1
|
Kalaycioglu GD, Bor G, Yaghmur A. Simple-by-design approach for production of stabilizer-free cubosomes from phosphatidylglycerol and docosahexaenoic acid monoacylglycerol. J Colloid Interface Sci 2024; 675:825-835. [PMID: 39002233 DOI: 10.1016/j.jcis.2024.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Docosahexaenoic acid monoacylglycerol represents a promising lipid constituent in the development of drug nanocarriers owing to its amphiphilicity and the beneficial health effects of this docosahexaenoic acid precursor in various disorders including cancer and inflammatory diseases. Here, we describe the formation and characterization of simple-by-design and stabilizer-free lamellar and non-lamellar crystalline nanoparticles (vesicles and cubosomes, respectively) from binary mixtures of docosahexaenoic acid monoacylglycerol and phosphatidylglycerol, which is a ubiquitous amphiphilic component present in biological systems. At the physiological temperature of 37 °C, these single amphiphilic components tend to exhibit inverse hexagonal and lamellar liquid crystalline phases, respectively, on exposure to excess water. They can also be combined and dispersed in excess water by employing a high-energy emulsification method (by means of ultrasonication) to produce through an electrostatic stabilization mechanism colloidally stable nanodispersions. A colloidal transformation from vesicles to cubosomes was detected with increasing MAG-DHA content. Through use of synchrotron small-angle X-ray scattering, cryo-transmission electron microscopy, and nanoparticle tracking analysis, we report on the structural and morphological features, and size characteristics of these nanodispersions. Depending on the lipid composition, their internal liquid crystalline architectures were spanning from a lamellar (Lα) phase to biphasic features of coexisting inverse bicontinuous (Q2) cubic Pn3m and Im3m phases. Thus, a direct colloidal vesicle-cubosome transformation was detected by augmenting the concentration of docosahexaenoic acid monoacylglycerol. The produced cubosomes were thermally stable within the investigated temperature range of 5-60 °C. Collectively, our findings contribute to understanding of the imperative steps for production of stabilizer-free cubosomes from biocompatible lipids through a simple-by-design approach. We also discuss the potential therapeutic use and future implications for development of next-generation of multifunctional vesicles and cubosomes for co-delivery of docosahexaenoic acid and drugs in treatment of diseases.
Collapse
Affiliation(s)
- Gokce Dicle Kalaycioglu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Chemical Engineering, Hacettepe University, Beytepe 06800 Ankara, Turkey.
| | - Gizem Bor
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
2
|
Pushpa Ragini S, Dyett BP, Sarkar S, Zhai J, White JF, Banerjee R, Drummond CJ, Conn CE. A systematic study of the effect of lipid architecture on cytotoxicity and cellular uptake of cationic cubosomes. J Colloid Interface Sci 2024; 663:82-93. [PMID: 38394820 DOI: 10.1016/j.jcis.2024.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
HYPOTHESIS Lipid nanoparticles containing a cationic lipid are increasingly used in drug and gene delivery as they can display improved cellular uptake, enhanced loading for anionic cargo such as siRNA and mRNA or exhibit additional functionality such as cytotoxicity against cancer cells. This research study tests the hypothesis that the molecular structure of the cationic lipid influences the structure of the lipid nanoparticle, the cellular uptake, and the resultant cytotoxicity. EXPERIMENTS Three potentially cytotoxic cationic lipids, with systematic variations to the hydrophobic moiety, were designed and synthesised. All the three cationic lipids synthesised contain pharmacophores such as the bicyclic coumarin group (CCA12), the tricyclic etodolac moiety (ETD12), or the large pentacyclic triterpenoid "ursolic" group (U12) conjugated to a quaternary ammonium cationic lipid containing twin C12 chains. The cationic lipids were doped into monoolein cubosomes at a range of concentrations from 0.1 mol% to 5 mol% and the effect of the lipid molecular architecture on the cubosome phase behaviour was assessed using a combination of Small Angle X-Ray Scattering (SAXS), Dynamic Light Scattering (DLS), zeta-potential and cryo-Transmission Electron Microscopy (Cryo-TEM). The resulting cytotoxicity of these particles against a range of cancerous and non-cancerous cell-lines was assessed, along with their cellular uptake. FINDINGS The molecular architecture of the cationic lipid was linked to the internal nanostructure of the resulting cationic cubosomes with a transition to more curved cubic and hexagonal phases generally observed. Cubosomes formed from the cationic lipid CCA12 were found to have improved cellular uptake and significantly higher cytotoxicity than the cationic lipids ETD12 and U12 against the gastric cancer cell-line (AGS) at lipid concentrations ≥ 75 µg/mL. CCA12 cationic cubosomes also displayed reasonable cytotoxicity against the prostate cancer PC-3 cell-line at lipid concentrations ≥ 100 µg/mL. In contrast, 2.5 mol% ETD12 and 2.5 mol% U12 cubosomes were generally non-toxic against both cancerous and non-cancerous cell lines over the entire concentration range tested. The molecular architecture of the cationic lipid was found to influence the cubosome phase behaviour, the cellular uptake and the toxicity although further studies are necessary to determine the exact relationship between structure and cellular uptake across a range of cell lines.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Brendan P Dyett
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Sampa Sarkar
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jiali Zhai
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Calum J Drummond
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| | - Charlotte E Conn
- STEM College, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
3
|
Balakrishnan P, Gopi S. Revolutionizing transdermal drug delivery: unveiling the potential of cubosomes and ethosomes. J Mater Chem B 2024; 12:4335-4360. [PMID: 38619889 DOI: 10.1039/d3tb02927a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The area of drug delivery systems has witnessed significant advancements in recent years, with a particular focus on improving efficacy, stability, and patient compliance. Transdermal drug delivery offers numerous benefits compared to conventional methods of drug administration through the skin. It helps in avoiding gastric irritation, hepatic first-pass metabolism, and gastric degradation of the drug. It bypasses the gastrointestinal tract, eliminating the risk of first-pass metabolism and allowing drugs to be administered without being affected by pH, enzymes, or intestinal bacteria. Additionally, it allows for sustained release of the drug, is noninvasive, and enhances patient adherence to the treatment regimen. The transdermal drug delivery system (TDDS) can serve as an alternative route for drug administration in individuals who cannot tolerate oral medications, experience nausea, or are unconscious. When compared to intravenous, hypodermic, and other parenteral routes, TDDS stands out due to its ability to eliminate pain, reduce the risk of infection, and prevent disease transmission associated with needle reuse. Consequently, the overall patient compliance is significantly improved with the utilization of TDDS. Among the noteworthy developments are cubosomes and ethosomes, two distinct yet promising carriers that have garnered attention for their unique properties. In conclusion, this review synthesizes the current knowledge on cubosomes and ethosomes, shedding light on their individual strengths and potential synergies. The exploration of their application in various therapeutic areas underscores their versatility and establishes them as key players in the evolving landscape of drug delivery systems.
Collapse
Affiliation(s)
- Preetha Balakrishnan
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| | - Sreerag Gopi
- Molecules Biolabs Private Limited, First Floor, 3/634, Commercial Building Kinfra Konoor Road, Muringur, Vadakkummuri, Thrissur, Kerala Kinfra Park Koratti Mukundapuram, Thrissur, KL 680309, India.
| |
Collapse
|
4
|
Liu W, Lewis SE, di Lorenzo M, Squires AM. Development of Redox-Active Lyotropic Lipid Cubic Phases for Biosensing Platforms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:170-178. [PMID: 38113389 PMCID: PMC10786026 DOI: 10.1021/acs.langmuir.3c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Enzyme-based electrochemical biosensors play an important role in point-of-care diagnostics for personalized medicine. For such devices, lipid cubic phases (LCP) represent an attractive method to immobilize enzymes onto conductive surfaces with no need for chemical linking. However, research has been held back by the lack of effective strategies to stably co-immobilize enzymes with a redox shuttle that enhances the electrical connection between the enzyme redox center and the electrode. In this study, we show that a monoolein (MO) LCP system doped with an amphiphilic redox mediator (ferrocenylmethyl)dodecyldimethylammonium bromide (Fc12) can be used for enzyme immobilization to generate an effective biosensing platform. Small-angle X-ray scattering (SAXS) showed that MO LCP can incorporate Fc12 while maintaining the Pn3m symmetry morphology. Cyclic voltammograms of Fc12/MO showed quasi-reversible behavior, which implied that Fc12 was able to freely diffuse in the lipid membrane of LCP with a diffusion coefficient of 1.9 ± 0.2 × 10-8 cm2 s-1 at room temperature. Glucose oxidase (GOx) was then chosen as a model enzyme and incorporated into 0.2%Fc12/MO to evaluate the activity of the platform. GOx hosted in 0.2%Fc12/MO followed Michaelis-Menten kinetics toward glucose with a KM and Imax of 8.9 ± 0.5 mM and 1.4 ± 0.2 μA, respectively, and a linearity range of 2-17 mM glucose. Our results therefore demonstrate that GOx immobilized onto 0.2% Fc12/MO is a suitable platform for the electrochemical detection of glucose.
Collapse
Affiliation(s)
- Wanli Liu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Simon E. Lewis
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - Mirella di Lorenzo
- Department
of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.
| | - Adam M. Squires
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| |
Collapse
|
5
|
Brasnett C, Squires AM, Smith AJ, Seddon AM. Lipid doping of the sponge (L 3) mesophase. SOFT MATTER 2023; 19:6569-6577. [PMID: 37603381 DOI: 10.1039/d3sm00578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The polymorphism of lipid aggregates has long attracted detailed study due to the myriad factors that determine the final mesophase observed. This study is driven by the need to understand mesophase behaviour for a number of applications, such as drug delivery and membrane protein crystallography. In the case of the latter, the role of the so-called 'sponge' (L3) mesophase has been often noted, but not extensively studied by itself. The L3 mesophase can be formed in monoolein/water systems on the addition of butanediol to water, which partitions the headgroup region of the membrane, and decreases its elastic moduli. Like cubic mesophases, it is bicontinuous, but unlike them, has no long-range translational symmetry. In our present study, we show that the formation of the L3 phase can delicately depend on the addition of dopant lipids to the mesophase. While electrostatically neutral molecules similar in shape to monoolein (DOPE, cholesterol) have little effect on the general mesophase behaviour, others (DOPC, DDM) significantly reduce the composition at which it can form. Additionally, we show that by combining cholesterol with the anionic lipid DOPG, it is possible to form the largest stable L3 mesophases observed to date, with characteristic lengths over 220 Å.
Collapse
Affiliation(s)
| | - Adam M Squires
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Andrew J Smith
- Diamond House, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Fermi Ave., Didcot, OX11 0DE, UK
| | - Annela M Seddon
- School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK.
- Bristol Centre for Functional Nanomaterials, School of Physics, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, UK
| |
Collapse
|
6
|
Pilkington CP, Contini C, Barritt JD, Simpson PA, Seddon JM, Elani Y. A microfluidic platform for the controlled synthesis of architecturally complex liquid crystalline nanoparticles. Sci Rep 2023; 13:12684. [PMID: 37542147 PMCID: PMC10403506 DOI: 10.1038/s41598-023-39205-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Soft-matter nanoparticles are of great interest for their applications in biotechnology, therapeutic delivery, and in vivo imaging. Underpinning this is their biocompatibility, potential for selective targeting, attractive pharmacokinetic properties, and amenability to downstream functionalisation. Morphological diversity inherent to soft-matter particles can give rise to enhanced functionality. However, this diversity remains untapped in clinical and industrial settings, and only the simplest of particle architectures [spherical lipid vesicles and lipid/polymer nanoparticles (LNPs)] have been routinely exploited. This is partially due to a lack of appropriate methods for their synthesis. To address this, we have designed a scalable microfluidic hydrodynamic focusing (MHF) technology for the controllable, rapid, and continuous production of lyotropic liquid crystalline (LLC) nanoparticles (both cubosomes and hexosomes), colloidal dispersions of higher-order lipid assemblies with intricate internal structures of 3-D and 2-D symmetry. These particles have been proposed as the next generation of soft-matter nano-carriers, with unique fusogenic and physical properties. Crucially, unlike alternative approaches, our microfluidic method gives control over LLC size, a feature we go on to exploit in a fusogenic study with model cell membranes, where a dependency of fusion on particle diameter is evident. We believe our platform has the potential to serve as a tool for future studies involving non-lamellar soft nanoparticles, and anticipate it allowing for the rapid prototyping of LLC particles of diverse functionality, paving the way toward their eventual wide uptake at an industrial level.
Collapse
Affiliation(s)
- Colin P Pilkington
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK.
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | - Claudia Contini
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Joseph D Barritt
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Paul A Simpson
- Department of Life Sciences, Centre for Structural Biology, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - John M Seddon
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
7
|
Morin M, Björklund S, Nilsson EJ, Engblom J. Bicontinuous Cubic Liquid Crystals as Potential Matrices for Non-Invasive Topical Sampling of Low-Molecular-Weight Biomarkers. Pharmaceutics 2023; 15:2031. [PMID: 37631245 PMCID: PMC10459996 DOI: 10.3390/pharmaceutics15082031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Many skin disorders, including cancer, have inflammatory components. The non-invasive detection of related biomarkers could therefore be highly valuable for both diagnosis and follow up on the effect of treatment. This study targets the extraction of tryptophan (Trp) and its metabolite kynurenine (Kyn), two compounds associated with several inflammatory skin disorders. We furthermore hypothesize that lipid-based bicontinuous cubic liquid crystals could be efficient extraction matrices. They comprise a large interfacial area separating interconnected polar and apolar domains, allowing them to accommodate solutes with various properties. We concluded, using the extensively studied GMO-water system as test-platform, that the hydrophilic Kyn and Trp favored the cubic phase over water and revealed a preference for locating at the lipid-water interface. The interfacial area per unit volume of the matrix, as well as the incorporation of ionic molecules at the lipid-water interface, can be used to optimize the extraction of solutes with specific physicochemical characteristics. We also observed that the cubic phases formed at rather extreme water activities (>0.9) and that wearing them resulted in efficient hydration and increased permeability of the skin. Evidently, bicontinuous cubic liquid crystals constitute a promising and versatile platform for non-invasive extraction of biomarkers through skin, as well as for transdermal drug delivery.
Collapse
Affiliation(s)
- Maxim Morin
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Sebastian Björklund
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Emelie J. Nilsson
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| | - Johan Engblom
- Biofilms—Research Center for Biointerfaces, Malmö University, SE-205 06 Malmö, Sweden (S.B.); (E.J.N.)
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, SE-205 06 Malmö, Sweden
| |
Collapse
|
8
|
Quesada O, González-Nieves JE, Colón J, Maldonado-Hernández R, González-Freire C, Acevedo-Cintrón J, Rosado-Millán ID, Lasalde-Dominicci JA. Assessment of Purity, Functionality, Stability, and Lipid Composition of Cyclofos-nAChR-Detergent Complexes from Torpedo californica Using Lipid Matrix and Macroscopic Electrophysiology. J Membr Biol 2023; 256:271-285. [PMID: 37140614 PMCID: PMC10157581 DOI: 10.1007/s00232-023-00285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
The main objective of the present study was to find detergents that can maintain the functionality and stability of the Torpedo californica nicotinic acetylcholine receptor (Tc-nAChR). We examined the functionality, stability, and purity analysis of affinity-purified Tc-nAChR solubilized in detergents from the Cyclofos (CF) family [cyclofoscholine 4 (CF-4), cyclofoscholine 6 (CF-6), and cyclofloscholine 7 (CF-7)]. The functionality of the CF-Tc-nAChR-detergent complex (DC) was evaluated using the Two Electrode Voltage Clamp (TEVC) method. To assess stability, we used the florescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) methodology. We also performed a lipidomic analysis using Ultra-Performance Liquid Chromatography (UPLC) coupled to electrospray ionization mass spectrometry (ESI-MS/MS) to evaluate the lipid composition of the CF-Tc-nAChR-DCs. The CF-4-Tc-nAChR-DC displayed a robust macroscopic current (- 200 ± 60 nA); however, the CF-6-Tc-nAChR-DC and CF-7-Tc-nAChR-DC displayed significant reductions in the macroscopic currents. The CF-6-Tc-nAChR and CF-4-Tc-nAChR displayed higher fractional florescence recovery. Addition of cholesterol produced a mild enhancement of the mobile fraction on the CF-6-Tc-nAChR. The lipidomic analysis revealed that the CF-7-Tc-nAChR-DC displayed substantial delipidation, consistent with the lack of stability and functional response of this complex. Although the CF-6-nAChR-DC complex retained the largest amount of lipids, it showed a loss of six lipid species [SM(d16:1/18:0); PC(18:2/14:1); PC(14:0/18:1); PC(16:0/18:1); PC(20:5/20:4), and PC(20:4/20:5)] that are present in the CF-4-nAChR-DC. Overall, the CF-4-nAChR displayed robust functionality, significant stability, and the best purity among the three CF detergents; therefore, CF-4 is a suitable candidate to prepare Tc-nAChR crystals for structural studies.
Collapse
Affiliation(s)
- Orestes Quesada
- Department of Physical Sciences, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA.
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA.
- Molecular Science Center, University of Puerto Rico, San Juan, PR, USA.
| | | | - José Colón
- Department of Pharmaceutical Sciences, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA
- Molecular Science Center, University of Puerto Rico, San Juan, PR, USA
| | - Rafael Maldonado-Hernández
- Department of Biology, University of Puerto Rico, Ponce Campus, Ponce, PR, USA
- Molecular Science Center, University of Puerto Rico, San Juan, PR, USA
| | - Carol González-Freire
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Jesús Acevedo-Cintrón
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - Irvin D Rosado-Millán
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA
| | - José A Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, PR, USA.
- Department of Pharmaceutical Sciences, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, USA.
- Molecular Science Center, University of Puerto Rico, San Juan, PR, USA.
- Institute of Neurobiology, University of Puerto Rico, Medical Science Campus, San Juan, PR, USA.
| |
Collapse
|
9
|
Milogrodzka I, Nguyen Pham DT, Sama GR, Samadian H, Zhai J, de Campo L, Kirby NM, Scott TF, Banaszak Holl MM, van 't Hag L. Effect of Cholesterol on Biomimetic Membrane Curvature and Coronavirus Fusion Peptide Encapsulation. ACS NANO 2023; 17:8598-8612. [PMID: 37078604 DOI: 10.1021/acsnano.3c01095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Biomimetic cubic phases can be used for protein encapsulation in a variety of applications such as biosensors and drug delivery. Cubic phases with a high concentration of cholesterol and phospholipids were obtained herein. It is shown that the cubic phase structure can be maintained with a higher concentration of biomimetic membrane additives than has been reported previously. Opposing effects on the curvature of the membrane were observed upon the addition of phospholipids and cholesterol. Furthermore, the coronavirus fusion peptide significantly increased the negative curvature of the biomimetic membrane with cholesterol. We show that the viral fusion peptide can undergo structural changes leading to the formation of hydrophobic α-helices that insert into the lipid bilayer. This is of high importance, as a fusion peptide that induces increased negative curvature as shown by the formation of inverse hexagonal phases allows for greater contact area between two membranes, which is required for viral fusion to occur. The cytotoxicity assay showed that the toxicity toward HeLa cells was dramatically decreased when the cholesterol or peptide level in the nanoparticles increased. This suggests that the addition of cholesterol can improve the biocompatibility of the cubic phase nanoparticles, making them safer for use in biomedical applications. As the results, this work improves the potential for the biomedical end-use applications of the nonlamellar lipid nanoparticles and shows the need of systematic formulation studies due to the complex interplay of all components.
Collapse
Affiliation(s)
- Izabela Milogrodzka
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Duy Tue Nguyen Pham
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Gopal R Sama
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Hajar Samadian
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Kirrawee, NSW 2234, Australia
| | - Nigel M Kirby
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Timothy F Scott
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Mark M Banaszak Holl
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Leonie van 't Hag
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
10
|
Interplay of Hydropathy and Heterogeneous Diffusion in the Molecular Transport within Lamellar Lipid Mesophases. Pharmaceutics 2023; 15:pharmaceutics15020573. [PMID: 36839895 PMCID: PMC9959094 DOI: 10.3390/pharmaceutics15020573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Lipid mesophases are being intensively studied as potential candidates for drug-delivery purposes. Extensive experimental characterization has unveiled a wide palette of release features depending on the nature of the host lipids and of the guest molecule, as well as on the environmental conditions. However, only a few simulation works have addressed the matter, which hampers a solid rationalization of the richness of outcomes observed in experiments. Particularly, to date, there are no theoretical works addressing the impact of hydropathy on the transport of a molecule within lipid mesophases, despite the significant fraction of hydrophobic molecules among currently-available drugs. Similarly, the high heterogeneity of water mobility in the nanoscopic channels within lipid mesophases has also been neglected. To fill this gap, we introduce here a minimal model to account for these features in a lamellar geometry, and systematically study the role played by hydropathy and water-mobility heterogeneity by Brownian-dynamics simulations. We unveil a fine interplay between the presence of free-energy barriers, the affinity of the drug for the lipids, and the reduced mobility of water in determining the net molecular transport. More in general, our work is an instance of how multiscale simulations can be fruitfully employed to assist experiments in release systems based on lipid mesophases.
Collapse
|
11
|
Chan Park S, Ki Son H, Sharma G, Kim JC. Preparation of gold nanoparticles using monoolein cubic phase as a template. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Deruyver L, Rigaut C, Gomez-Perez A, Lambert P, Haut B, Goole J. In vitro Evaluation of Paliperidone Palmitate Loaded Cubosomes Effective for Nasal-to-Brain Delivery. Int J Nanomedicine 2023; 18:1085-1106. [PMID: 36883068 PMCID: PMC9985876 DOI: 10.2147/ijn.s397650] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/01/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction This work aimed to develop chitosan-coated cubosomal nanoparticles intended for nose-to-brain delivery of paliperidone palmitate. They were compared with standard and cationic cubosomal nanoparticles. This comparison relies on numerous classical in vitro tests and powder deposition within a 3D-printed nasal cast. Methods Cubosomal nanoparticles were prepared by a Bottom-up method followed by a spray drying process. We evaluated their particle size, polydispersity index, zeta-potential, encapsulation efficiency, drug loading, mucoaffinity properties and morphology. The RPMI 2650 cell line was used to assess the cytotoxicity and cellular permeation. An in vitro deposition test within a nasal cast completed these measurements. Results The selected chitosan-coated cubosomal nanoparticles loaded with paliperidone palmitate had a size of 305.7 ± 22.54 nm, their polydispersity index was 0.166 ± 0.022 and their zeta potential was +42.4 ± 0.2 mV. This formulation had a drug loading of 70% and an encapsulation efficiency of 99.7 ± 0.1%. Its affinity with mucins was characterized by a ΔZP of 20.93 ± 0.31. Its apparent permeability coefficient thought the RPMI 2650 cell line was 3.00E-05 ± 0.24E-05 cm/s. After instillation in a 3D-printed nasal cast, the fraction of the injected powder deposited in the olfactory region reached 51.47 ± 9.30% in the right nostril and 41.20 ± 4.59% in the left nostril, respectively. Conclusion The chitosan coated cubosomal formulation seems to be the most promising formulation for nose-to-brain delivery. Indeed, it has a high mucoaffinity and a significantly higher apparent permeability coefficient than the two other formulations. Finally, it reaches well the olfactory region.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de pharmacie, Université libre de Bruxelles, Brussels, Belgium
| | - Clément Rigaut
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | | | - Pierre Lambert
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Benoit Haut
- Transfers, Interfaces and Processes (TIPs), École Polytechnique de Bruxelles, Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et Biopharmacie, Faculté de pharmacie, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
13
|
Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. J Colloid Interface Sci 2022; 620:419-430. [DOI: 10.1016/j.jcis.2022.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/14/2022]
|
14
|
Barriga HM, Pence IJ, Holme MN, Doutch JJ, Penders J, Nele V, Thomas MR, Carroni M, Stevens MM. Coupling Lipid Nanoparticle Structure and Automated Single-Particle Composition Analysis to Design Phospholipase-Responsive Nanocarriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200839. [PMID: 35358374 PMCID: PMC7615489 DOI: 10.1002/adma.202200839] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Lipid nanoparticles (LNPs) are versatile structures with tunable physicochemical properties that are ideally suited as a platform for vaccine delivery and RNA therapeutics. A key barrier to LNP rational design is the inability to relate composition and structure to intracellular processing and function. Here Single Particle Automated Raman Trapping Analysis (SPARTA) is combined with small-angle X-ray and neutron scattering (SAXS/SANS) techniques to link LNP composition with internal structure and morphology and to monitor dynamic LNP-phospholipase D (PLD) interactions. This analysis demonstrates that PLD, a key intracellular trafficking mediator, can access the entire LNP lipid membrane to generate stable, anionic LNPs. PLD activity on vesicles with matched amounts of enzyme substrate is an order of magnitude lower, indicating that the LNP lipid membrane structure can be used to control enzyme interactions. This represents an opportunity to design enzyme-responsive LNP solutions for stimuli-responsive delivery and diseases where PLD is dysregulated.
Collapse
Affiliation(s)
- Hanna M.G. Barriga
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Isaac J. Pence
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Margaret N. Holme
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - James J. Doutch
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory Didcot OX11 ODE, UK
| | - Jelle Penders
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Valeria Nele
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Michael R. Thomas
- Department of Materials, Department of Bioengineering,and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Marta Carroni
- Department of Biochemistry and Biophysics, Science for Life Laboratory Stockholm University, Stockholm 171 65, Sweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm SE-171 77, Sweden
| |
Collapse
|
15
|
Mertz N, Bock F, Østergaard J, Yaghmur A, Weng Larsen S. Investigation of diclofenac release and dynamic structural behavior of non-lamellar liquid crystal formulations during in situ formation by UV-Vis imaging and SAXS. Int J Pharm 2022; 623:121880. [PMID: 35661744 DOI: 10.1016/j.ijpharm.2022.121880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
In situ formation of high viscous inverse lyotropic non-lamellar liquid crystalline phases is a promising approach for sustained drug delivery in the joint. The in situ forming process on exposure of two diclofenac-loaded preformulations to aqueous media was characterized with respect to depot size and shape, initial release and structural transitions using UV-Vis imaging and spatially and time-resolved synchrotron small-angle X-ray scattering (SAXS). The preformulations consisted of 10 % (w/w) ethanol, 10 % (w/w) water and a binary lipid mixture of glycerol monooleate (GMO):1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DOPG) or GMO:medium chain triglycerides (MCT). Upon injection of preformulations into an employed injection-cell containing excess of bio-relevant medium, rapid generation of liquid crystalline depots was observed. UV-Vis images and constructed 2D SAXS maps of the injection-cell showed depots with different shapes and sizes, and features with high nanostructural heterogeneity. More extensive swelling of the GMO:DOPG-based preformulation was observed compared to the GMO:MCT-based preformulation. The UV image analysis found that a higher amount of diclofenac was released in the image area after 20 h from the GMO:MCT-depot compared to the GMO:DOPG-depot. The injection-cell setup employing UV-Vis imaging and synchrotron SAXS constitutes an attractive approach for evaluating the in situ forming processes of liquid crystalline depots.
Collapse
Affiliation(s)
- Nina Mertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Frederik Bock
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Jesper Østergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Susan Weng Larsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
16
|
Elzenaty O, Luciani P, Aleandri S. A lipidic mesophase with tunable release properties for the local delivery of macromolecules: the apoferritin nanocage, a case study. J Mater Chem B 2022; 10:3876-3885. [PMID: 35470843 DOI: 10.1039/d2tb00403h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid mesophases are able to incorporate and release a plethora of molecules, spanning from hydrophobic drugs to small hydrophilic proteins and therefore they have been widely used as drug delivery systems. However, their 3-5 nm water channels do not allow the release of large hydrophilic molecules such as monoclonal antibodies and therapeutic proteins. To overcome this major geometrical constraint, we designed a gel by mixing monoacylglycerol lipids, generally recognized as safe for human and/or animal use by FDA, and phospholipids, to obtain a material with swollen water channels suitable to host and further release macromolecules. Apoferritin, a 12 nm nanocage protein with intrinsic tumor-targeting properties able to incorporate several molecules, was selected here as the hydrophilic model protein to be embedded in the biocompatible gel. When immersed completely in the release media, mesophases with a swollen water channel of 22 nm, composed of monoolein and doped with 5 mole% of DOPS and 10 mole% of Chol allowed us to achieve a protein release of 60%, which is 120 times higher with respect to that obtained by employing non swollen-LMPs composed only of monoolein. Thus, the formulation can be administered locally to the rectal or vaginal mucosa, reducing the drawbacks often associated with the parenteral administration of bio-therapeutics. This approach would pave the way for the local application of other biomacromolecules (including human ferritin, monoclonal antibodies and antibody drug-conjugates) in those diseases easily reachable by a local application such as rectal or vaginal cancer.
Collapse
Affiliation(s)
- Oumar Elzenaty
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
17
|
Berntsen P, Darmanin C, Balaur E, Flueckiger L, Kozlov A, Roque FG, Adams P, Binns J, Wells D, Hadian Jazi M, Saha S, Hawley A, Ryan T, Mudie S, Kirby N, Abbey B, Martin AV. Stability, flow alignment and a phase transition of the lipidic cubic phase during continuous flow injection. J Colloid Interface Sci 2022; 611:588-598. [PMID: 34973655 DOI: 10.1016/j.jcis.2021.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Continuous flow injection is a key technology for serial crystallography measurements of protein crystals suspended in the lipidic cubic phase (LCP). To date, there has been little discussion in the literature regarding the impact of the injection process itself on the structure of the lipidic phase. This is despite the fact that the phase of the injection matrix is critical for the flow properties of the stream and potentially for sample stability. Here we report small-angle X-ray scattering measurements of a monoolein:water mixture during continuous delivery using a high viscosity injector. We observe both an alignment and modification of the LCP as a direct result of the injection process. The orientation of the cubic lattice with respect to the beam was estimated based on the anisotropy of the diffraction pattern and does not correspond to a single low order zone axis. The solvent fraction was also observed to impact the stability of the cubic phase during injection. In addition, depending on the distance traveled by the lipid after exiting the needle, the phase is observed to transition from a pure diamond phase (Pn3m) to a mixture containing both gyriod (Ia3d) and lamellar (Lα) phases. Finite element modelling of the observed phase behaviour during injection indicates that the pressure exerted on the lipid stream during extrusion accounts for the variations in the phase composition of the monoolein:water mixture.
Collapse
Affiliation(s)
- Peter Berntsen
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Connie Darmanin
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia.
| | - Eugeniu Balaur
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Leonie Flueckiger
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Alex Kozlov
- ARC Centre of Excellence for Advanced Molecular Imaging, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Francisco G Roque
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Patrick Adams
- School of Science, RMIT University, Melbourne 3000 Australia
| | - Jack Binns
- School of Science, RMIT University, Melbourne 3000 Australia
| | - Daniel Wells
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Marjan Hadian Jazi
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Saumitra Saha
- ARC Centre of Excellence for Advanced Molecular Imaging, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Adrian Hawley
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Tim Ryan
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Stephen Mudie
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Nigel Kirby
- The Australian Nuclear Science Technology Organisation, The Australian Synchrotron, Clayton, Vic, Australia
| | - Brian Abbey
- ARC Centre of Excellence for Advanced Molecular Imaging, La Trobe University, Bundoora 3086, VIC, Australia
| | - Andrew V Martin
- School of Science, RMIT University, Melbourne 3000 Australia.
| |
Collapse
|
18
|
Abourehab MA, Ansari MJ, Singh A, Hassan A, Abdelgawad MA, Shrivastav P, Abualsoud BM, Amaral LS, Pramanik S. Cubosomes as an emerging platform for drug delivery: a state-of-the-art review. J Mater Chem B 2022; 10:2781-2819. [DOI: 10.1039/d2tb00031h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid-based drug delivery nanoparticles, including non-lamellar type, mesophasic nanostructured materials of lyotropic liquid crystals (LLCs), have been a topic of interest for researchers for their applications in encapsulation of drugs...
Collapse
|
19
|
Muñoz-Úbeda M, Semenzato M, Franco-Romero A, Junquera E, Aicart E, Scorrano L, López-Montero I. Transgene expression in mice of the Opa1 mitochondrial transmembrane protein through bicontinuous cubic lipoplexes containing gemini imidazolium surfactants. J Nanobiotechnology 2021; 19:425. [PMID: 34922554 PMCID: PMC8684174 DOI: 10.1186/s12951-021-01167-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipoplexes are non-viral vectors based on cationic lipids used to deliver DNA into cells, also known as lipofection. The positively charge of the hydrophilic head-group provides the cationic lipids the ability to condensate the negatively charged DNA into structured complexes. The polar head can carry a large variety of chemical groups including amines as well as guanidino or imidazole groups. In particular, gemini cationic lipids consist of two positive polar heads linked by a spacer with different length. As for the hydrophobic aliphatic chains, they can be unsaturated or saturated and are connected to the polar head-groups. Many other chemical components can be included in the formulation of lipoplexes to improve their transfection efficiency, which often relies on their structural features. Varying these components can drastically change the arrangement of DNA molecules within the lamellar, hexagonal or cubic phases that are provided by the lipid matrix. Lipofection is widely used to deliver genetic material in cell culture experiments but the simpler formulations exhibit major drawbacks related to low transfection, low specificity, low circulation half-life and toxicity when scaled up to in vivo experiments. RESULTS So far, we have explored in cell cultures the transfection ability of lipoplexes based on gemini cationic lipids that consist of two C16 alkyl chains and two imidazolium polar head-groups linked with a polyoxyethylene spacer, (C16Im)2(C4O). Here, PEGylated lipids have been introduced to the lipoplex formulation and the transgene expression of the Opa1 mitochondrial transmembrane protein in mice was assessed. The addition of PEG on the surface of the lipid mixed resulted in the formation of Ia3d bicontinuous cubic phases as determined by small angle X-ray scattering. After a single intramuscular administration, the cubic lipoplexes were accumulated in tissues with tight endothelial barriers such as brain, heart, and lungs for at least 48 h. The transgene expression of Opa1 in those organs was identified by western blotting or RNA expression analysis through quantitative polymerase chain reaction. CONCLUSIONS The expression reported here is sufficient in magnitude, duration and toxicity to consolidate the bicontinuous cubic structures formed by (C16Im)2(C4O)-based lipoplexes as valuable therapeutic agents in the field of gene delivery.
Collapse
Affiliation(s)
- Mónica Muñoz-Úbeda
- Instituto de Investigación Biomédica Hospital, 12 de Octubre (imas12), Madrid, Spain.
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain.
| | - Martina Semenzato
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anais Franco-Romero
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Elena Junquera
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Emilio Aicart
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - Luca Scorrano
- Fondazione Per La Ricerca Biomèdica Avanzata, Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Iván López-Montero
- Instituto de Investigación Biomédica Hospital, 12 de Octubre (imas12), Madrid, Spain.
- Dpto. Química Física, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
20
|
Xu Z, Seddon JM, Beales PA, Rappolt M, Tyler AII. Breaking Isolation to Form New Networks: pH-Triggered Changes in Connectivity inside Lipid Nanoparticles. J Am Chem Soc 2021; 143:16556-16565. [PMID: 34591464 DOI: 10.1021/jacs.1c06244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is a growing demand to develop smart nanomaterials that are structure-responsive as they have the potential to offer enhanced dose, temporal and spatial control of compounds and chemical processes. The naturally occurring pH gradients found throughout the body make pH an attractive stimulus for guiding the response of a nanocarrier to specific locations or (sub)cellular compartments in the body. Here we have engineered highly sensitive lyotropic liquid crystalline nanoparticles that reversibly respond to changes in pH by altering the connectivity within their structure at physiological temperatures. At pH 7.4, the nanoparticles have an internal structure consisting of discontinuous inverse micellar "aqueous pockets" based on space group Fd3m. When the pH is ≤6, the nanoparticles change from a compartmentalized to an accessible porous internal structure based on a 2D inverse hexagonal phase (plane group p6mm). We validate the internal symmetry of the nanoparticles using small-angle X-ray scattering and cryogenic transmission electron microscopy. The high-resolution electron microscopy images obtained have allowed us for the first time to directly visualize the internal structure of the Fd3m nanoparticles and resolve the two different-sized inverse micelles that make up the structural motif within the Fd3m unit cell, which upon structural analysis reveal excellent agreement with theoretical geometrical models.
Collapse
Affiliation(s)
- Zexi Xu
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John M Seddon
- Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arwen I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
21
|
Vítová M, Lanta V, Čížková M, Jakubec M, Rise F, Halskau Ø, Bišová K, Furse S. The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158965. [PMID: 33992808 PMCID: PMC8202326 DOI: 10.1016/j.bbalip.2021.158965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. We tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cell's structure is important for progress through and perhaps even control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2·5×) and phosphatidylglycerol (+100%, phosphatidylglycerol synthase increased 22×) over the G1/pre-replication phase boundary. The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. This study shows for the first time that there are considerable changes in the biosynthesis of the three most abundant phospholipid classes in the normal cell cycle of D. quadricauda, by margins large enough to elicit changes to the physical properties of membranes.
Collapse
Affiliation(s)
- Milada Vítová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Vojtěch Lanta
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic; Department of Functional Ecology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Martin Jakubec
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Frode Rise
- Department of Chemistry, Universitetet i Oslo, P. O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Øyvind Halskau
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae (Laboratoř buněčných cyklů řas), Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Novohradská 237, 379 01 Třeboň, Czech Republic
| | - Samuel Furse
- Department of Molecular Biology, University of Bergen, Thormøhlens gate 55, NO-5008 Bergen, Norway; Core Metabolomics and Lipidomics Laboratory, Wellcome Trust-MRL Institute of Metabolic Science, University of Cambridge, Level 4, Pathology Building, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Biological chemistry group, Jodrell laboratory, Royal Botanic Gardens Kew, United Kingdom.
| |
Collapse
|
22
|
Stability of cubic phase and curvature tuning in the lyotropic system of branched chain galactose-based glycolipid by amphiphilic additives. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Calcium mediated DNA binding in non-lamellar structures formed by DOPG/glycerol monooleate. Chem Phys Lipids 2021; 239:105118. [PMID: 34280362 DOI: 10.1016/j.chemphyslip.2021.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
In order to test an encapsulation method of short fragmented DNA (∼ 20-300 bp), we study the solubilisation in 150 mM solution of NaCl of a cubic phase formed by glycerol monooleate (GMO) with negatively charged dioleoylphosphatidylglycerol (DOPG) up to the level of unilamellar vesicles and, subsequently, the restoration of the cubic phase using Ca2+ cations. We performed small angle X-ray and neutron scattering (SAXS and SANS) to follow structural changes in DOPG/GMO mixtures induced by increasing DOPG content. The cubic phase (Pn3m space group) is preserved up to ∼ 11 mol% of DOPG in DOPG/GMO. Above 20 mol%, the SANS curves are typical of unilamellar vesicles. The thickness of the DOPG/GMO lipid bilayer (dL) decreases slightly with increasing fraction of DOPG. The addition of 15 mM of CaCl2 solution shields the electrostatic repulsions of DOPG molecules, increases slightly dL and restores the cubic structures in the mixtures up to ∼ 37 mol% of DOPG. Zeta potential shows negative surface charge. The analysis of the data provides the radius of the water nano-channels of the formed non-lamellar structures. We discuss their dimensions with respect to DNA binding. In addition, Ca2+ mediates DNA - DOPG/GMO binding. The formed hexagonal phase, HII, binds less of DNA in comparison with cubic phases (∼ 6 wt% and ∼ 20 wt% of the total amount, respectively). The studied system can be utilized as anionic QII delivery vector for genetic material.
Collapse
|
24
|
Allen ME, Elani Y, Brooks NJ, Seddon JM. The effect of headgroup methylation on polymorphic phase behaviour in hydrated N-methylated phosphoethanolamine:palmitic acid membranes. SOFT MATTER 2021; 17:5763-5771. [PMID: 34019613 DOI: 10.1039/d1sm00178g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixtures of fatty acids and phospholipids can form hexagonal (HII) and inverse bicontinuous cubic phases, the latter of which are implicated in various cellular processes and have wide-ranging biotechnological applications in protein crystallisation and drug delivery systems. Therefore, it is vitally important to understand the formation conditions of inverse bicontinuous cubic phases and how their properties can be tuned. We have used differential scanning calorimetry and synchrotron-based small angle and wide angle X-ray scattering (SAXS/WAXS) to investigate the polymorphic phase behaviour of palmitic acid/partially-methylated phospholipid mixtures, and how headgroup methylation impacts on inverse bicontinuous cubic phase formation. We find that upon partial methylation of the phospholipid headgroup (1 or 2 methyl substituents) inverse bicontinuous cubic phases are formed (of the Im3m spacegroup), which is not the case with 0 or 3 methyl substituents. This shows how important headgroup methylation is for controlling phase behaviour and how a change in headgroup methylation can be used to controllably tune various inverse bicontinuous phase features such as their lattice parameter and the temperature range of their stability.
Collapse
Affiliation(s)
- Matthew E Allen
- Department of Chemistry, Imperial College London, W12 7SL, UK.
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | | | - John M Seddon
- Department of Chemistry, Imperial College London, W12 7SL, UK.
| |
Collapse
|
25
|
Alfredsson V, Lo Nostro P, Ninham B, Nylander T. Morphologies and Structure of Brain Lipid Membrane Dispersions. Front Cell Dev Biol 2021; 9:675140. [PMID: 34195192 PMCID: PMC8236638 DOI: 10.3389/fcell.2021.675140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
This study aims to explore the variety of previously unknown morphologies that brain lipids form in aqueous solutions. We study how these structures are dependent on cholesterol content, salt solution composition, and temperature. For this purpose, dispersions of porcine sphingomyelin with varying amounts of cholesterol as well as dispersions of porcine brain lipid extracts were investigated. We used cryo-TEM to investigate the dispersions at high-salt solution content together with small-angle (SAXD) and wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) for dispersions in the corresponding salt solution at high lipid content. Sphingomyelin forms multilamellar vesicles in large excess of aqueous salt solution. These vesicles appear as double rippled bilayers in the images and as split Bragg peaks in SAXD together with a very distinct lamellar phase pattern. These features disappear with increasing temperature, and addition of cholesterol as the WAXD data shows that the peak corresponding to the chain crystallinity disappears. The dispersions of sphingomyelin at high cholesterol content form large vesicular type of structures with smooth bilayers. The repeat distance of the lamellar phase depends on temperature, salt solution composition, and slightly with cholesterol content. The brain lipid extracts form large multilamellar vesicles often attached to assemblies of higher electron density. We think that this is probably an example of supra self-assembly with a multiple-layered vesicle surrounding an interior cubic microphase. This is challenging to resolve. DSC shows the presence of different kinds of water bound to the lipid aggregates as a function of the lipid content. Comparison with the effect of lithium, sodium, and calcium salts on the structural parameters of the sphingomyelin and the morphologies of brain lipid extract morphologies demonstrate that lithium has remarkable effects also at low content.
Collapse
Affiliation(s)
- Viveka Alfredsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Pierandrea Lo Nostro
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Italy
| | - Barry Ninham
- Department of Applied Mathematics, Research School of Physical Sciences and Engineering, Australian National University, Canberra, ACT, Australia
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden.,Lund Institute of Advanced Neutron and X-ray Science, Lund, Sweden
| |
Collapse
|
26
|
Zhai J, Sarkar S, Tran N, Pandiancherri S, Greaves TL, Drummond CJ. Tuning Nanostructured Lyotropic Liquid Crystalline Mesophases in Lipid Nanoparticles with Protic Ionic Liquids. J Phys Chem Lett 2021; 12:399-404. [PMID: 33356288 DOI: 10.1021/acs.jpclett.0c03318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We herein report 13 protic ionic liquids (PILs) as tunable solvation media to regulate the internal lyotropic liquid crystalline mesophase of monoolein-based nanoparticles. A range of nanostructures, including inverse bicontinuous cubic, inverse hexagonal, and sponge/lamellar mesophases, were produced and verified by synchrotron small-angle X-ray scattering. Notably, manipulating the cation/anion structures of the PILs can alter the monoolein packing behavior and cause a sequential phase transition (hexagonal → cubic → lamellar) in the nanoparticles. The solvent channels inside the nanoparticles were enlarged up to 40% under certain PIL-water conditions, making these materials prospective for encapsulation of large molecules. Finally, a freeze-drying study demonstrated the ability of PILs to preserve nanostructure upon reconstitution of the nanoparticles compared to that in pure water. This study opens a new route for fine-tuning lyotropic liquid crystalline structures using PILs, which circumvents issues encountered using conventional salts.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Sampa Sarkar
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Shveta Pandiancherri
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Victoria 3000, Australia
| |
Collapse
|
27
|
Meikle TG, Dharmadana D, Hoffmann SV, Jones NC, Drummond CJ, Conn CE. Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. J Colloid Interface Sci 2020; 587:90-100. [PMID: 33360913 DOI: 10.1016/j.jcis.2020.11.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/20/2023]
Abstract
The growing global threat of antimicrobial resistance, combined with the slowed development of novel antibiotics, has resulted in a critical need for new antimicrobial therapies. Naturally occurring antimicrobial peptides (AMPs) can act as highly potent, broad-spectrum antibiotics which may be less likely to engender resistance in target organisms. However, their susceptibility to proteolysis and lack of specificity necessitates the use of a drug delivery vehicle to both protect the AMP from chemical degradation and provide a platform for further functionalization, enabling the development of targeted delivery and release systems. In this study, we have used lipid-based inverse bicontinuous cubic phase nanoparticles (cubosomes) as delivery vehicles for six different antimicrobial peptides. The phase stability, morphology, and peptide loading efficiency of the nanoparticles were characterized and rationalized according to lipid composition, buffer conditions, as well as peptide charge and hydrophobicity. The AMP loading efficiency within cubosomes was increased significantly through simple manipulation of electrostatic charge. Minimum inhibitory concentration (MIC) values were determined for formulations with high loading efficiency against Staphylococcus aureus, Bacilus cereus, Escherichia coli, and Pseudomonas aeruginosa. Encapsulation within a lipid nanocarrier was shown to increase antimicrobial activity for some formulations. We anticipate that the further development of these peptide loaded cubosomes will enable the design of potent and targeted antibiotic therapies.
Collapse
Affiliation(s)
- Thomas G Meikle
- RMIT University, School of Science, College of Science Engineering and Health, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Durga Dharmadana
- RMIT University, School of Science, College of Science Engineering and Health, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Calum J Drummond
- RMIT University, School of Science, College of Science Engineering and Health, 124 La Trobe Street, Melbourne, Victoria 3000, Australia
| | - Charlotte E Conn
- RMIT University, School of Science, College of Science Engineering and Health, 124 La Trobe Street, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
28
|
Schröder-Turk GE. Quo vadis biophotonics? Wearing serendipity and slow science as a badge of pride, and embracing biology. Faraday Discuss 2020; 223:307-323. [PMID: 33034598 DOI: 10.1039/d0fd00108b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article is a reflection on the themes of the Faraday Discussion meeting on 'Biological and bio-inspired optics' held from 20 to 22 July 2020. It is a personal perspective on the nature of this field as a broad and interdisciplinary field that has led to a sound understanding of the material properties of biological nanostructured and optical materials. The article describes how the nature of the field and the themes of the conference are reflected in particular in work on the 3D bicontinuous biophotonic nanostructures known as single gyroids and in bicontinuous structures more broadly. Such single gyroid materials are found for example in the butterfly Thecla opisena, where the questions of biophotonic response, of bio-inspired optics, of the relationship between structure and function, and of the relationship between natural and synthetic realisations are closely interlinked. This multitude of facets of research on single gyroid structures reflects the beauty of the broader field of biophotonics, namely as a field that lives through embracing the serendipitous discovery of the biophotonic marvels that nature offers to us as seeds for in-depth analysis and understanding. The meandering nature of its discoveries, and the need to accept the slowness that comes from exploration of intellectually new or foreign territory, mean that the field shares some traits with biological evolution itself. Looking into the future, I consider that a closer engagement with living tissue and with the biological questions of function and formation, rather than with the materials science of biological materials, will help ensure the continuing great success of this field.
Collapse
Affiliation(s)
- Gerd E Schröder-Turk
- Murdoch University, College of Science, Health, Engineering & Education, 90 South St, Murdoch, WA 6150, Australia.
| |
Collapse
|
29
|
Tien ND, Maurya AK, Fortunato G, Rottmar M, Zboray R, Erni R, Dommann A, Rossi RM, Neels A, Sadeghpour A. Responsive Nanofibers with Embedded Hierarchical Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11787-11797. [PMID: 32936649 DOI: 10.1021/acs.langmuir.0c01487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We introduce the design and study of a hybrid electrospun membrane with a dedicated nanoscale structural hierarchy for controlled functions in the biomedical domain. The hybrid system comprises submicrometer-sized internally self-assembled lipid nanoparticles (ISAsomes or mesosomes) embedded into the electrospun membrane with a nanofibrous polymer network. The internal structure of ISAsomes, studied by small-angle X-ray scattering (SAXS) and electron microscopy, demonstrated a spontaneous response to variations in the environmental conditions as they undergo a bicontinuous inverse cubic phase (cubosomes) in solution to a crystalline lamellar phase in the polymer membrane; nevertheless, this phase reorganization is reversible. As revealed by in situ SAXS measurements, if the membrane was put in contact with aqueous media, the cubic phase reappeared and submicrometer-sized cubosomes were released upon dissolution of the nanofibers. Furthermore, the hybrid membranes exhibited a specific anisotropic feature and morphological response under an external strain. While nanofibers were aligned under external strain in the microscale, the semicrystalline domains from the polymer phase were positioned perpendicular to the lamellae of the lipid phase in the nanoscale. The fabricated membranes and their spontaneous responses offer new strategies for the development of structure-controlled functions in electrospun nanofibers for biomedical applications, such as drug delivery or controlled interactions with biointerfaces.
Collapse
Affiliation(s)
- Nguyen D Tien
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Anjani K Maurya
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern CH-3012, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Alex Dommann
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern CH-3012, Switzerland
| | - René M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Antonia Neels
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg 79085, Switzerland
| | - Amin Sadeghpour
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| |
Collapse
|
30
|
Mendozza M, Balestri A, Montis C, Berti D. Controlling the Kinetics of an Enzymatic Reaction through Enzyme or Substrate Confinement into Lipid Mesophases with Tunable Structural Parameters. Int J Mol Sci 2020; 21:ijms21145116. [PMID: 32698376 PMCID: PMC7404178 DOI: 10.3390/ijms21145116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid liquid crystalline mesophases, resulting from the self-assembly of polymorphic lipids in water, have been widely explored as biocompatible drug delivery systems. In this respect, non-lamellar structures are particularly attractive: they are characterized by complex 3D architectures, with the coexistence of hydrophobic and hydrophilic regions that can conveniently host drugs of different polarities. The fine tunability of the structural parameters is nontrivial, but of paramount relevance, in order to control the diffusive properties of encapsulated active principles and, ultimately, their pharmacokinetics and release. In this work, we investigate the reaction kinetics of p-nitrophenyl phosphate conversion into p-nitrophenol, catalysed by the enzyme Alkaline Phosphatase, upon alternative confinement of the substrate and of the enzyme into liquid crystalline mesophases of phytantriol/H2O containing variable amounts of an additive, sucrose stearate, able to swell the mesophase. A structural investigation through Small-Angle X-ray Scattering, revealed the possibility to finely control the structure/size of the mesophases with the amount of the included additive. A UV-vis spectroscopy study highlighted that the enzymatic reaction kinetics could be controlled by tuning the structural parameters of the mesophase, opening new perspectives for the exploitation of non-lamellar mesophases for confinement and controlled release of therapeutics.
Collapse
|
31
|
Salvati Manni L, Fong WK, Mezzenga R. Lipid-based mesophases as matrices for nanoscale reactions. NANOSCALE HORIZONS 2020; 5:914-927. [PMID: 32322863 DOI: 10.1039/d0nh00079e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipidic mesophases are versatile bioorganic materials that have been effectively employed as nanoscale matrices for membrane protein crystallization, drug delivery and as food emulsifiers over the last 30 years. In this review, the focus is upon studies that have employed non-lamellar lipid mesophases as matrices for organic, inorganic and enzymatic reactions. The ability of lipidic mesophases to incorporate hydrophilic, amphiphilic and hydrophobic molecules, together with the high interfacial area of the lipidic cubic and inverse hexagonal phases has been exploited in heterogeneous catalysis as well as for enzyme immobilization. The unique nanostructure of these mesophases is the driving force behind their ability to act as templates for synthesis, resulting in the creation of highly ordered polymeric and inorganic materials with complex geometries.
Collapse
Affiliation(s)
- Livia Salvati Manni
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland.
| | | | | |
Collapse
|
32
|
Sarkar S, Tran N, Soni SK, Conn CE, Drummond CJ. Size-Dependent Encapsulation and Release of dsDNA from Cationic Lyotropic Liquid Crystalline Cubic Phases. ACS Biomater Sci Eng 2020; 6:4401-4413. [DOI: 10.1021/acsbiomaterials.0c00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sampa Sarkar
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Sarvesh Kumar Soni
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Charlotte E. Conn
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Calum J. Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| |
Collapse
|
33
|
Abstract
Block copolymers (BCPs) have been indispensable building blocks to create a range of soft nanostructures including discrete particulates (micelles and vesicles) and periodic structures via spontaneous assembly in bulk and in solution. The size, shape, and phase of these structures can be controlled by the rational design of the molecular structure of building blocks based on the structural analogy of BCPs to lipids and small molecule surfactants. Inverse bicontinuous cubic mesophases of polymers, or polymer cubosomes when in colloidal forms, are emerging nanostructures composed of triply periodic minimal surfaces (TPMSs) of block copolymer bilayers. Created by spontaneous assembly of BCPs in solution, polymer cubosomes internalize two nonintersecting nanochannel networks arranged in a cubic crystalline order. As well-defined porous particles with highly ordered internal structures and high surface-area-to-volume ratios, polymer cubosomes can be used for chemical reactors or bioreactors, carriers capable of cargo loading and release, and scaffolds for nanotemplating. However, despite their structural similarity to lipid cubosomes and applicability, polymer cubosomes have been only sporadically observed as an outcome of serendipity until recent studies demonstrated that BCPs could form well-defined polymer cubosomes in solution.In this Account, we describe our recent progress in creating polymer cubic mesophases and their colloidal particles (polymer cubosomes) in dilute solution. BCPs with nonlinear architectures (dendritic-linear, branched-linear, and branched-branched BCPs) preferentially self-assembled to inverse mesophases in solution when the block ratio (f), defined as a molecular weight ratio of the hydrophilic block to that of the hydrophobic block, was small (<10%). The resulting lyotropic structures transformed from flat bilayers to cubic phases of primitive cubic and double diamond lattices and finally to inverted hexagonal phases as f decreased. We proposed that the architecture of a BCP plays an important role in the preferential formation of polymer cubosomes in solution. The presence of the bulky hydrophilic block limited chain stretching of the hydrophobic polymer block, which would increase the packing parameter of the BCP to greater than unity, a prerequisite for inverse mesophase formation. The structural characteristics of polymer cubosomes, such as lattice symmetries, pore sizes, and lattice parameters, could also be controlled by fine-tuning the structural parameters of BCPs. We also suggested nonsynthetic methods to precisely control the phase and internal lattice of inverse mesophases of BCPs by the coassembly of two BCPs with different block ratios (mix-and-match approach) and the modulation of the affinity of the common solvent toward the hydrophobic block of the BCP. To investigate the potential applications of polymer cubosomes, we prepared inorganic photonic crystals using a cubosome-templated synthesis. We also discussed the utilization of cubosomes as chemical reactors by functionalization of the surface and the covalent stabilization of transient self-assembled structures via cross-linking of the hydrophobic domain. This Account reflects the efforts of synthetic chemists to understand the self-assembly behavior of BCPs to form complex morphologies in solution. We hope that our Account inspires efforts from chemists and other scientists to further understand these structures with infinite mazes of complexity and possibility.
Collapse
Affiliation(s)
- Sungmin Ha
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Yunju La
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
34
|
Understanding the assembly of amphiphilic additives in bulk and dispersed non-lamellar lipid-based matrices: Phosphorylation, H-bonding and ionisation. J Colloid Interface Sci 2020; 562:502-510. [DOI: 10.1016/j.jcis.2019.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022]
|
35
|
Cui C, Deng Y, Han L. Bicontinuous cubic phases in biological and artificial self-assembled systems. SCIENCE CHINA MATERIALS 2020; 63:686-702. [PMID: 32219007 PMCID: PMC7094945 DOI: 10.1007/s40843-019-1261-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Nature has created innumerable life forms with miraculous hierarchical structures and morphologies that are optimized for different life events through evolution over billions of years. Bicontinuous cubic structures, which are often described by triply periodic minimal surfaces (TPMSs) and their constant mean curvature (CMC)/parallel surface companions, are of special interest to various research fields because of their complex form with unique physical functionalities. This has prompted the scientific community to fully understand the formation, structure, and properties of these materials. In this review, we summarize and discuss the formation mechanism and relationships of the relevant biological structures and the artificial self-assembly systems. These structures can be formed through biological processes with amazing regulation across a great length scales; nevertheless, artificial construction normally produces the structure corresponding to the molecular size and shape. Notably, the block copolymeric system is considered to be an applicable and attractive model system for the study of biological systems due to their versatile design and rich phase behavior. Some of the phenomena found in these two systems are compared and discussed, and this information may provide new ideas for a comprehensive understanding of the relationship between molecular shape and resulting interface curvature and the self-assembly process in living organisms. We argue that the co-polymeric system may serve as a model to understand these biological systems and could encourage additional studies of artificial self-assembly and the creation of new functional materials.
Collapse
Affiliation(s)
- Congcong Cui
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001 China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 China
| |
Collapse
|
36
|
Barriga HMG, Ces O, Law RV, Seddon JM, Brooks NJ. Engineering Swollen Cubosomes Using Cholesterol and Anionic Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16521-16527. [PMID: 31702159 DOI: 10.1021/acs.langmuir.9b02336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dispersions of nonlamellar lipid membrane assemblies are gaining increasing interest for drug delivery and protein therapeutic application. A key bottleneck has been the lack of rational design rules for these systems linking different lipid species and conditions to defined lattice parameters and structures. We have developed robust methods to form cubosomes (nanoparticles with porous internal structures) with water channel diameters of up to 171 Å, which are over 4 times larger than archetypal cubosome structures. The water channel diameter can be tuned via the incorporation of cholesterol and the charged lipid DOPA, DOPG, or DOPS. We have found that large molecules can be incorporated into the porous cubosome structure and that these molecules can interact with the internal cubosome membrane. This offers huge potential for accessible encapsulation and protection of biomolecules and development of confined interfacial reaction environments.
Collapse
Affiliation(s)
- Hanna M G Barriga
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| | - Oscar Ces
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| | - Robert V Law
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| | - John M Seddon
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| | - Nicholas J Brooks
- Department of Chemistry , Imperial College London , Molecular Sciences Research Hub, White City Campus, Wood Lane , London W12 0BZ , U.K
| |
Collapse
|
37
|
Enzyme encapsulation in nanostructured self-assembled structures: Toward biofunctional supramolecular assemblies. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Mezzenga R, Seddon JM, Drummond CJ, Boyd BJ, Schröder-Turk GE, Sagalowicz L. Nature-Inspired Design and Application of Lipidic Lyotropic Liquid Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900818. [PMID: 31222858 DOI: 10.1002/adma.201900818] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/16/2019] [Indexed: 05/20/2023]
Abstract
Amphiphilic lipids aggregate in aqueous solution into a variety of structural arrangements. Among the plethora of ordered structures that have been reported, many have also been observed in nature. In addition, due to their unique morphologies, the hydrophilic and hydrophobic domains, very high internal interfacial surface area, and the multitude of possible order-order transitions depending on environmental changes, very promising applications have been developed for these systems in recent years. These include crystallization in inverse bicontinuous cubic phases for membrane protein structure determination, generation of advanced materials, sustained release of bioactive molecules, and control of chemical reactions. The outstanding diverse functionalities of lyotropic liquid crystalline phases found in nature and industry are closely related to the topology, including how their nanoscopic domains are organized. This leads to notable examples of correlation between structure and macroscopic properties, which is itself central to the performance of materials in general. The physical origin of the formation of the known classes of lipidic lyotropic liquid crystalline phases, their structure, and their occurrence in nature are described, and their application in materials science and engineering, biology, medical, and pharmaceutical products, and food science and technology are exemplified.
Collapse
Affiliation(s)
- Raffaele Mezzenga
- ETH Zurich Department of Health Sciences and Technology, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
- ETH Zurich Department of Materials, Wolfgang-Pauli-Strasse 10, Zurich, 8093, Switzerland
| | - John M Seddon
- Chemistry Department, Imperial College London, MSRH, Wood Lane, London, W12 0BZ, UK
| | - Calum J Drummond
- School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3000, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Gerd E Schröder-Turk
- College of Science, Health, Engineering and Education, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, 22100, Sweden
| | - Laurent Sagalowicz
- Institute of Materials Science, Nestlé Research Center, CH-1000, Lausanne 26, Switzerland
| |
Collapse
|
39
|
Valldeperas M, Talaikis M, Dhayal SK, Velička M, Barauskas J, Niaura G, Nylander T. Encapsulation of Aspartic Protease in Nonlamellar Lipid Liquid Crystalline Phases. Biophys J 2019; 117:829-843. [PMID: 31422820 DOI: 10.1016/j.bpj.2019.07.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/04/2023] Open
Abstract
Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins.
Collapse
Affiliation(s)
- Maria Valldeperas
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden
| | - Martynas Talaikis
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Martynas Velička
- Institute of Chemical Physics, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | | | - Gediminas Niaura
- Department of Bioelectrochemistry and Biospectroscopy, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
40
|
Castelletto V, Edwards-Gayle CJC, Hamley IW, Pelin JNBD, Alves WA, Aguilar AM, Seitsonen J, Ruokolainen J. Self-Assembly of a Catalytically Active Lipopeptide and Its Incorporation into Cubosomes. ACS APPLIED BIO MATERIALS 2019; 2:3639-3647. [PMID: 32064461 PMCID: PMC7011704 DOI: 10.1021/acsabm.9b00489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/03/2019] [Indexed: 11/29/2022]
Abstract
The self-assembly and biocatalytic activity of the proline-functionalized lipopeptide PRW-NH-C16 are examined and compared to that of the related PRW-O-C16 lipopeptide, which differs in having an ester linker between the lipid chain and tripeptide headgroup instead of an amide linker. Lipopeptide PRW-NH-C16 self-assembles into spherical micelles above a critical aggregation concentration, similar to the behavior of PRW-O-C16 reported previously [B. M. Soares et al. Phys. Chem. Chem. Phys., 2017, 19, 1181-1189]. However, PRW-NH-C16 shows an improved catalytic activity in a model aldol reaction. In addition, we explore the incorporation of the biocatalytic lipopeptide into lipid cubosomes. SAXS shows that increasing lipopeptide concentration leads to an expansion of the monoolein cubosome lattice spacing and a loss of long-range cubic order as the lipopeptide is encapsulated in the cubosomes. At higher loadings of lipopeptide, reduced cubosome formation is observed at the expense of vesicle formation. Our results show that the peptide-lipid chain linker does not influence self-assembly but does impart an improved biocatalytic activity. Furthermore, we show that lipopeptides can be incorporated into lipid cubosomes, leading to restructuring into vesicles at high loadings. These findings point the way toward the future development of bioactive lipopeptide assemblies and slow release cubosome-based delivery systems.
Collapse
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, United Kingdom
| | - Juliane N B D Pelin
- Centro de Ciências Naturais e Humanas, Federal do ABC, Santo André 09210-580, Brazil
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Federal do ABC, Santo André 09210-580, Brazil
| | - Andrea M Aguilar
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, Espoo FIN-02150, Finland
| |
Collapse
|
41
|
Astolfi P, Giorgini E, Adamo FC, Vita F, Logrippo S, Francescangeli O, Pisani M. Effects of a cationic surfactant incorporation in phytantriol bulk cubic phases and dispersions loaded with the anticancer drug 5-fluorouracil. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Zhai J, Fong C, Tran N, Drummond CJ. Non-Lamellar Lyotropic Liquid Crystalline Lipid Nanoparticles for the Next Generation of Nanomedicine. ACS NANO 2019; 13:6178-6206. [PMID: 31082192 DOI: 10.1021/acsnano.8b07961] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nonlamellar lyotropic liquid crystalline (LLC) lipid nanomaterials have emerged as a promising class of advanced materials for the next generation of nanomedicine, comprising mainly of amphiphilic lipids and functional additives self-assembling into two- and three-dimensional, inverse hexagonal, and cubic nanostructures. In particular, the lyotropic liquid crystalline lipid nanoparticles (LCNPs) have received great interest as nanocarriers for a variety of hydrophobic and hydrophilic small molecule drugs, peptides, proteins, siRNAs, DNAs, and imaging agents. Within this space, there has been a tremendous amount of effort over the last two decades elucidating the self-assembly behavior and structure-function relationship of natural and synthetic lipid-based drug delivery vehicles in vitro, yet successful clinical translation remains sparse due to the lack of understanding of these materials in biological bodies. This review provides an overview of (1) the benefits and advantages of using LCNPs as drug delivery nanocarriers, (2) design principles for making LCNPs with desirable functionalities for drug delivery applications, (3) current understanding of the LLC material-biology interface illustrated by more than 50 in vivo, preclinical studies, and (4) current patenting and translation activities in a pharmaceutical context. Together with our perspectives and expert opinions, we anticipate that this review will guide future studies in developing LCNP-based drug delivery nanocarriers with the objective of translating them into a key player among nanoparticle platforms comprising the next generation of nanomedicine for disease therapy and diagnosis.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3000 , Australia
| | - Celesta Fong
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3000 , Australia
- CSIRO Manufacturing , Clayton , Victoria 3168 , Australia
| | - Nhiem Tran
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3000 , Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health , RMIT University , Melbourne , Victoria 3000 , Australia
| |
Collapse
|
43
|
A vesicle-to-sponge transition via the proliferation of membrane-linking pores in ω-3 polyunsaturated fatty acid-containing lipid assemblies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Ghanbari R, Assenza S, Mezzenga R. The interplay of channel geometry and molecular features determines diffusion in lipidic cubic phases. J Chem Phys 2019; 150:094901. [DOI: 10.1063/1.5080929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Reza Ghanbari
- Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Salvatore Assenza
- Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
45
|
Valldeperas M, Dabkowska AP, Pálsson GK, Rogers S, Mahmoudi N, Carnerup A, Barauskas J, Nylander T. Interfacial properties of lipid sponge-like nanoparticles and the role of stabilizer on particle structure and surface interactions. SOFT MATTER 2019; 15:2178-2189. [PMID: 30742188 DOI: 10.1039/c8sm02634c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The advantage of using nonlamellar lipid liquid crystalline phases has been demonstrated in many applications, such as drug delivery, protein encapsulation and crystallisation. We have recently reported that a mixture of mono- and diglycerides is able to form sponge-like nanoparticles (L3-NPs) with large enough aqueous pores to encapsulate macromolecules such as proteins. Here we use small angle neutron scattering (SANS) to reveal morphology, structural and chemical composition of these polysorbate 80 (P80) stabilized sponge phase nanoparticles, not previously known. Our results suggest that L3-NPs have a core-shell sphere structure, with a shell rich in P80. It was also found that even if P80 is mostly located on the surface, it also contributes to the formation of the inner sponge phase structure. An important aspect for the application and colloidal stability of these particles is their interfacial properties. Therefore, the interfacial behaviour of the nanoparticles on hydrophilic silica was revealed by Quartz crystal microbalance with dissipation (QCM-D) and neutron reflectivity (NR). Adsorption experiments reveal the formation of a thin lipid layer, with the dimension corresponding to a lipid bilayer after L3-NPs are in contact with hydrophilic silica. This suggests that the diglycerol monoleate/Capmul GMO-50/P80 particles reorganize themselves on this surface, probably due to interactions between P80 head group and SiO2.
Collapse
Affiliation(s)
- Maria Valldeperas
- Physical Chemistry, Department Chemistry, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Barriga HMG, Holme MN, Stevens MM. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew Chem Int Ed Engl 2019; 58:2958-2978. [PMID: 29926520 PMCID: PMC6606436 DOI: 10.1002/anie.201804067] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.
Collapse
Affiliation(s)
- Hanna M. G. Barriga
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Molly M. Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Departments of Materials and Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| |
Collapse
|
47
|
Leung SSW, Leal C. The stabilization of primitive bicontinuous cubic phases with tunable swelling over a wide composition range. SOFT MATTER 2019; 15:1269-1277. [PMID: 30462135 PMCID: PMC6876301 DOI: 10.1039/c8sm02059k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this paper we investigate the pseudo-ternary phase diagram of glycerol monooleate (GMO), a cationic lipid (DOTAP - 1,2-dioleoyl-3-trimethylammonium propane), and a "PEGylated" lipid (DOPE-PEG - 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000 kDa]) in excess water. We use small angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (Cryo-EM) to map out a phase diagram in a regime of low DOPE-PEG content (1-5 mol%), which is pertinent for the application of lipid systems as carriers of biomolecular cargo to cells. Pure GMO is known to self-assemble into bicontinuous cubic phases of the gyroid type at low water content and of the diamond type in excess water. These complex structures have numerous advantages reaching beyond drug delivery, e.g. as protein crystallization matrices, but their formulation is challenging as very small contents of guest molecules can shift the phase behavior towards other geometries such as the lamellar phase. In this work, we show that the ternary GMO/DOTAP/DOPE-PEG system allows the stabilization of bicontinuous cubic phases in excess water over a wide composition range. The symmetry of the phase can be tuned by varying the amount of PEGylated lipid, with the primitive type dominating at low DOPE-PEG content (1-3 mol%) and the diamond phase arising at 5 mol% DOPE-PEG. In addition, we found that the diamond phase is virtually non-responsive to electrostatic swelling. In contrast, primitive bicontinuous cubic lattice dimensions swell up in equilibrium to 650 Å with increased cationic lipid content.
Collapse
Affiliation(s)
- Sherry S W Leung
- Department of Materials Science and Engineering, University of Illinois at Urbana, Champaign, USA.
| | | |
Collapse
|
48
|
|
49
|
Ha S, Kim KT. Effect of the molecular weight distribution of the hydrophobic block on the formation of inverse cubic mesophases of block copolymers with a discrete branched hydrophilic block. Polym Chem 2019. [DOI: 10.1039/c9py01211g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular weight distribution of the hydrophobic block of block copolymers directly influences their self-assembled structures in solution.
Collapse
Affiliation(s)
- Sungmin Ha
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Kyoung Taek Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
50
|
Huang B, Tan Z, Bohinc K, Zhang S. Interaction between nanoparticles and charged phospholipid membranes. Phys Chem Chem Phys 2018; 20:29249-29263. [PMID: 30427341 DOI: 10.1039/c8cp04740e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Charged lipids in cell membranes and subcellular organelles are arranged in the form of a bilayer with the hydrocarbon tails sequestered away from the water and the polar head groups exposed to the aqueous environment. Most of them bear net negative charges leading to the negatively charged cell membranes. Charged lipid-lipid and lipid-protein interactions are generally dynamic and heavily depend on their local molecular concentrations. To examine the electrostatic properties of charged lipid layers in contact with an electrolyte solution, we incorporate the single chain mean field theory with Poisson-Boltzmann theory to explore the equilibrium structure of charged phospholipid membranes. Using the three bead coarse-grained model we reproduced the essential equilibrium properties of the charged phospholipid bilayer. We also investigate the influence of the mobile ions on the thickness of the layer, the area per lipid (APL), and the electrostatic potential of the membrane. Then we investigate the attraction-repulsion property of two charged nanoparticles which are stuck on the charged lipid molecules surrounded with mobile ions. After that we simulated the interaction between the Pleckstrin homology domain (PH domain) of Akt and the cytoplasmic membrane. Taking into account the electrostatic interaction, we observe the structure changes of the membrane at different concentrations of mobile ions in its equilibrium state. Also we discuss the influence of mobile ions on the size of the pore opened in the membrane by the charged protein. Such an observation may shed light on the activation of oncogenic Akt (or protein kinase B) around the membrane at the molecular level.
Collapse
Affiliation(s)
- Beibei Huang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA.
| | | | | | | |
Collapse
|