1
|
Ji Y, Yang B, Cai F, Song T, Yu H. Steerable mass transport in a photoresponsive system for advanced anticounterfeiting. iScience 2024; 27:108790. [PMID: 38292421 PMCID: PMC10826315 DOI: 10.1016/j.isci.2024.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Numerous anticounterfeiting platforms using photoresponsive materials have been designed to improve information security, enabling applications in anticounterfeiting technology. However, fabricating sophisticated micro/nanostructures using bidirectional mass transport to achieve advanced anticounterfeiting remains challenging. Here, we propose one strategy to achieve steerable mass transport in a photoresponsive system with the assistance of solvent vapor at room temperature. Upon optimizing the host-guest ratio and the width of photoisomerized areas, wettability gradient is acquired just photo-patterning once, then bidirectional mass transport is realized due to the competition of mass transport induced by surface energy gradient of the material itself and flow of the solvent on the film surface with wettability gradient. Taking advantage of the interaction between solvent and film surface with wettability gradient, this bidirectional polymer flow has been successfully applied in multi-mode anticounterfeiting. This work paves a promising avenue toward high-level information storage in soft materials, demonstrating the potential applications in anticounterfeiting.
Collapse
Affiliation(s)
- Yufan Ji
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Bowen Yang
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Feng Cai
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Tianfu Song
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Haifeng Yu
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Exley T, Hays E, Johnson D, Moridani A, Motati R, Jafari A. Toward a Unified Naming Scheme for Thermo-Active Soft Actuators: A Review of Materials, Working Principles, and Applications. ROBOTICS REPORTS (NEW ROCHELLE, N.Y.) 2024; 2:15-28. [PMID: 38584677 PMCID: PMC10996867 DOI: 10.1089/rorep.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Soft robotics is a rapidly growing field that spans the fields of chemistry, materials science, and engineering. Due to the diverse background of the field, there have been contrasting naming schemes such as "intelligent," "smart," and "adaptive" materials, which add vagueness to the broad innovation among literature. Therefore, a clear, functional, and descriptive naming scheme is proposed in which a previously vague name-Soft Material for Soft Actuators-can remain clear and concise-Phase-Change Elastomers for Artificial Muscles. By synthesizing the working principle, material, and application into a naming scheme, the searchability of soft robotics can be enhanced and applied to other fields. The field of thermo-active soft actuators spans multiple domains and requires added clarity. Thermo-active actuators have potential for a variety of applications spanning virtual reality haptics to assistive devices. This review offers a comprehensive guide to selecting the type of thermo-active actuator when one has an application in mind. In addition, it discusses future directions and improvements that are necessary for implementation.
Collapse
Affiliation(s)
- Trevor Exley
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Emilly Hays
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Daniel Johnson
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Arian Moridani
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Ramya Motati
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Amir Jafari
- Advanced Robotic Manipulators (ARM) Lab, the Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
3
|
Patterned crystal growth and heat wave generation in hydrogels. Nat Commun 2022; 13:259. [PMID: 35017471 PMCID: PMC8752664 DOI: 10.1038/s41467-021-27505-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The crystallization of metastable liquid phase change materials releases stored energy as latent heat upon nucleation and may therefore provide a triggerable means of activating downstream processes that respond to changes in temperature. In this work, we describe a strategy for controlling the fast, exothermic crystallization of sodium acetate from a metastable aqueous solution into trihydrate crystals within a polyacrylamide hydrogel whose polymerization state has been patterned using photomasks. A comprehensive experimental study of crystal shapes, crystal growth front velocities and evolving thermal profiles showed that rapid growth of long needle-like crystals through unpolymerized solutions produced peak temperatures of up to 45˚C, while slower-crystallizing polymerized solutions produced polycrystalline composites and peaked at 30˚C due to lower rates of heat release relative to dissipation in these regions. This temperature difference in the propagating heat waves, which we describe using a proposed analytical model, enables the use of this strategy to selectively activate thermoresponsive processes in predefined areas. The crystallization of metastable liquid phase change materials releases stored energy upon nucleation. Here, the authors demonstrate area-selective activation of thermoresponsive processes by exothermic crystallization of sodium acetate into trihydrate crystals within a patterned polyacrylamide hydrogel.
Collapse
|
4
|
Liu H, Zhang Y, Ma S, Alsaid Y, Pei X, Cai M, He X, Zhou F. Esophagus-Inspired Actuator for Solid Transportation via the Synergy of Lubrication and Contractile Deformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102800. [PMID: 34708584 PMCID: PMC8693057 DOI: 10.1002/advs.202102800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/09/2021] [Indexed: 05/15/2023]
Abstract
Directional transportation of objects has important applications from energy transfer and intelligent robots to biomedical devices. Although breakthroughs in liquid migration on 2D surfaces or 3D tubular devices have been achieved, realizing smooth/on-demand transportation of constrained solids within a 3D cavity environment under harsh pressurized environment still remains a daunting challenge, where strong interface friction force becomes the main obstacle restricting the movement of solids. Inspired by typical feeding mechanism in natural esophagus system which synergistically couples a lubricating mucosa surface with the peristaltic contraction deformation of the cavity, herein, this challenge is addressed by constructing an esophagus-inspired layered tubular actuator with a slippery inner surface and responsive hydrogel matrix to realize spherical solid propulsion by photo(thermo)-induced cavity deformation. The as-constructed tubular actuator containing Fe3 O4 nanoparticles exhibits local volumetric shrinkage upon NIR-irradiation, which can generate large hydrodynamic pressure and considerable mechanical extrusion force (Fdriving force ≈ 0.18 N) to overcome low interface friction force (ffriction force ≈ 0.03 N), enabling on-demand transportation of constrained (pressure: 0.103 MPa) spherical solids over a long distance in an arbitrary direction. This actuator is anticipated to be used as bionic medicine transportation devices or artificial in vitro esophagus simulation systems, for example, to help formula eating-related physiotherapy plans for patients and astronauts.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunlei Zhang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shuanhong Ma
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Yousif Alsaid
- Department of Material Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Xiaowei Pei
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Meirong Cai
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| | - Ximin He
- Department of Material Science and EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Feng Zhou
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000China
| |
Collapse
|
5
|
Liu L, Broer DJ, Onck PR. Travelling waves on photo-switchable patterned liquid crystal polymer films directed by rotating polarized light. SOFT MATTER 2019; 15:8040-8050. [PMID: 31595940 DOI: 10.1039/c9sm01594a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nature employs travelling waves to generate propulsion of fluids, cells and organisms. This has inspired the development of responsive material systems based on different external triggers. Especially light-actuation is suitable because of its remote control and scalability, but often complex, moving light sources are required. Here, we developed a method that only requires flood exposure by rotating the linear polarization of light to generate propagating surface waves on azobenzene-modified liquid crystalline polymer films. We built a photomechanical computational model that accounts for the attenuation of polarized light and trans-to-cis isomerization of azobenzene. A non-uniform in-plane distribution of the liquid crystal molecules allows for the generation of travelling surface waves whose amplitude, speed and direction can be controlled through the intensity, rotation direction and rotation speed of the linear polarization of a light source. Our method opens new avenues for motion control based on light-responsive topographical transformations for application in microfluidic lab-on-chip systems and soft robotics.
Collapse
Affiliation(s)
- Ling Liu
- Micromechanics of Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| | - Dirk J Broer
- Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems (ICMS), Technology University of Eindhoven, 5600 MB Eindhoven, The Netherlands
| | - Patrick R Onck
- Micromechanics of Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
6
|
Jiang H, Fan L, Yan S, Li F, Li H, Tang J. Tough and electro-responsive hydrogel actuators with bidirectional bending behavior. NANOSCALE 2019; 11:2231-2237. [PMID: 30656330 DOI: 10.1039/c8nr07863g] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electro-responsive hydrogel actuators have gained much attention because of their fast response, low power consumption and easy modulation. However, such hydrogel actuators suffer from poor mechanical properties and restricted bending direction, which limit their practical applications. Herein, we report a nanocomposite hydrogel actuator with a combination of high mechanical tensile strength (2 MPa) and automatic bidirectional bending behavior in response to electric signals. The resulting hydrogel, crosslinked by aluminum hydroxide nanoparticles, shows rapid bending behavior and could be cyclically actuated up to ten times in an electric field. Furthermore, the hydrogel demonstrates bidirectional bending actuation, which was ascribed to the difference in diffusion coefficients and concentrations of cations and anions within the gel network. Moreover, the direction and magnitude of the bending behavior could be tuned by composition variation. The hydrogel actuators developed in this study may have great potential in soft robotics, artificial muscles and tissue engineering.
Collapse
Affiliation(s)
- Haoyang Jiang
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | | | | | | | | | | |
Collapse
|
7
|
Imani KBC, Kim D, Kim D, Yoon J. Temperature-Controllable Hydrogels in Double-Walled Microtube Structure Prepared by Using a Triple Channel Microfluidic System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11553-11558. [PMID: 30170498 DOI: 10.1021/acs.langmuir.8b02687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogels in the shape of double-walled microtubes possess great potential for development into artificial human blood vessels. In this work, we have prepared temperature-responsive tubular hydrogels with selectively controllable wall diameters, by using alginate templated photopolymerization in a triple channel microfluidic device. These tubular hydrogels mimic human blood vessels because of the separate thermally active inner and passive outer walls. The different behavior of each wall leads to the expansion of the hollow center volume with increasing temperature. This temperature-based control of the hollow center volume cannot be achieved in the case of conventional hydrogel microtubes. Furthermore, through this method, the hydrogels can be modified to achieve a controllable outer diameter while maintaining the hollow center dimensions simply by changing the position of the hydrogel walls. The ability to change the layer properties of the developed system indicates that the preparation of hydrogels with various monomers is possible.
Collapse
Affiliation(s)
- Kusuma Betha Cahaya Imani
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials , Pusan National University , 2 Busandaehak-ro 63 beon-gil , Geumjeong-gu, Busan 46241 , Republic of Korea
| | - Dongwan Kim
- Department of Chemistry , Dong-A University , 37 Nakdong-Daero 550 beon-gil , Saha-gu, Busan 49315 , Republic of Korea
| | - Dowan Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials , Pusan National University , 2 Busandaehak-ro 63 beon-gil , Geumjeong-gu, Busan 46241 , Republic of Korea
| | - Jinhwan Yoon
- Department of Chemistry Education, Graduate Department of Chemical Materials, and Institute for Plastic Information and Energy Materials , Pusan National University , 2 Busandaehak-ro 63 beon-gil , Geumjeong-gu, Busan 46241 , Republic of Korea
| |
Collapse
|
8
|
Holler S, Porcelli C, Ieropoulos IA, Hanczyc MM. Transport of Live Cells Under Sterile Conditions Using a Chemotactic Droplet. Sci Rep 2018; 8:8408. [PMID: 29849066 PMCID: PMC5976712 DOI: 10.1038/s41598-018-26703-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/10/2018] [Indexed: 11/10/2022] Open
Abstract
1-Decanol droplets, formed in an aqueous medium containing decanoate at high pH, become chemotactic when a chemical gradient is placed in the external aqueous environment. We investigated if such droplets can be used as transporters for living cells. We developed a partially hydrophobic alginate capsule as a protective unit that can be precisely placed in a droplet and transported along chemical gradients. Once the droplets with cargo reached a defined final destination, the association of the alginate capsule and decanol droplet was disrupted and cargo deposited. Both Escherichia coli and Bacillus subtilis cells survived and proliferated after transport even though transport occurred under harsh and sterile conditions.
Collapse
Affiliation(s)
- Silvia Holler
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Carlotta Porcelli
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Ioannis A Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotic Laboratory, Block T, UWE, Bristol, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Chemical and Biological Engineering, University of New Mexico, MSC01 1120, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
9
|
Liu X, Kim SK, Wang X. Thermomechanical liquid crystalline elastomer capillaries with biomimetic peristaltic crawling function. J Mater Chem B 2016; 4:7293-7302. [PMID: 32263731 DOI: 10.1039/c6tb02372j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is highly desirable to fabricate liquid crystalline elastomer (LCE) devices with novel functions for applications in different areas. In this study, LCE capillaries with biomimetic peristaltic function are fabricated for the first time to mimic the peristaltic crawling locomotion of earthworms. A specifically designed LC cell was prepared for this purpose, which consisted of two coaxial glass capillaries coated with polyimide alignment layers on the inner cell surfaces. The side-on LCE capillaries were fabricated by photoinitiated polymerization/crosslinking of a monomer and a crosslinker in the LC cells. The results show that owing to the effect of the alignment layers on the LC cell walls, the mesogenic units in the network structures are predominantly oriented along the capillary axis. Reversible thermomechanical contraction and expansion are observed for the LCE capillaries, which show a relative contraction of 16% in the length and a relative expansion of 12% in the diameter upon the nematic to isotropic phase transition. When placed in a glass tube with an appropriate inner diameter, reversible peristaltic crawling locomotion of the LCE capillaries is realized by moving a heating source outside the tube along its axis. Under typical conditions, the peristaltic crawling motion shows a moving speed of 0.31 mm s-1. The mechanism of the peristaltic crawling of the LCE capillary is elucidated with the assistance of the finite elemental analysis (FEA) simulation. A five-stage motion model is established to rationalize these observations and correlate the observations with the crawling locomotion of earthworms. The LCE capillary with the peristaltic crawling locomotion function promises its potential applications in biomimetic miniature robots and actuators.
Collapse
Affiliation(s)
- Xiyang Liu
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P. R. China.
| | | | | |
Collapse
|