1
|
Hu X, Liao M, Ding K, Wang J, Xu H, Tao K, Zhou F, Lu JR. Neutron reflection and scattering in characterising peptide assemblies. Adv Colloid Interface Sci 2023; 322:103033. [PMID: 37931380 DOI: 10.1016/j.cis.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Self-assemblies of de novo designed short peptides at interface and in bulk solution provide potential platforms for developing applications in many medical and technological areas. However, characterising how bioinspired supramolecular nanostructures evolve with dynamic self-assembling processes and respond to different stimuli remains challenging. Neutron scattering technologies including small angle neutron scattering (SANS) and neutron reflection (NR) can be advantageous and complementary to other state-of-the-art techniques in tracing structural changes under different conditions. With more neutron sources now available, SANS and NR are becoming increasingly popular in studying self-assembling processes of diverse peptide and protein systems, but the difficulty in experimental manipulation and data analysis can deter beginners. This review will introduce the basic theory, general experimental setup and data analysis of SANS and NR, followed by provision of their applications in characterising interfacial and solution self-assemblies of representative peptides and proteins. SANS and NR are remarkably effective in determining the morphological features self-assembled short peptides, especially size and shape transitions as a result of either sequence changes or in response to environmental stimuli, demonstrating the unique capability of NR and SANS in unravelling the interactive processes. These examples highlight the potential of NR and SANS in supporting the development of novel short peptides and proteins as biopharmaceutical candidates in the fight against many diseases and infections that share common features of membrane interactive processes.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.; Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Ding
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
| | - Feng Zhou
- Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK..
| |
Collapse
|
2
|
Pan F, Aaron Lau KH, Messersmith PB, Lu JR, Zhao X. Interfacial Assembly Inspired by Marine Mussels and Antifouling Effects of Polypeptoids: A Neutron Reflection Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12309-12318. [PMID: 32970448 PMCID: PMC7586401 DOI: 10.1021/acs.langmuir.0c02247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Polypeptoid-coated surfaces and many surface-grafted hydrophilic polymer brushes have been proven efficient in antifouling-the prevention of nonspecific biomolecular adsorption and cell attachment. Protein adsorption, in particular, is known to mediate subsequent cell-surface interactions. However, the detailed antifouling mechanism of polypeptoid and other polymer brush coatings at the molecular level is not well understood. Moreover, most adsorption studies focus only on measuring a single adsorbed mass value, and few techniques are capable of characterizing the hydrated in situ layer structure of either the antifouling coating or adsorbed proteins. In this study, interfacial assembly of polypeptoid brushes with different chain lengths has been investigated in situ using neutron reflection (NR). Consistent with past simulation results, NR revealed a common two-step structure for grafted polypeptoids consisting of a dense inner region that included a mussel adhesive-inspired oligopeptide for grafting polypeptoid chains and a highly hydrated upper region with very low polymer density (molecular brush). Protein adsorption was studied with human serum albumin (HSA) and fibrinogen (FIB), two common serum proteins of different sizes but similar isoelectric points (IEPs). In contrast to controls, we observed higher resistance by grafted polypeptoid against adsorption of the larger FIB, especially for longer chain lengths. Changing the pH to close to the IEPs of the proteins, which generally promotes adsorption, also did not significantly affect the antifouling effect against FIB, which was corroborated by atomic force microscopy imaging. Moreover, NR enabled characterization of the in situ hydrated layer structures of the polypeptoids together with proteins adsorbed under selected conditions. While adsorption on bare SiO2 controls resulted in surface-induced protein denaturation, this was not observed on polypeptoids. Our current results therefore highlight the detailed in situ view that NR may provide for characterizing protein adsorption on polymer brushes as well as the excellent antifouling behavior of polypeptoids.
Collapse
Affiliation(s)
- Fang Pan
- School
of Pharmacy, Changzhou University, Changzhou 213164, China
- School
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - King Hang Aaron Lau
- Department
of Pure & Applied Chemistry, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Phillip B. Messersmith
- Department
of Materials Science and Engineering, Department of Bioengineering, University of California−Berkeley, Berkeley California 94720, United States
| | - Jian R. Lu
- School
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - Xiubo Zhao
- School
of Pharmacy, Changzhou University, Changzhou 213164, China
- Department
of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
3
|
Liu K, Yang L, Peng X, Gong H, Wang J, Lu JR, Xu H. Effects of Conventional Surfactants on the Activity of Designed Antimicrobial Peptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3531-3539. [PMID: 32183512 DOI: 10.1021/acs.langmuir.0c00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, the interaction between a designed antimicrobial peptide (AMP) G(IIKK)3I-NH2 (G3) and four typical conventional surfactants (sodium dodecyl sulfonate (SDS), hexadecyl trimethyl ammonium bromide (C16TAB), polyoxyethylene (23) lauryl ether (C12EO23), and tetradecyldimethylamine oxide (C14DMAO)) has been studied through surface tension measurement and circular dichroism (CD) spectroscopy. The antimicrobial activities of AMP/surfactant mixtures have also been studied with Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus, and the fungus Candida albicans. The cytotoxicity of the AMP/surfactant mixtures has also been assessed with NIH 3T3 and human skin fibroblast (HSF) cells. The surface tension data showed that the AMP/SDS mixture was much more surface-active than SDS alone. CD results showed that G3 conformation changed from random coil, to β-sheet, and then to α-helix with increasing SDS concentration, showing a range of structural transformation driven by the different interactions with SDS. The antimicrobial activity of G3 to Gram-negative and Gram-positive bacteria decreased in the presence of SDS due to the strong interaction of electrostatic attraction between the peptide and the surfactant. The interactions between G3 and C16TAB, C12EO23, and C14DMAO were much weaker than SDS. As a result, the surface tension of surfactants with G3 did not change much, neither did the secondary structures of G3. The antimicrobial activities of G3 were little affected in the presence of C12EO23, slightly improved by C14DMAO, and clearly enhanced by cationic surfactant C16TAB due to its strong cationic and antimicrobial nature, consistent with their surface physical activities as binary mixtures. Although AMP G3 did not show activity to fungus, the mixtures of AMP/C16TAB and AMP/C14DMAO could kill C. albicans at high surfactant concentrations. The mixtures had rather high cytotoxicity to NIH 3T3 and HSF cells although G3 is nontoxic to cells. Cationic AMPs can be formulated with nonionic, cationic, and zwitterionic surfactants during product development, but care must be taken when AMPs are formulated with anionic surfactants, as the strong electrostatic interaction may undermine their antimicrobial activity.
Collapse
Affiliation(s)
- Kang Liu
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Liuxin Yang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoting Peng
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Haoning Gong
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Jian Ren Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing & Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
4
|
Zhao M, He H, Dai C, Wu X, Zhang Y, Huang Y, Gu C. Micelle formation by amine-based CO2-responsive surfactant of imidazoline type in an aqueous solution. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
|
6
|
Zhang H, Yuan S, Sun J, Liu J, Li H, Du N, Hou W. Molecular dynamics simulation of sodium dodecylsulfate (SDS) bilayers. J Colloid Interface Sci 2017; 506:227-235. [DOI: 10.1016/j.jcis.2017.07.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022]
|
7
|
Du N, Song R, Zhang H, Sun J, Yuan S, Zhang R, Hou W. The formation and stability of sodium dodecylsulfate vesicles mediated by rough glass surface. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Jayawardane D, Pan F, Lu JR, Zhao X. Interfacial Adsorption of Silk Fibroin Peptides and Their Interaction with Surfactants at the Solid-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8202-8211. [PMID: 27465840 DOI: 10.1021/acs.langmuir.6b02068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Regenerated silk fibroin (RSF) is a Food and Drug Administration-approved material and has been widely used in many biomedical and cosmetic applications. Because of the amphiphilic nature of the primary repeat amino acid sequence (e.g., AGAGAS), RSF peptides can significantly reduce the water surface tension and therefore have the potential to be used as a surface active component for many applications, particularly in the biomedical, cosmetic, pharmaceutical, and food industries. In this paper, the adsorption of RSF peptides separated into molecular fractions of 5-30, 30-300, and >300 kDa has been studied at the solid-water interface by neutron reflection and spectroscopic ellipsometry to assess its surface active behavior. A stable layer of RSF was found to be irreversibly adsorbed at the hydrophilic SiO2-water interface. Changes in solution concentration, pH, and ionic strength all had an impact on the final adsorbed amount found at the interface. There were no significant differences between the final adsorbed amounts or layer structure among the three RSF molecular fractions studied; however, >300 kDa RSF was more stable to changes in solution ionic strength. Adsorption of conventional anionic and cationic surfactants, sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (C12TAB), to the preadsorbed 5-30 kDa RSF revealed penetration of the surfactant into the RSF layer, at concentrations below the critical micellar concentration (CMC). SDS was found in the preadsorbed RSF layer and gradually removed RSF from the surface with an increase in SDS concentration. At concentrations above the CMC, there is near complete removal of RSF by SDS at the interface. C12TAB adsorbed into the preadsorbed RSF layer with considerably less removal of RSF from the interface compared to SDS. At concentrations above the CMC, both C12Tab and RSF were found to coexist at the interface, forming a less thick layer but with a considerable amount of RSF still present.
Collapse
Affiliation(s)
- Dharana Jayawardane
- Department of Chemical and Biological Engineering, University of Sheffield , Sheffield S1 3JD, U.K
| | - Fang Pan
- Biological Physics Group, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| | - Jian R Lu
- Biological Physics Group, University of Manchester , Schuster Building, Manchester M13 9PL, U.K
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield , Sheffield S1 3JD, U.K
| |
Collapse
|