, the crystalline phase interweaving with amorphous domains serves as a conductive shortcut to facilitate rapid electron transfer from active sites in the amorphous domain to NF, guaranteeing fast OER kinetics. Such an anodic electrode exhibits a nearly ten fold enhancement in OER intrinsic activity compared to the pristine counterpart. Remarkably, it demonstrates record-low overpotentials of 246 and 315 mV at 50 and 500 mA cm-2 in 1 m KOH with superior long-term stability, outperforming other NiFe-based spinel oxides catalysts.
Collapse
Affiliation(s)
- Ying Liu
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Liyang Xiao
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Haiwen Tan
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jingtong Zhang
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cunku Dong
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Hui Liu
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiwen Du
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jing Yang
- Institute of New Energy Materials, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
12
|
Wang FL, Tan JL, Jin ZY, Gu CY, Lv QX, Dong YW, Lv RQ, Dong B, Chai YM. In Situ Electrochemical Rapid Induction of Highly Active γ-NiOOH Species for Industrial Anion Exchange Membrane Water Electrolyzer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310064. [PMID: 38607265 DOI: 10.1002/smll.202310064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Limited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self-reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S-modified Ni oxyhydroxide (Fe/S-NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation-dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ-NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d-band center, decreasing the energy barrier of the rate-determining step (*O→*OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S-NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm-2 for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S-NiOOH//Pt/C-60 °C) can deliver 1000 mA cm-2 at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self-reconstruction strategy for high-performance AEM electrocatalysts for future hydrogen economy.
Collapse
Affiliation(s)
- Fu-Li Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jin-Long Tan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zheng-Yang Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chao-Yue Gu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qian-Xi Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yi-Wen Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Ren-Qing Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
13
|
Mondal R, Khan M, Ahmed SF, Mukherjee N. Electrochemically Grown Hole-Rich NiO(OH) Thin Films toward Hole-Mediated Very Fast and Selective Enzyme-Free Electrochemical Sensing of Dopamine under Simulated Environment. ACS APPLIED BIO MATERIALS 2024; 7:4062-4079. [PMID: 38831551 DOI: 10.1021/acsabm.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This work aimed to develop an enzyme-free semiconductor-assisted electrochemical technique for the selective detection of the neurotransmitter dopamine. In this case, electrochemically grown nickel oxyhydroxide [NiO(OH)] thin films were chosen to fabricate the sensing platform, i.e., the electrodes. Chronoamperometry was used to deposit the films on indium tin oxide (ITO) coated glass substrates. The films were thoroughly characterized to establish their structure, composition, phase purity, and electrochemical attributes. Electrochemical sensing characteristics were investigated by means of cyclic and differential pulse voltammetry, steady-state amperometry, and electrochemical impedance spectroscopy. The effects of several interfering agents like glucose, sodium chloride, methanol, hydrogen peroxide, and paracetamol were also studied on the detection attributes of dopamine. Significantly high value of sensitivity (11.87 μA μM-1 cm-2) was obtained for dopamine sensing that was associated with a limit of detection (LoD) of 0.22 μM of dopamine. However, the sensitivity (2.51 μA μM-1 cm-2) and LoD (1.20 μM) obtained for serotonin were inferior compared to those of dopamine. The performance of the electrode toward dopamine sensing was not compromised either in the presence of only serotonin or a series of other electroactive interfering agents, which makes the electrode very much dopamine selective. The dopamine response time was 200 ms, which is notably fast. Extensive studies on the effect of temperature, pH and scan rate on the detection of dopamine by the developed electrode material have also been carried out. The developed electrodes were also found to be notably stable for dopamine detection with a decay of only 6.6% in oxidation peak current density after the 50th cycle. Real-life application of the developed electrode material was checked with urine samples from adult male humans and yielded encouraging results.
Collapse
Affiliation(s)
- Rimpa Mondal
- Nanoscience Laboratory, Department of Physics, Aliah University, IIA/27 Newtown, Kolkata 700160, West Bengal, India
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Mohibul Khan
- Nanoscience Laboratory, Department of Physics, Aliah University, IIA/27 Newtown, Kolkata 700160, West Bengal, India
| | - Sk Faruque Ahmed
- Nanoscience Laboratory, Department of Physics, Aliah University, IIA/27 Newtown, Kolkata 700160, West Bengal, India
| | - Nillohit Mukherjee
- School of Advanced Materials, Green Energy and Sensor Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| |
Collapse
|
14
|
Yao Y, Zhao G, Guo X, Xiong P, Xu Z, Zhang L, Chen C, Xu C, Wu TS, Soo YL, Cui Z, Li MMJ, Zhu Y. Facet-Dependent Surface Restructuring on Nickel (Oxy)hydroxides: A Self-Activation Process for Enhanced Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:15219-15229. [PMID: 38775440 DOI: 10.1021/jacs.4c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Unraveling the catalyst surface structure and behavior during reactions is essential for both mechanistic understanding and performance optimization. Here we report a phenomenon of facet-dependent surface restructuring intrinsic to β-Ni(OH)2 catalysts during oxygen evolution reaction (OER), discovered by the correlative ex situ and operando characterization. The ex situ study after OER reveals β-Ni(OH)2 restructuring at the edge facets to form nanoporous Ni1-xO, which is Ni deficient containing Ni3+ species. Operando liquid transmission electron microscopy (TEM) and Raman spectroscopy further identify the active role of the intermediate β-NiOOH phase in both the OER catalysis and Ni1-xO formation, pinpointing the complete surface restructuring pathway. Such surface restructuring is shown to effectively increase the exposed active sites, accelerate Ni oxidation kinetics, and optimize *OH intermediate bonding energy toward fast OER kinetics, which leads to an extraordinary activity enhancement of ∼16-fold. Facilitated by such a self-activation process, the specially prepared β-Ni(OH)2 with larger edge facets exhibits a 470-fold current enhancement than that of the benchmark IrO2, demonstrating a promising way to optimize metal-(oxy)hydroxide-based catalysts.
Collapse
Affiliation(s)
- Yunduo Yao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Guangming Zhao
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Xuyun Guo
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Pei Xiong
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Longhai Zhang
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Changsheng Chen
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Chao Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Tai-Sing Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yun-Liang Soo
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Zhiming Cui
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Molly Meng-Jung Li
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|
15
|
Ghosalya MK, Talebi P, Singh H, Klyushin A, Kokkonen E, Alaoui Mansouri M, Huttula M, Cao W, Urpelainen S. Solar light driven atomic and electronic transformations in a plasmonic Ni@NiO/NiCO 3 photocatalyst revealed by ambient pressure X-ray photoelectron spectroscopy. Catal Sci Technol 2024; 14:3029-3040. [PMID: 38841155 PMCID: PMC11149490 DOI: 10.1039/d4cy00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/21/2024] [Indexed: 06/07/2024]
Abstract
This work employs ambient pressure X-ray photoelectron spectroscopy (APXPS) to delve into the atomic and electronic transformations of a core-shell Ni@NiO/NiCO3 photocatalyst - a model system for visible light active plasmonic photocatalysts used in water splitting for hydrogen production. This catalyst exhibits reversible structural and electronic changes in response to water vapor and solar simulator light. In this study, APXPS spectra were obtained under a 1 millibar water vapor pressure, employing a solar simulator with an AM 1.5 filter to measure spectral data under visible light illumination. The in situ APXPS spectra indicate that the metallic Ni core absorbs the light, exciting plasmons, and creates hot electrons that are subsequently utilized through hot electron injection in the hydrogen evolution reaction (HER) by NiCO3. Additionally, the data show that NiO undergoes reversible oxidation to NiOOH in the presence of water vapor and light. The present work also investigates the contribution of carbonate and its involvement in the photocatalytic reaction mechanism, shedding light on this seldom-explored aspect of photocatalysis. The APXPS results highlight the photochemical reduction of carbonates into -COOH, contributing to the deactivation of the photocatalyst. This work demonstrates the APXPS efficacy in examining photochemical reactions, charge transfer dynamics and intermediates in potential photocatalysts under near realistic conditions.
Collapse
Affiliation(s)
| | - Parisa Talebi
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Harishchandra Singh
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | | | - Esko Kokkonen
- MAX IV Laboratory, Lund University Box 118 Lund 22100 Sweden
| | | | - Marko Huttula
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Wei Cao
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| | - Samuli Urpelainen
- Nano and Molecular Systems Research Unit, University of Oulu FIN-90014 Finland
| |
Collapse
|
16
|
Galkina I, Faid AY, Jiang W, Scheepers F, Borowski P, Sunde S, Shviro M, Lehnert W, Mechler AK. Stability of Ni-Fe-Layered Double Hydroxide Under Long-Term Operation in AEM Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311047. [PMID: 38269475 DOI: 10.1002/smll.202311047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) is an attractive method for green hydrogen production. It allows the use of non-platinum group metal catalysts and can achieve performance comparable to proton exchange membrane water electrolyzers due to recent technological advances. While current systems already show high performances with available materials, research gaps remain in understanding electrode durability and degradation behavior. In this study, the performance and degradation tracking of a Ni3Fe-LDH-based single-cell is implemented and investigated through the correlation of electrochemical data using chemical and physical characterization methods. A performance stability of 1000 h, with a degradation rate of 84 µV h-1 at 1 A cm-2 is achieved, presenting the Ni3Fe-LDH-based cell as a stable and cost-attractive AEMWE system. The results show that the conductivity of the formed Ni-Fe-phase is one key to obtaining high electrolyzer performance and that, despite Fe leaching, change in anion-conducting binder compound, and morphological changes inside the catalyst bulk, the Ni3Fe-LDH-based single-cells demonstrate high performance and durability. The work reveals the importance of longer stability tests and presents a holistic approach of electrochemical tracking and post-mortem analysis that offers a guideline for investigating electrode degradation behavior over extended measurement periods.
Collapse
Affiliation(s)
- Irina Galkina
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | - Alaa Y Faid
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Wulyu Jiang
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | - Fabian Scheepers
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
| | | | - Svein Sunde
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Meital Shviro
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, CO, 80401, USA
| | - Werner Lehnert
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-14), 52425, Jülich, Germany
- RWTH Aachen University, Faculty of Mechanical Engineering, Modeling in Electrochemical Process Engineering, 52056, Aachen, Germany
| | - Anna K Mechler
- RWTH Aachen University, Electrochemical Reaction Engineering (AVT.ERT), 52056, Aachen, Germany
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Fundamentals of Electrochemistry (IEK-9), 52425, Jülich, Germany
- JARA-ENERGY, 52056, Aachen, Germany
| |
Collapse
|
17
|
Govind Rajan A, Martirez JMP, Carter EA. Strongly facet-dependent activity of iron-doped β-nickel oxyhydroxide for the oxygen evolution reaction. Phys Chem Chem Phys 2024; 26:14721-14733. [PMID: 38716632 DOI: 10.1039/d4cp00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Iron (Fe)-doped β-nickel oxyhydroxide (β-NiOOH) is a highly active, noble-metal-free electrocatalyst for the oxygen evolution reaction (OER), with the latter being the bottleneck in electrochemical water splitting for sustainable hydrogen production. The mechanisms underlying how the Fe dopant modulates this host material's water electro-oxidation activity are still not entirely clear. Here, we combine hybrid density functional theory (DFT) and Hubbard-corrected DFT to investigate the OER activity of the most thermodynamically favorable (and therefore, expected to be the majority) crystallographic facets of β-NiOOH, namely (0001) and (101̄0). By considering active sites involving both oxidation and reduction of the transition-metal active center during the redox cycle on these two different facets, we show that six-fold-lattice-coordinated Fe in β-NiOOH is redox inactive towards both oxidation and reduction while five-fold-lattice-coordinated Fe in β-NiOOH does exhibit redox activity. However, the determined redox activity of Fe (or lack of it) is not indicative of good (or bad) performance as a dopant on these two facets. Three of the four active sites investigated (oxo and hydroxo sites on (0001) and a hydrated site on (101̄0)) exhibit only a marginal (<0.1 V) decrease or increase in the thermodynamic overpotential upon doping with Fe. Only one of the redox-active sites investigated, the hydroxo site on (101̄0), exhibits a large attenuation in the thermodynamic overpotential upon doping (to ∼0.52 V from 0.86 V), although the doped overpotential is larger than that observed experimentally for Fe-doped NiOOH. Thus, although pure β-NiOOH facets containing four-, five-, or six-fold lattice-coordinated Ni sites have roughly equal OER activities, yielding similar OER onset potentials (shown in A. Govind Rajan, J. M. P. Martirez and E. A. Carter, J. Am. Chem. Soc., 2020, 142, 3600-3612), only those facets containing four-fold lattice-coordinated Fe (e.g., as shown in J. M. P. Martirez and E. A. Carter, J. Am. Chem. Soc., 2019, 141, 693-705) would be active under analogous conditions for the Fe-doped material. It follows that, while undoped β-NiOOH demonstrates a roughly facet-independent oxygen evolution activity, the activity of Fe-doped β-NiOOH strongly depends on the crystallographic facet. Our study further motivates the investigation of strategies for the selective growth of facets with low iron coordination number to enhance the water splitting activity of Fe-doped β-NiOOH.
Collapse
Affiliation(s)
- Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | | | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263, USA.
| |
Collapse
|
18
|
Ni Q, Zhu Z, Wang Y, Jiang C, Wang M, Zhang X. A pillar-layered Ni 2P-Ni 5P 4-CoP array derived from a metal-organic framework as a bifunctional catalyst for efficient overall water splitting. Dalton Trans 2024; 53:8732-8739. [PMID: 38712507 DOI: 10.1039/d4dt00839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Interfacial engineering emerges as a potent strategy for regulating the catalytic reactivity of metal phosphides. Developing a facile and cost-effective method to construct bifunctional metal phosphides for highly efficient electrochemical overall water splitting remains an essential and challenging issue. Here, a multiphase transition metal phosphide is constructed through the direct phosphorization of a Ni-Co metal-organic framework grown on nickel foam (Ni-Co-MOF/NF), which is prepared by utilizing nickel foam as conductive substrate and nickel source. The resulting transition metal phosphide manifests a pillar-layered morphology, wherein CoP, Ni2P, and Ni5P4 nanoparticles are embedded within each carbon sheet and these carbon sheets assemble into a pillar-shaped structure on the nickel foam (Ni2P-Ni5P4-CoP-C/NF). The heterogeneous Ni2P-Ni5P4-CoP-C/NF with multiple interfaces serves as a highly efficient bifunctional electrocatalyst with overpotentials of -100 mV and 293 mV in the hydrogen evolution reaction and oxygen evolution reaction, respectively, at 50 mA cm-2 in alkaline media. This superior catalytic performance should mainly be ascribed to its enriched active centers and multiphase synergy. When directly applied for alkaline overall water splitting, the Ni2P-Ni5P4-CoP-C/NF couple demonstrates satisfactory activity (1.55 V @10 mA cm-2) along with sustained durability over 18 hours. This method brings fresh enlightenment to the economical and controllable preparation of multi-metal phosphides for energy conversion.
Collapse
Affiliation(s)
- Qihang Ni
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Zixian Zhu
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Yan Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Chengyu Jiang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Min Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| | - Xiang Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, P. R. China.
| |
Collapse
|
19
|
Huang Q, Sheng H. Magnetic-Field-Induced Spin Regulation in Electrocatalytic Reactions. Chemistry 2024; 30:e202400352. [PMID: 38470164 DOI: 10.1002/chem.202400352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
The utilization of a magnetic field to manipulate spin states has emerged as a novel approach to enhance efficiency in electrocatalytic reactions, distinguishing from traditional strategies that focus on tuning activation energy barriers. Currently, this approach is specifically tailored to reactions where spin states change during the catalytic process, such as the oxidation of singlet H2O to triplet O2. In the magnetically enhanced oxygen evolution reaction (OER) procedure, the parallel spin alignment on the ferromagnetic catalyst was induced by the external magnetic field, facilitating the triplet O-O bonding, which is the rate limiting step in OER. This review centers on recent advancements in harnessing external magnetic fields to enhance OER performance, delving into mechanistic approaches for this magnetic promotion. Additionally, we provide a summary of magnetic field application in other electrocatalytic reactions, including oxygen reduction, methanol oxidation, and CO2 reduction.
Collapse
Affiliation(s)
- Qing Huang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hua Sheng
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
20
|
Lin PA, Yang B, Lin C, Fan Z, Chen Y, Zhang W, Cai B, Sun J, Zheng X, Zhang WH. A regulation strategy of self-assembly molecules for achieving efficient inverted perovskite solar cells. Phys Chem Chem Phys 2024; 26:14305-14316. [PMID: 38693910 DOI: 10.1039/d4cp00509k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Self-assembled monolayers (SAMs) have been successfully employed to enhance the efficiency of inverted perovskite solar cells (PSCs) and perovskite/silicon tandem solar cells due to their facile low-temperature processing and superior device performance. Nevertheless, depositing uniform and dense SAMs with high surface coverage on metal oxide substrates remains a critical challenge. In this work, we propose a holistic strategy to construct composite hole transport layers (HTLs) by co-adsorbing mixed SAMs (MeO-2PACz and 2PACz) onto the surface of the H2O2-modified NiOx layer. The results demonstrate that the conductivity of the NiOx bulk phase is enhanced due to the H2O2 modification, thereby facilitating carrier transport. Furthermore, the hydroxyl-rich NiOx surface promotes uniform and dense adsorption of mixed SAM molecules while enhancing their anchoring stability. In addition, the energy level alignment at the interface is improved due to the utilization of mixed SAMs in an optimized ratio. Furthermore, the perovskite film crystal growth is facilitated by the uniform and dense composite HTLs. As a result, the power conversion efficiency of PSCs based on composite HTLs is boosted from 22.26% to 23.16%, along with enhanced operational stability. This work highlights the importance of designing and constructing NiOx/SAM composite HTLs as an effective strategy for enhancing both the performance and stability of inverted PSCs.
Collapse
Affiliation(s)
- Pu-An Lin
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
- National Energy Novel Materials Center, Chengdu 610200, China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650000, China.
| | - Bo Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
- National Energy Novel Materials Center, Chengdu 610200, China
| | - Changqing Lin
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhenghui Fan
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
- National Energy Novel Materials Center, Chengdu 610200, China
| | - Yu Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Wenfeng Zhang
- Institute of Photovoltaic, Southwest Petroleum University, Chengdu 610500, China
| | - Bing Cai
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650000, China.
| | - Jie Sun
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
| | - Xiaojia Zheng
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China.
- National Energy Novel Materials Center, Chengdu 610200, China
| | - Wen-Hua Zhang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650000, China.
| |
Collapse
|
21
|
Wu YH, Janák M, Abdala PM, Borca CN, Wach A, Kierzkowska A, Donat F, Huthwelker T, Kuznetsov DA, Müller CR. Probing Surface Transformations of Lanthanum Nickelate Electrocatalysts during Oxygen Evolution Reaction. J Am Chem Soc 2024; 146:11887-11896. [PMID: 38529556 DOI: 10.1021/jacs.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Monitoring the spontaneous reconstruction of the surface of metal oxides under electrocatalytic reaction conditions is critical to identifying the active sites and establishing structure-activity relationships. Here, we report on a self-terminated surface reconstruction of Ruddlesden-Popper lanthanum nickel oxide (La2NiO4+δ) that occurs spontaneously during reaction with alkaline electrolyte species. Using a combination of high-resolution scanning transmission electron microscopy (HR-STEM), surface-sensitive X-ray photoelectron spectroscopy (XPS), and soft X-ray absorption spectroscopy (sXAS), as well as electrochemical techniques, we identify the structure of the reconstructed surface layer as an amorphous (oxy)hydroxide phase that features abundant under-coordinated nickel sites. No further amorphization of the crystalline oxide lattice (beyond the ∼2 nm thick layer formed) was observed during oxygen evolution reaction (OER) cycling experiments. Notably, the formation of the reconstructed surface layer increases the material's oxygen evolution reaction (OER) activity by a factor of 45 when compared to that of the pristine crystalline surface. In contrast, a related perovskite phase, i.e., LaNiO3, did not show noticeable surface reconstruction, and also no increase in its OER activity was observed. This work provides detailed insight into a surface reconstruction behavior dictated by the crystal structure of the parent oxide and highlights the importance of surface dynamics under reaction conditions.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Marcel Janák
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Paula M Abdala
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Anna Wach
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, 30-392 Kraków, Poland
| | - Agnieszka Kierzkowska
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas Huthwelker
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
22
|
van der Heijden O, Eggebeen JJJ, Trzesniowski H, Deka N, Golnak R, Xiao J, van Rijn M, Mom RV, Koper MTM. Li + Cations Activate NiFeOOH for Oxygen Evolution in Sodium and Potassium Hydroxide. Angew Chem Int Ed Engl 2024; 63:e202318692. [PMID: 38323697 DOI: 10.1002/anie.202318692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
The efficiency of electrolysis is reduced due to the sluggish oxygen evolution reaction (OER). Besides catalyst properties, electrocatalytic activity also depends on the interaction of the electrocatalyst with the electrolyte. Here, we show that the addition of small amounts of Li+ to Fe-free NaOH or KOH electrolytes activates NiFeOOH for the OER compared to single-cation electrolytes. Moreover, the activation was maintained when the solution was returned to pure NaOH. Importantly, we show that the origin of activation by Li+ cations is primarily non-kinetic in nature, as the OER onset for the mixed electrolyte does not change and the Tafel slope at low current density is ~30 mV/dec in both electrolytes. However, the increase of the apparent Tafel slope remains lower at increasing current densities in the presence of Li+. Based on electrochemical quartz crystal microbalance and in situ X-ray absorption spectroscopy measurements, we show that this reduction of non-kinetic effects is due to enhanced intercalation of sodium, water and hydroxide. This enhanced electrolyte penetration facilitates the OER, especially at higher current densities and for increased catalyst loading. Our work shows that mixed electrolytes where distinct cations can have different roles provide a simple and promising strategy towards improved OER rates.
Collapse
Affiliation(s)
- Onno van der Heijden
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Jordy J J Eggebeen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Hanna Trzesniowski
- Department of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489, Berlin, Germany
| | - Nipon Deka
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Ronny Golnak
- Department of Highly Sensitive X-Ray Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Jie Xiao
- Department of Highly Sensitive X-Ray Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109, Berlin, Germany
| | - Maartje van Rijn
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Rik V Mom
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, the Netherlands
| |
Collapse
|
23
|
Pan X, Yan M, Liu Q, Zhou X, Liao X, Sun C, Zhu J, McAleese C, Couture P, Sharpe MK, Smith R, Peng N, England J, Tsang SCE, Zhao Y, Mai L. Electric-field-assisted proton coupling enhanced oxygen evolution reaction. Nat Commun 2024; 15:3354. [PMID: 38637529 PMCID: PMC11026508 DOI: 10.1038/s41467-024-47568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
The discovery of Mn-Ca complex in photosystem II stimulates research of manganese-based catalysts for oxygen evolution reaction (OER). However, conventional chemical strategies face challenges in regulating the four electron-proton processes of OER. Herein, we investigate alpha-manganese dioxide (α-MnO2) with typical MnIV-O-MnIII-HxO motifs as a model for adjusting proton coupling. We reveal that pre-equilibrium proton-coupled redox transition provides an adjustable energy profile for OER, paving the way for in-situ enhancing proton coupling through a new "reagent"- external electric field. Based on the α-MnO2 single-nanowire device, gate voltage induces a 4-fold increase in OER current density at 1.7 V versus reversible hydrogen electrode. Moreover, the proof-of-principle external electric field-assisted flow cell for water splitting demonstrates a 34% increase in current density and a 44.7 mW/cm² increase in net output power. These findings indicate an in-depth understanding of the role of proton-incorporated redox transition and develop practical approach for high-efficiency electrocatalysis.
Collapse
Affiliation(s)
- Xuelei Pan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
| | - Mengyu Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China.
| | - Qian Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xunbiao Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Xiaobin Liao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Congli Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China
| | - Callum McAleese
- UK National Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Pierre Couture
- UK National Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Matthew K Sharpe
- UK National Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Richard Smith
- UK National Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Nianhua Peng
- UK National Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Jonathan England
- UK National Ion Beam Centre, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Yunlong Zhao
- Dyson School of Design Engineering, Imperial College London, London, SW7 2BX, UK.
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK.
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P.R. China.
| |
Collapse
|
24
|
Lin S, Habib MA, Joni MH, Dristy SA, Mandavkar R, Jeong JH, Chung YU, Lee J. CoFeBP Micro Flowers (MFs) for Highly Efficient Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:698. [PMID: 38668192 PMCID: PMC11053626 DOI: 10.3390/nano14080698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Hydrogen is one of the most promising green energy alternatives due to its high gravimetric energy density, zero-carbon emissions, and other advantages. In this work, a CoFeBP micro-flower (MF) electrocatalyst is fabricated as an advanced water-splitting electrocatalyst by a hydrothermal approach for hydrogen production with the highly efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The fabrication process of the CoFeBP MF electrocatalyst is systematically optimized by thorough investigations on various hydrothermal synthesis and post-annealing parameters. The best optimized CoFeBP MF electrode demonstrates HER/OER overpotentials of 20 mV and 219 mV at 20 mA/cm2. The CoFeBP MFs also exhibit a low 2-electrode (2-E) cell voltage of 1.60 V at 50 mA/cm2, which is comparable to the benchmark electrodes of Pt/C and RuO2. The CoFeBP MFs demonstrate excellent 2-E stability of over 100 h operation under harsh industrial operational conditions at 60 °C in 6 M KOH at a high current density of 1000 mA/cm2. The flower-like morphology can offer a largely increased electrochemical active surface area (ECSA), and systematic post-annealing can lead to improved crystallinity in CoFeBP MFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jae-Hun Jeong
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| | - Young-Uk Chung
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| |
Collapse
|
25
|
Kang H, He D, Yan X, Dao B, Williams NB, Elliott GI, Streater D, Nyakuchena J, Huang J, Pan X, Xiao X, Gu J. Cu Promoted the Dynamic Evolution of Ni-Based Catalysts for Polyethylene Terephthalate Plastic Upcycling. ACS Catal 2024; 14:5314-5325. [PMID: 38601783 PMCID: PMC11002824 DOI: 10.1021/acscatal.3c05509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
Upcycling plastic wastes into value-added chemicals is a promising approach to put end-of-life plastic wastes back into their ecocycle. As one of the polyesters that is used daily, polyethylene terephthalate (PET) plastic waste is employed here as the model substrate. Herein, a nickel (Ni)-based catalyst was prepared via electrochemically depositing copper (Cu) species on Ni foam (NiCu/NF). The NiCu/NF formed Cu/CuO and Ni/NiO/Ni(OH)2 core-shell structures before electrolysis and reconstructed into NiOOH and CuOOH/Cu(OH)2 active species during the ethylene glycol (EG) oxidation. After oxidation, the Cu and Ni species evolved into more reduced species. An indirect mechanism was identified as the main EG oxidation (EGOR) mechanism. In EGOR, NiCu60s/NF catalyst exhibited an optimal Faradaic efficiency (FE, 95.8%) and yield rate (0.70 mmol cm-2 h-1) for formate production. Also, over 80% FE of formate was achieved when a commercial PET plastic powder hydrolysate was applied. Furthermore, commercial PET plastic water bottle waste was employed as a substrate for electrocatalytic upcycling, and pure terephthalic acid (TPA) was recovered only after 1 h electrolysis. Lastly, density functional theory (DFT) calculation revealed that the key role of Cu was significantly reducing the Gibbs free-energy barrier (ΔG) of EGOR's rate-determining step (RDS), promoting catalysts' dynamic evolution, and facilitating the C-C bond cleavage.
Collapse
Affiliation(s)
- Hongxing Kang
- Department
of Chemistry and Biochemistry, San Diego
State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Dong He
- Department
of Physics, Wuhan University, Wuhan, Hubei 430072, China
| | - Xingxu Yan
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Benjamin Dao
- Department
of Chemistry, California State University,
Long Beach, Long Beach, California 90840, United States
| | - Nicholas B. Williams
- Department
of Chemistry and Biochemistry, San Diego
State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Gregory I. Elliott
- Department
of Chemistry and Biochemistry, San Diego
State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Daniel Streater
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - James Nyakuchena
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jier Huang
- Department
of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Xiaoqing Pan
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, Irvine, California 92697, United States
| | - Xiangheng Xiao
- Department
of Physics, Wuhan University, Wuhan, Hubei 430072, China
| | - Jing Gu
- Department
of Chemistry and Biochemistry, San Diego
State University, 5500 Campanile Drive, San Diego, California 92182, United States
| |
Collapse
|
26
|
Liang C, Katayama Y, Tao Y, Morinaga A, Moss B, Celorrio V, Ryan M, Stephens IEL, Durrant JR, Rao RR. Role of Electrolyte pH on Water Oxidation for Iridium Oxides. J Am Chem Soc 2024; 146:8928-8938. [PMID: 38526298 PMCID: PMC10996014 DOI: 10.1021/jacs.3c12011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Understanding the effect of noncovalent interactions of intermediates at the polarized catalyst-electrolyte interface on water oxidation kinetics is key for designing more active and stable electrocatalysts. Here, we combine operando optical spectroscopy, X-ray absorption spectroscopy (XAS), and surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe the effect of noncovalent interactions on the oxygen evolution reaction (OER) activity of IrOx in acidic and alkaline electrolytes. Our results suggest that the active species for the OER (Ir4.x+-*O) binds much stronger in alkaline compared with acid at low coverage, while the repulsive interactions between these species are higher in alkaline electrolytes. These differences are attributed to the larger fraction of water within the cation hydration shell at the interface in alkaline electrolytes compared to acidic electrolytes, which can stabilize oxygenated intermediates and facilitate long-range interactions between them. Quantitative analysis of the state energetics shows that although the *O intermediates bind more strongly than optimal in alkaline electrolytes, the larger repulsive interaction between them results in a significant weakening of *O binding with increasing coverage, leading to similar energetics of active states in acid and alkaline at OER-relevant potentials. By directly probing the electrochemical interface with complementary spectroscopic techniques, our work goes beyond conventional computational descriptors of the OER activity to explain the experimentally observed OER kinetics of IrOx in acidic and alkaline electrolytes.
Collapse
Affiliation(s)
- Caiwu Liang
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Yu Katayama
- Department
of Energy and Environmental Materials, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Osaka 567-0047, Ibaraki, Japan
| | - Yemin Tao
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Asuka Morinaga
- Department
of Energy and Environmental Materials, SANKEN (The Institute of Scientific
and Industrial Research), Osaka University, Mihogaoka 8-1, Osaka 567-0047, Ibaraki, Japan
| | - Benjamin Moss
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, White city campus, W12 0BZ London, United Kingdom
| | - Verónica Celorrio
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United
Kingdom
| | - Mary Ryan
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Ifan E. L. Stephens
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - James R. Durrant
- Department
of Chemistry, Centre for Processable Electronics, Imperial College London, White city campus, W12 0BZ London, United Kingdom
| | - Reshma R. Rao
- Department of
Materials, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| |
Collapse
|
27
|
Wang ZJ, Xie H, Jun SC, Li J, Wei LC, Fang YC, Liu S, Ma M, Xing Z. Heterostructured grafting of NiFe-layered double hydroxide@TiO 2 for boosting photoelectrochemical cathodic protection. MATERIALS HORIZONS 2024; 11:1808-1816. [PMID: 38323653 DOI: 10.1039/d3mh02134c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec-1, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.
Collapse
Affiliation(s)
- Zhi-Jun Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Hui Xie
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Jiang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Li Cheng Wei
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Yu Chen Fang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, P.R. China.
| | - Ming Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zheng Xing
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
28
|
Dang K, Liu S, Wu L, Tang D, Xue J, Wang J, Ji H, Chen C, Zhang Y, Zhao J. Bias distribution and regulation in photoelectrochemical overall water-splitting cells. Natl Sci Rev 2024; 11:nwae053. [PMID: 38666092 PMCID: PMC11044968 DOI: 10.1093/nsr/nwae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 04/28/2024] Open
Abstract
The water oxidation half-reaction at anodes is always considered the rate-limiting step of overall water splitting (OWS), but the actual bias distribution between photoanodes and cathodes of photoelectrochemical (PEC) OWS cells has not been investigated systematically. In this work, we find that, for PEC cells consisting of photoanodes (nickel-modified n-Si [Ni/n-Si] and α-Fe2O3) with low photovoltage (Vph < 1 V), a large portion of applied bias is exerted on the Pt cathode for satisfying the hydrogen evolution thermodynamics, showing a thermodynamics-controlled characteristic. In contrast, for photoanodes (TiO2 and BiVO4) with Vph > 1 V, the bias required for cathode activation can be significantly reduced, exhibiting a kinetics-controlled characteristic. Further investigations show that the bias distribution can be regulated by tuning the electrolyte pH and using alternative half-reaction couplings. Accordingly, a volcano plot is presented for the rational design of the overall reactions and unbiased PEC cells. Motivated by this, an unbiased PEC cell consisting of a simple Ni/n-Si photoanode and Pt cathode is assembled, delivering a photocurrent density of 5.3 ± 0.2 mA cm-2.
Collapse
Affiliation(s)
- Kun Dang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqin Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daojian Tang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Xue
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Wang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Dürr R, Maltoni P, Feng S, Ghorai S, Ström P, Tai CW, Araujo RB, Edvinsson T. Clearing Up Discrepancies in 2D and 3D Nickel Molybdate Hydrate Structures. Inorg Chem 2024; 63:2388-2400. [PMID: 38242537 PMCID: PMC10848204 DOI: 10.1021/acs.inorgchem.3c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/21/2024]
Abstract
When electrocatalysts are prepared, modification of the morphology is a common strategy to enhance their electrocatalytic performance. In this work, we have examined and characterized nanorods (3D) and nanosheets (2D) of nickel molybdate hydrates, which previously have been treated as the same material with just a variation in morphology. We thoroughly investigated the materials and report that they contain fundamentally different compounds with different crystal structures, chemical compositions, and chemical stabilities. The 3D nanorod structure exhibits the chemical formula NiMoO4·0.6H2O and crystallizes in a triclinic system, whereas the 2D nanosheet structures can be rationalized with Ni3MoO5-0.5x(OH)x·(2.3 - 0.5x)H2O, with a mixed valence of both Ni and Mo, which enables a layered crystal structure. The difference in structure and composition is supported by X-ray photoelectron spectroscopy, ion beam analysis, thermogravimetric analysis, X-ray diffraction, electron diffraction, infrared spectroscopy, Raman spectroscopy, and magnetic measurements. The previously proposed crystal structure for the nickel molybdate hydrate nanorods from the literature needs to be reconsidered and is here refined by ab initio molecular dynamics on a quantum mechanical level using density functional theory calculations to reproduce the experimental findings. Because the material is frequently studied as an electrocatalyst or catalyst precursor and both structures can appear in the same synthesis, a clear distinction between the two compounds is necessary to assess the underlying structure-to-function relationship and targeted electrocatalytic properties.
Collapse
Affiliation(s)
- Robin
N. Dürr
- Department
of Chemistry, Physical Chemistry, Ångström Laboratory, Uppsala University, Uppsala 751 20 ,Sweden
- Université
Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette91191 ,France
| | - Pierfrancesco Maltoni
- Department
of Materials Science and Engineering, Solid State Physics, Ångström
Laboratory, Uppsala University, Uppsala751 03 ,Sweden
| | - Shihui Feng
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91 ,Sweden
| | - Sagar Ghorai
- Department
of Materials Science and Engineering, Solid State Physics, Ångström
Laboratory, Uppsala University, Uppsala751 03 ,Sweden
| | - Petter Ström
- Department
of Physics and Astronomy, Applied Nuclear Physics, Ångström
Laboratory, Uppsala University, Uppsala751 20 ,Sweden
| | - Cheuk-Wai Tai
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 106 91 ,Sweden
| | - Rafael B. Araujo
- Department
of Materials Science and Engineering, Solid State Physics, Ångström
Laboratory, Uppsala University, Uppsala751 03 ,Sweden
| | - Tomas Edvinsson
- Department
of Materials Science and Engineering, Solid State Physics, Ångström
Laboratory, Uppsala University, Uppsala751 03 ,Sweden
- Energy Materials
Laboratory, Chemistry: School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
30
|
Magnier L, Cossard G, Martin V, Pascal C, Roche V, Sibert E, Shchedrina I, Bousquet R, Parry V, Chatenet M. Fe-Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. NATURE MATERIALS 2024; 23:252-261. [PMID: 38216724 DOI: 10.1038/s41563-023-01744-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
NiFe-based oxo-hydroxides are highly active for the oxygen evolution reaction but require complex synthesis and are poorly durable when deposited on foreign supports. Herein we demonstrate that easily processable, Earth-abundant and cheap Fe-Ni alloys spontaneously develop a highly active NiFe oxo-hydroxide surface, exsolved upon electrochemical activation. While the manufacturing process and the initial surface state of the alloys do not impact the oxygen evolution reaction performance, the growth/composition of the NiFe oxo-hydroxide surface layer depends on the alloying elements and initial atomic Fe/Ni ratio, hence driving oxygen evolution reaction activity. Whatever the initial Fe/Ni ratio of the Fe-Ni alloy (varying between 0.004 and 7.4), the best oxygen evolution reaction performance (beyond that of commercial IrO2) and durability was obtained for a surface Fe/Ni ratio between 0.2 and 0.4 and includes numerous active sites (high NiIII/NiII capacitive response) and high efficiency (high Fe/Ni ratio). This knowledge paves the way to active and durable Fe-Ni alloy oxygen-evolving electrodes for alkaline water electrolysers.
Collapse
Affiliation(s)
- Lucile Magnier
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Garance Cossard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Vincent Martin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Céline Pascal
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
| | - Virginie Roche
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Eric Sibert
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France
| | - Irina Shchedrina
- Pierre Chevenard Research Center, APERAM Alloys Imphy, Imphy, France
| | | | - Valérie Parry
- Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), SIMAP, Grenoble, France
| | - Marian Chatenet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering, Univ. Grenoble Alpes), LEPMI, Grenoble, France.
| |
Collapse
|
31
|
Wang Y, Xu M, Wang X, Ge R, Zhu YQ, Li AZ, Zhou H, Chen F, Zheng L, Duan H. Unraveling the potential-dependent structure evolution in CuO for electrocatalytic biomass valorization. Sci Bull (Beijing) 2023; 68:2982-2992. [PMID: 37798176 DOI: 10.1016/j.scib.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Electrocatalytic oxidation of renewable biomass (such as glucose) into high-value-added chemicals provides an effective approach to achieving carbon neutrality. CuO-derived materials are among the most promising electrocatalysts for biomass electrooxidation, but the identification of their active sites under electrochemical conditions remains elusive. Herein, we report a potential-dependent structure evolution over CuO in the glucose oxidation reaction (GOR). Through systematic electrochemical and spectroscopic characterizations, we unveil that CuO undergoes Cu2+/Cu+ and Cu3+/Cu2+ redox processes at increased potentials with successive generation of Cu(OH)2 and CuOOH as the active phases. In addition, these two structures have distinct activities in the GOR, with Cu(OH)2 being favorable for aldehyde oxidation, and CuOOH showed faster kinetics in carbon-carbon cleavage and alcohol/aldehyde oxidation. This work deepens our understanding of the dynamic reconstruction of Cu-based catalysts under electrochemical conditions and may guide rational material design for biomass valorization.
Collapse
Affiliation(s)
- Ye Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xi Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruixiang Ge
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Quan Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - An-Zhen Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China; Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China; Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Yang Y, Li J, Li C, Gong M, Wang X, Yang X, Wang H, Li YF, Liu ZP. The Identity of Nickel Peroxide as a Nickel Superoxyhydroxide for Enhanced Electrocatalysis. JACS AU 2023; 3:2964-2972. [PMID: 38034951 PMCID: PMC10685415 DOI: 10.1021/jacsau.3c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
Nickel peroxides are a class of stoichiometric oxidants that can selectively oxidize various organic compounds, but their molecular level structure remained elusive until now. Herein, we utilized structural prediction using the Stochastic Surface Walking method based on a neural network potential energy surface and advanced characterization using the as-synthesized nickel peroxide to unravel its chemical identity as the bridging superoxide containing nickel hydroxide, or nickel superoxyhydroxide. Superoxide incorporation tunes the local chemical environment of nickel and oxygen beyond the conventional Bode plot, offering a 6.4-fold increase in the electrocatalytic activity of urea oxidation. A volcanic dependence of the activity on the oxygen equivalents leads to the proposed active site of the Ni(OO)(OH)Ni five-membered ring. This work not only unveils the possible structures of nickel peroxides but also emphasizes the significance of tailoring the oxygen environment for advanced catalysis.
Collapse
Affiliation(s)
- Yizhou Yang
- School
of Mechanical and Power Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Jili Li
- Department
of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Chong Li
- School
of Mechanical and Power Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Ming Gong
- Department
of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xue Wang
- School
of Mechanical and Power Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Xuejing Yang
- School
of Mechanical and Power Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Hualin Wang
- School
of Mechanical and Power Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Ye-Fei Li
- Department
of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Key
Laboratory of Computational Physical Science, Fudan University, Shanghai 200438, P. R.
China
| | - Zhi-Pan Liu
- Department
of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and
Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Key
Laboratory of Computational Physical Science, Fudan University, Shanghai 200438, P. R.
China
| |
Collapse
|
33
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
34
|
Huang CJ, Xu HM, Shuai TY, Zhan QN, Zhang ZJ, Li GR. Modulation Strategies for the Preparation of High-Performance Catalysts for Urea Oxidation Reaction and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301130. [PMID: 37434036 DOI: 10.1002/smll.202301130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Indexed: 07/13/2023]
Abstract
Compared with the traditional electrolysis of water to produce hydrogen, urea-assisted electrolysis of water to produce hydrogen has significant advantages and has received extensive attention from researchers. Unfortunately, urea oxidation reaction (UOR) involves a complex six-electron transfer process leading to high overpotential, which forces researchers to develop high-performance UOR catalysts to drive the development of urea-assisted water splitting. Based on the UOR mechanism and extensive literature research, this review summarizes the strategies for preparing highly efficient UOR catalysts. First, the UOR mechanism is introduced and the characteristics of excellent UOR catalysts are pointed out. Aiming at this, the following modulation strategies are proposed to improve the catalytic performance based on summarizing various literature: 1) Accelerating the active phase formation to reduce initial potential; 2) Creating double active sites to trigger a new UOR mechanism; 3) Accelerating urea adsorption and promoting C─N bond cleavage to ensure the effective conduct of UOR; 4) Promoting the desorption of CO2 to improve stability and prevent catalyst poisoning; 5) Promoting electron transfer to overcome the inherent slow dynamics of UOR; 6) Increasing active sites or active surface area. Then, the application of UOR in electrochemical devices is summarized. Finally, the current deficiencies and future directions are discussed.
Collapse
Affiliation(s)
- Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
35
|
Park S, Liu L, Demirkır Ç, van der Heijden O, Lohse D, Krug D, Koper MTM. Solutal Marangoni effect determines bubble dynamics during electrocatalytic hydrogen evolution. Nat Chem 2023; 15:1532-1540. [PMID: 37563325 DOI: 10.1038/s41557-023-01294-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023]
Abstract
Understanding and manipulating gas bubble evolution during electrochemical water splitting is a crucial strategy for optimizing the electrode/electrolyte/gas bubble interface. Here gas bubble dynamics are investigated during the hydrogen evolution reaction on a well-defined platinum microelectrode by varying the electrolyte composition. We find that the microbubble coalescence efficiency follows the Hofmeister series of anions in the electrolyte. This dependency yields very different types of H2 gas bubble evolution in different electrolytes, ranging from periodic detachment of a single H2 gas bubble in sulfuric acid to aperiodic detachment of small H2 gas bubbles in perchloric acid. Our results indicate that the solutal Marangoni convection, induced by the anion concentration gradient developing during the reaction, plays a critical role at practical current density conditions. The resulting Marangoni force on the H2 gas bubble and the bubble departure diameter therefore depend on how surface tension varies with concentration for different electrolytes. This insight provides new avenues for controlling bubble dynamics during electrochemical gas bubble formation.
Collapse
Affiliation(s)
- Sunghak Park
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Luhao Liu
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | - Çayan Demirkır
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
| | | | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Dominik Krug
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
36
|
Jiang Q, Wang S, Zhang C, Sheng Z, Zhang H, Feng R, Ni Y, Tang X, Gu Y, Zhou X, Lee S, Zhang D, Song F. Active oxygen species mediate the iron-promoting electrocatalysis of oxygen evolution reaction on metal oxyhydroxides. Nat Commun 2023; 14:6826. [PMID: 37884536 PMCID: PMC10603066 DOI: 10.1038/s41467-023-42646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Iron is an extraordinary promoter to impose nickel/cobalt (hydr)oxides as the most active oxygen evolution reaction catalysts, whereas the synergistic effect is actively debated. Here, we unveil that active oxygen species mediate a strong electrochemical interaction between iron oxides (FeOxHy) and the supporting metal oxyhydroxides. Our survey on the electrochemical behavior of nine supporting metal oxyhydroxides (M(O)OH) uncovers that FeOxHy synergistically promotes substrates that can produce active oxygen species exclusively. Tafel slopes correlate with the presence and kind of oxygen species. Moreover, the oxygen evolution reaction onset potentials of FeOxHy@M(O)OH coincide with the emerging potentials of active oxygen species, whereas large potential gaps are present for intact M(O)OH. Chemical probe experiments suggest that active oxygen species could act as proton acceptors and/or mediators for proton transfer and/or diffusion in cooperative catalysis. This discovery offers a new insight to understand the synergistic catalysis of Fe-based oxygen evolution reaction electrocatalysts.
Collapse
Affiliation(s)
- Qu Jiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sihong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chaoran Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyang Sheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haoyue Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruohan Feng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanman Ni
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoan Tang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yichuan Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinhong Zhou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Seunghwa Lee
- Department of Chemical Engineering, Changwon National University, Changwon-Si, Gyeongsangnam-do, 51140, South Korea
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
37
|
Ibrahim KB, Shifa TA, Bordin M, Moretti E, Wu HL, Vomiero A. Confinement Accelerates Water Oxidation Catalysis: Evidence from In Situ Studies. SMALL METHODS 2023; 7:e2300348. [PMID: 37350490 DOI: 10.1002/smtd.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Indexed: 06/24/2023]
Abstract
Basic insight into the structural evolution of electrocatalysts under operating conditions is of substantial importance for designing water oxidation catalysts. The first-row transition metal-based catalysts present state-of-the-art oxygen evolution reaction (OER) performance under alkaline conditions. Apparently, confinement has become an exciting strategy to boost the performance of these catalysts. The van der Waals (vdW) gaps of transition metal dichalcogenides are acknowledged to serve as a suitable platform to confine the first-row transition metal catalysts. This study focuses on confining Ni(OH)2 nanoparticle in the vdW gaps of 2D exfoliated SnS2 (Ex-SnS2 ) to accelerate water oxidation and to guarantee long term durability in alkaline solutions. The trends in oxidation states of Ni are probed during OER catalysis. The in situ studies confirm that the confined system produces a favorable environment for accelerated oxygen gas evolution, whereas the un-confined system proceeds with a relatively slower kinetics. The outstanding OER activity and excellent stability, with an overpotential of 300 mV at 100 mA cm-2 and Tafel slope as low as 93 mV dec-1 results from the confinement effect. This study sheds light on the OER mechanism of confined catalysis and opens up a way to develop efficient and low-cost electrocatalysts.
Collapse
Affiliation(s)
- Kassa Belay Ibrahim
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Tofik Ahmed Shifa
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
| | - Matteo Bordin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
| | - Elisa Moretti
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
| | - Heng-Liang Wu
- Center for Condensed Matter Sciences, National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, Taipei, 10617, Taiwan
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Mestre, 30170, Italy
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, SE-97187, Sweden
| |
Collapse
|
38
|
Hao Y, Kang Y, Wang S, Chen Z, Lei C, Cao X, Chen L, Li Y, Liu Z, Gong M. Electrode/Electrolyte Synergy for Concerted Promotion of Electron and Proton Transfers toward Efficient Neutral Water Oxidation. Angew Chem Int Ed Engl 2023; 62:e202303200. [PMID: 37278979 DOI: 10.1002/anie.202303200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Neutral water oxidation is a crucial half-reaction for various electrochemical applications requiring pH-benign conditions. However, its sluggish kinetics with limited proton and electron transfer rates greatly impacts the overall energy efficiency. In this work, we created an electrode/electrolyte synergy strategy for simultaneously enhancing the proton and electron transfers at the interface toward highly efficient neutral water oxidation. The charge transfer was accelerated between the iridium oxide and in situ formed nickel oxyhydroxide on the electrode end. The proton transfer was expedited by the compact borate environment that originated from hierarchical fluoride/borate anions on the electrolyte end. These concerted promotions facilitated the proton-coupled electron transfer (PCET) events. Due to the electrode/electrolyte synergy, Ir-O and Ir-OO- intermediates could be directly detected by in situ Raman spectroscopy, and the rate-limiting step of Ir-O oxidation was determined. This synergy strategy can extend the scope of optimizing electrocatalytic activities toward more electrode/electrolyte combinations.
Collapse
Affiliation(s)
- Yaming Hao
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Yikun Kang
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Shaoyan Wang
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Zhe Chen
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Can Lei
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Xueting Cao
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Lin Chen
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Yefei Li
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Zhipan Liu
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Ming Gong
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| |
Collapse
|
39
|
Ochoa‐Martinez E, Bijani‐Chiquero S, Martínez de Yuso MDV, Sarkar S, Diaz‐Perez H, Mejia‐Castellanos R, Eickemeyer F, Grätzel M, Steiner U, Milić JV. Nanocrystalline Flash Annealed Nickel Oxide for Large Area Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302549. [PMID: 37259683 PMCID: PMC10427371 DOI: 10.1002/advs.202302549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The industrialization of perovskite solar cells requires adequate materials and processes to make them economically viable and environmentally sustainable. Despite promising results in terms of power conversion efficiency and operational stability, several hole-transport layers currently in use still need to prove their industrial feasibility. This work demonstrates the use of nanocrystalline nickel oxide produced through flash infrared annealing (FIRA), considerably reducing the materials cost, production time, energy, and the amount of solvents required for the hole transport layer. X-ray photoelectron spectroscopy reveals a better conversion to nickel oxide and a higher oxygen-to-nickel ratio for the FIRA films as compared to control annealing methods, resulting in higher device efficiency and operational stability. Planar inverted solar cells produced with triple cation perovskite absorber result in 16.7% power conversion efficiency for 1 cm2 devices, and 15.9% averaged over an area of 17 cm2 .
Collapse
Affiliation(s)
| | - Shanti Bijani‐Chiquero
- Unidad de NanotecnologíaCentro de Supercomputación y Bioinnovación SCBIUniversidad de MálagaCalle Severo Ochoa 34Campanillas (Málaga)29590Spain
| | - María del Valle Martínez de Yuso
- Laboratorio de Espectroscopía de Fotoelectrones de Rayos‐XServicios Centrales de Apoyo a la Investigación de la Universidad de MálagaMálaga29071Spain
| | - Subhrangsu Sarkar
- Department of Physics and Fribourg Center for NanomaterialsUniversity of FribourgChemin du Musée 3Fribourg1700Switzerland
| | - Horus Diaz‐Perez
- Adolphe Merkle InstituteChemin des Verdiers 4Fribourg1700Switzerland
- Departamento de Ingeniería EléctricaUniversidad Nacional Autónoma de HondurasCiudad UniversitariaTegucigalpa11101Honduras
| | - Roberto Mejia‐Castellanos
- Departamento de Materia CondensadaEscuela de Física, Universidad Nacional Autónoma de HondurasCiudad UniversitariaTegucigalpa11101Honduras
| | - Felix Eickemeyer
- Laboratory of Photonics and Interfaces, Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institut des Sciences et Ingénierie ChimiquesÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Ullrich Steiner
- Adolphe Merkle InstituteChemin des Verdiers 4Fribourg1700Switzerland
| | - Jovana V. Milić
- Adolphe Merkle InstituteChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
40
|
Dasgupta B, Hausmann JN, Beltrán-Suito R, Kalra S, Laun K, Zebger I, Driess M, Menezes PW. A Facile Molecular Approach to Amorphous Nickel Pnictides and Their Reconstruction to Crystalline Potassium-Intercalated γ-NiOOH x Enabling High-Performance Electrocatalytic Water Oxidation and Selective Oxidation of 5-Hydroxymethylfurfural. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301258. [PMID: 37086146 DOI: 10.1002/smll.202301258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
The low-temperature molecular precursor approach can be beneficial to conventional solid-state methods, which require high temperatures and lead to relatively large crystalline particles. Herein, a novel, single-step, room-temperature preparation of amorphous nickel pnictide (NiE; EP, As) nanomaterials is reported, starting from NaOCE(dioxane)n and NiBr2 (thf)1.5 . During application for the oxygen evolution reaction (OER), the pnictide anions leach, and both materials fully reconstruct into nickel(III/IV) oxide phases (similar to γ-NiOOH) comprising edge-sharing (NiO6 ) layers with intercalated potassium ions and a d-spacing of 7.27 Å. Remarkably, the intercalated γ-NiOOHx phases are nanocrystalline, unlike the amorphous nickel pnictide precatalysts. This unconventional reconstruction is fast and complete, which is ascribed to the amorphous nature of the nanostructured NiE precatalysts. The obtained γ-NiOOHx can effectively catalyse the OER for 100 h at a high current density (400 mA cm-2 ) and achieves outstandingly high current densities (>600 mA cm-2 ) for the selective, value-added oxidation of 5-hydroxymethylfurfural (HMF). The NiP-derived γ-NiOOHx shows a higher activity for both processes due to more available active sites. It is anticipated that the herein developed, effective, room-temperature molecular synthesis of amorphous nickel pnictide nanomaterials can be applied to other functional transition-metal pnictides.
Collapse
Affiliation(s)
- Basundhara Dasgupta
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Jan Niklas Hausmann
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Rodrigo Beltrán-Suito
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Shweta Kalra
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Konstantin Laun
- Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry: Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth Wilfred Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
41
|
He ZD, Tesch R, Eslamibidgoli MJ, Eikerling MH, Kowalski PM. Low-spin state of Fe in Fe-doped NiOOH electrocatalysts. Nat Commun 2023; 14:3498. [PMID: 37311755 DOI: 10.1038/s41467-023-38978-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
Doping with Fe boosts the electrocatalytic performance of NiOOH for the oxygen evolution reaction (OER). To understand this effect, we have employed state-of-the-art electronic structure calculations and thermodynamic modeling. Our study reveals that at low concentrations Fe exists in a low-spin state. Only this spin state explains the large solubility limit of Fe and similarity of Fe-O and Ni-O bond lengths measured in the Fe-doped NiOOH phase. The low-spin state renders the surface Fe sites highly active for the OER. The low-to-high spin transition at the Fe concentration of ~ 25% is consistent with the experimentally determined solubility limit of Fe in NiOOH. The thermodynamic overpotentials computed for doped and pure materials, η = 0.42 V and 0.77 V, agree well with the measured values. Our results indicate a key role of the low-spin state of Fe for the OER activity of Fe-doped NiOOH electrocatalysts.
Collapse
Affiliation(s)
- Zheng-Da He
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Rebekka Tesch
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Mohammad J Eslamibidgoli
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Michael H Eikerling
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062, Aachen, Germany
| | - Piotr M Kowalski
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany.
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany.
| |
Collapse
|
42
|
Sun Y, Wu CR, Ding TY, Gu J, Yan JW, Cheng J, Zhang KHL. Direct observation of the dynamic reconstructed active phase of perovskite LaNiO 3 for the oxygen-evolution reaction. Chem Sci 2023; 14:5906-5911. [PMID: 37293652 PMCID: PMC10246674 DOI: 10.1039/d2sc07034k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/02/2023] [Indexed: 06/10/2023] Open
Abstract
Ni-based transition metal oxides are promising oxygen-evolution reaction (OER) catalysts due to their abundance and high activity. Identification and manipulation of the chemical properties of the real active phase on the catalyst surface is crucial to improve the reaction kinetics and efficiency of the OER. Herein, we used electrochemical-scanning tunnelling microscopy (EC-STM) to directly observe structural dynamics during the OER on LaNiO3 (LNO) epitaxial thin films. Based on comparison of dynamic topographical changes in different compositions of LNO surface termination, we propose that reconstruction of surface morphology originated from transition of Ni species on LNO surface termination during the OER. Furthermore, we showed that the change in surface topography of LNO was induced by Ni(OH)2/NiOOH redox transformation by quantifying STM images. Our findings demonstrate that in situ characterization for visualization and quantification of thin films is very important for revealing the dynamic nature of the interface of catalysts under electrochemical conditions. This strategy is crucial for in-depth understanding of the intrinsic catalytic mechanism of the OER and rational design of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Cheng-Rong Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Tian-Yi Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| | - Kelvin H L Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 China
| |
Collapse
|
43
|
Ghosh S, Dasgupta B, Kalra S, Ashton MLP, Yang R, Kueppers CJ, Gok S, Alonso EG, Schmidt J, Laun K, Zebger I, Walter C, Driess M, Menezes PW. Evolution of Carbonate-Intercalated γ-NiOOH from a Molecularly Derived Nickel Sulfide (Pre)Catalyst for Efficient Water and Selective Organic Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206679. [PMID: 36651137 DOI: 10.1002/smll.202206679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The development of a competent (pre)catalyst for the oxygen evolution reaction (OER) to produce green hydrogen is critical for a carbon-neutral economy. In this aspect, the low-temperature, single-source precursor (SSP) method allows the formation of highly efficient OER electrocatalysts, with better control over their structural and electronic properties. Herein, a transition metal (TM) based chalcogenide material, nickel sulfide (NiS), is prepared from a novel molecular complex [NiII (PyHS)4 ][OTf]2 (1) and utilized as a (pre)catalyst for OER. The NiS (pre)catalyst requires an overpotential of only 255 mV to reach the benchmark current density of 10 mA cm-2 and shows 63 h of chronopotentiometry (CP) stability along with over 95% Faradaic efficiency in 1 m KOH. Several ex situ measurements and quasi in situ Raman spectroscopy uncover that NiS irreversibly transformed to a carbonate-intercalated γ-NiOOH phase under the alkaline OER conditions, which serves as the actual active structure for the OER. Additionally, this in situ formed active phase successfully catalyzes the selective oxidation of alcohol, aldehyde, and amine-based organic substrates to value-added chemicals, with high efficiencies.
Collapse
Affiliation(s)
- Suptish Ghosh
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Basundhara Dasgupta
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Shweta Kalra
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Marten L P Ashton
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Ruotao Yang
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Christopher J Kueppers
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Sena Gok
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Eduardo Garcia Alonso
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Johannes Schmidt
- Department of Chemistry, Functional Materials, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Konstantin Laun
- Department of Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. PC14, 10623, Berlin, Germany
| | - Ingo Zebger
- Department of Chemistry, Physical Chemistry/Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Sekr. PC14, 10623, Berlin, Germany
| | - Carsten Walter
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Matthias Driess
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Prashanth W Menezes
- Department of Chemistry, Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
44
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
45
|
Pei Z, Tan H, Gu J, Lu L, Zeng X, Zhang T, Wang C, Ding L, Cullen PJ, Chen Z, Zhao S. A polymeric hydrogel electrocatalyst for direct water oxidation. Nat Commun 2023; 14:818. [PMID: 36781856 PMCID: PMC9925792 DOI: 10.1038/s41467-023-36532-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2023] [Indexed: 02/15/2023] Open
Abstract
Metal-free electrocatalysts represent a main branch of active materials for oxygen evolution reaction (OER), but they excessively rely on functionalized conjugated carbon materials, which substantially restricts the screening of potential efficient carbonaceous electrocatalysts. Herein, we demonstrate that a mesostructured polyacrylate hydrogel can afford an unexpected and exceptional OER activity - on par with that of benchmark IrO2 catalyst in alkaline electrolyte, together with a high durability and good adaptability in various pH environments. Combined theoretical and electrokinetic studies reveal that the positively charged carbon atoms within the carboxylate units are intrinsically active toward OER, and spectroscopic operando characterizations also identify the fingerprint superoxide intermediate generated on the polymeric hydrogel backbone. This work expands the scope of metal-free materials for OER by providing a new class of polymeric hydrogel electrocatalysts with huge extension potentials.
Collapse
Affiliation(s)
- Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2008, Australia.
| | - Hao Tan
- grid.59053.3a0000000121679639National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029 PR China
| | - Jinxing Gu
- grid.267033.30000 0004 0462 1680Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR USA
| | - Linguo Lu
- grid.267033.30000 0004 0462 1680Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR USA
| | - Xin Zeng
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Tianqi Zhang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Cheng Wang
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Luyao Ding
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Patrick J. Cullen
- grid.1013.30000 0004 1936 834XSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2008 Australia
| | - Zhongfang Chen
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA.
| | - Shenlong Zhao
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2008, Australia.
| |
Collapse
|
46
|
van der Heijden O, Park S, Eggebeen JJJ, Koper MTM. Non-Kinetic Effects Convolute Activity and Tafel Analysis for the Alkaline Oxygen Evolution Reaction on NiFeOOH Electrocatalysts. Angew Chem Int Ed Engl 2023; 62:e202216477. [PMID: 36533712 PMCID: PMC10108042 DOI: 10.1002/anie.202216477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
A large variety of nickel-based catalysts has been investigated for the oxygen evolution reaction (OER) in alkaline media. However, their reported activity, as well as Tafel slope values, vary greatly. To understand this variation, we studied electrodeposited Ni80 Fe20 OOH catalysts with different loadings at varying rotation rates, hydroxide concentrations, with or without sonication. We show that, at low current density (<5 mA cm-2 ), the Tafel slope value is ≈30 mV dec-1 for Ni80 Fe20 OOH. At higher polarization, the Tafel slope continuously increases and is dependent on rotation rate, loading, hydroxide concentration and sonication. These Tafel slope values are convoluted by non-kinetic effects, such as bubbles, potential-dependent changes in ohmic resistance and (internal) OH- gradients. As best practise, we suggest that Tafel slopes should be plotted vs. current or potential. In such a plot, it can be appreciated if there is a kinetic Tafel slope or if the observed Tafel slope is influenced by non-kinetic effects.
Collapse
Affiliation(s)
- Onno van der Heijden
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sunghak Park
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jordy J J Eggebeen
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
47
|
Trzesniowski H, Deka N, van der Heijden O, Golnak R, Xiao J, Koper MTM, Seidel R, Mom RV. Reversible and Irreversible Cation Intercalation in NiFeO x Oxygen Evolution Catalysts in Alkaline Media. J Phys Chem Lett 2023; 14:545-551. [PMID: 36629512 PMCID: PMC9870210 DOI: 10.1021/acs.jpclett.2c03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
For electrocatalysts with a layered structure, ion intercalation is a common phenomenon. Gaining reliable information about the intercalation of ions from the electrolyte is indispensable for a better understanding of the catalytic performance of these electrocatalysts. Here, we take a holistic approach for following intercalation processes by studying the dynamics of the catalyst, water molecules, and ions during intercalation using operando soft X-ray absorption spectroscopy (XAS). Sodium and oxygen K-edge and nickel L-edge spectra were used to investigate the Na+ intercalation in a Ni0.8Fe0.2Ox electrocatalyst during the oxygen evolution reaction (OER) in NaOH (0.1 M). The Na K-edge spectra show an irreversible intensity increase upon initial potential cycling and a reversible intensity increase at the intercalation potential, 1.45 VRHE, coinciding with an increase in the Ni oxidation state. Simultaneously, the O K-edge spectra show that the Na+ intercalation does not significantly impact the hydration of the catalyst.
Collapse
Affiliation(s)
- Hanna Trzesniowski
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109Berlin, Germany
| | - Nipon Deka
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Onno van der Heijden
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Ronny Golnak
- Department
of Highly Sensitive X-Ray Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109Berlin, Germany
| | - Jie Xiao
- Department
of Highly Sensitive X-Ray Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109Berlin, Germany
| | - Marc T. M. Koper
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Robert Seidel
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109Berlin, Germany
| | - Rik V. Mom
- Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| |
Collapse
|
48
|
Chen R, Liu S, Zhang Y. A nanoelectrode-based study of water splitting electrocatalysts. MATERIALS HORIZONS 2023; 10:52-64. [PMID: 36485037 DOI: 10.1039/d2mh01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of low-cost and efficient catalytic materials for key reactions like water splitting, CO2 reduction and N2 reduction is crucial for fulfilling the growing energy consumption demands and the pursuit of renewable and sustainable energy. Conventional electrochemical measurements at the macroscale lack the potential to characterize single catalytic entities and nanoscale surface features on the surface of a catalytic material. Recently, promising results have been obtained using nanoelectrodes as ultra-small platforms for the study of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) on innovative catalytic materials at the nanoscale. In this minireview, we summarize the recent progress in the nanoelectrode-based studies on the HER and OER on various nanostructured catalytic materials. These electrocatalysts can be generally categorized into two groups: 0-dimensional (0D) single atom/molecule/cluster/nanoparticles and 2-dimensional (2D) nanomaterials. Controlled growth as well as the electrochemical characterization of single isolated atoms, molecules, clusters and nanoparticles has been achieved on nanoelectrodes. Moreover, nanoelectrodes greatly enhanced the spatial resolution of scanning probe techniques, which enable studies at the surface features of 2D nanomaterials, including surface defects, edges and nanofacets at the boundary of a phase. Nanoelectrode-based studies on the catalytic materials can provide new insights into the reaction mechanisms and catalytic properties, which will facilitate the pursuit of sustainable energy and help to solve CO2 release issues.
Collapse
Affiliation(s)
- Ran Chen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Songqin Liu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuanjian Zhang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
49
|
Wu T, Sun Y, Ren X, Wang J, Song J, Pan Y, Mu Y, Zhang J, Cheng Q, Xian G, Xi S, Shen C, Gao HJ, Fisher AC, Sherburne MP, Du Y, Ager JW, Gracia J, Yang H, Zeng L, Xu ZJ. Reconstruction of Thiospinel to Active Sites and Spin Channels for Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207041. [PMID: 36281800 DOI: 10.1002/adma.202207041] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Water electrolysis is a promising technique for carbon neutral hydrogen production. A great challenge remains at developing robust and low-cost anode catalysts. Many pre-catalysts are found to undergo surface reconstruction to give high intrinsic activity in the oxygen evolution reaction (OER). The reconstructed oxyhydroxides on the surface are active species and most of them outperform directly synthesized oxyhydroxides. The reason for the high intrinsic activity remains to be explored. Here, a study is reported to showcase the unique reconstruction behaviors of a pre-catalyst, thiospinel CoFe2 S4 , and its reconstruction chemistry for a high OER activity. The reconstruction of CoFe2 S4 gives a mixture with both Fe-S component and active oxyhydroxide (Co(Fe)Ox Hy ) because Co is more inclined to reconstruct as oxyhydroxide, while the Fe is more stable in Fe-S component in a major form of Fe3 S4 . The interface spin channel is demonstrated in the reconstructed CoFe2 S4 , which optimizes the energetics of OER steps on Co(Fe)Ox Hy species and facilitates the spin sensitive electron transfer to reduce the kinetic barrier of O-O coupling. The advantage is also demonstrated in a membrane electrode assembly (MEA) electrolyzer. This work introduces the feasibility of engineering the reconstruction chemistry of the precatalyst for high performance and durable MEA electrolyzers.
Collapse
Affiliation(s)
- Tianze Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuanmiao Sun
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiao Ren
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiarui Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiajia Song
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yangdan Pan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianshuo Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Qiuzhen Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Guoyu Xian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, 1 Pesek Road, Singapore, 627833, Singapore
| | - Chengmin Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Adrian C Fisher
- Department of Chemical Engineering, University of Cambridge, Cambridge, CB2 3RA, UK
- The Cambridge Centre for Advanced Research and Education in Singapore, 1 CREATE Way, Singapore, 138602, Singapore
| | - Matthew P Sherburne
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
- Berkeley Educational Alliance for Research in Singapore Ltd., 1 CREATE Way, Singapore, 138602, Singapore
| | - Yonghua Du
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Joel W Ager
- Department of Materials Science and Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
- Berkeley Educational Alliance for Research in Singapore Ltd., 1 CREATE Way, Singapore, 138602, Singapore
| | - Jose Gracia
- MagnetoCat SL, General Polavieja 9 3I, Alicante, 03012, Spain
| | - Haitao Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
50
|
Tan P, Gao R, Zhang Y, Han N, Jiang Y, Xu M, Bao SJ, Zhang X. Electrostatically directed assembly of two-dimensional ultrathin Co2Ni-MOF/Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 630:363-371. [DOI: 10.1016/j.jcis.2022.10.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|