1
|
Chawathe A, Ahire V, Luthra K, Patil B, Garkhal K, Sharma N. Analytical and drug delivery strategies for short peptides: From manufacturing to market. Anal Biochem 2025; 696:115699. [PMID: 39461693 DOI: 10.1016/j.ab.2024.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
In recent times, biopharmaceuticals have gained attention because of their tremendous potential to benefit millions of patients globally by treating widespread diseases such as cancer, diabetes and many rare diseases. Short peptides (SP), also termed as oligopeptides, are one such class of biopharmaceuticals, that are majorly involved in efficient functioning of biological systems. Peptide chains that are 2-20 amino acids long are considered as oligopeptides by researchers and are some of the functionally vital compounds with widespread applications including self-assembly material for drug delivery, targeting ligands for precise/specific targeting and other biological uses. Using functionalised biomacromolecules such as short chained peptides, helps in improving pharmacokinetic properties and biodistribution profile of the drug. Apart from this, functionalised SP are being employed as cell penetrating peptides and prodrug to specifically and selectively target tumor sites. In order to minimize any unwanted interaction and adverse effects, the stability and safety of SP should be ensured throughout its development from manufacturing to market. Formulation development and characterization strategies of these potential molecules are described in the following review along with various applications and details of marketed formulations.
Collapse
Affiliation(s)
- Ashwini Chawathe
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Vishal Ahire
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kshitiz Luthra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Bhumika Patil
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
2
|
Aguilar MI, Yarovsky I. Quest for New Generation Biocompatible Materials: Tailoring β-Peptide Structure and Interactions via Synergy of Experiments and Modelling. J Mol Biol 2024; 436:168646. [PMID: 38848868 DOI: 10.1016/j.jmb.2024.168646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Peptide-based self-assembly has been used to produce a wide range of nanostructures. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been shown to undergo supramolecular self-assembly, and have been used to produce materials for applications in tissue engineering, cell culture and drug delivery. In order to engineer new materials with specific structure and function, theoretical molecular modelling can provide significant insights into the collective balance of non-covalent interactions that drive the self-assembly and determine the structure of the resultant supramolecular materials under different conditions. However, this approach has only recently become feasible for peptide-based self-assembled nanomaterials, particularly those that incorporate non α-amino acids. This perspective provides an overview of the challenges associated with computational modelling of the self-assembly of β-peptides and the recent success using a combination of experimental and computational techniques to provide insights into the self-assembly mechanisms and fully atomistic models of these new biocompatible materials.
Collapse
Affiliation(s)
- Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
3
|
Williams-Noonan BJ, Kulkarni K, Todorova N, Franceschi M, Wilde C, Borgo MPD, Serpell LC, Aguilar MI, Yarovsky I. Atomic Scale Structure of Self-Assembled Lipidated Peptide Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311103. [PMID: 38489817 DOI: 10.1002/adma.202311103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Indexed: 03/17/2024]
Abstract
β-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of β-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent β-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated β3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated β3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated β3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.
Collapse
Affiliation(s)
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Nevena Todorova
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Matteo Franceschi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Christopher Wilde
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University, Clayton, Victoria, 3800, Australia
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
4
|
Sun Z, Hu H, Zhang X, Luan X, Xi Y, Wei G, Zhang X. Recent advances in peptide-based bioactive hydrogels for nerve repair and regeneration: from material design to fabrication, functional tailoring and applications. J Mater Chem B 2024; 12:2253-2273. [PMID: 38375592 DOI: 10.1039/d4tb00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The injury of both central and peripheral nervous systems can result in neurological disorders and severe nervous diseases, which has been one of the challenges in the medical field. The use of peptide-based hydrogels for nerve repair and regeneration (NRR) provides a promising way for treating these problems, but the effects of the functions of peptide hydrogels on the NRR efficiency have been not understood clearly. In this review, we present recent advances in the material design, matrix fabrication, functional tailoring, and NRR applications of three types of peptide-based hydrogels, including pure peptide hydrogels, other component-functionalized peptide hydrogels, and peptide-modified polymer hydrogels. The case studies on the utilization of various peptide-based hydrogels for NRR are introduced and analyzed, in which the effects and mechanisms of the functions of hydrogels on NRR are illustrated specifically. In addition, the fabrication of medical NRR scaffolds and devices for pre-clinical application is demonstrated. Finally, we provide potential directions on the development of this promising topic. This comprehensive review could be valuable for readers to know the design and synthesis strategies of bioactive peptide hydrogels, as well as their functional tailoring, in order to promote their practical applications in tissue engineering, biomedical engineering, and materials science.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Qingdao Huangdao Central Hospital, Qingdao University Medical Group, Qingdao 266555, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, P. R. China.
| | - Huiqiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, P. R. China.
| | - Xingchao Zhang
- Department of Spinal Surgery, Qingdao Huangdao Central Hospital, Qingdao University Medical Group, Qingdao 266555, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, P. R. China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, P. R. China.
| |
Collapse
|
5
|
Chen YK, Simon IA, Maslov I, Oyarce-Pino IE, Kulkarni K, Hopper D, Aguilar MI, Vankadari N, Broughton BR, Del Borgo MP. A switch in N-terminal capping of β-peptides creates novel self-assembled nanoparticles. RSC Adv 2023; 13:29401-29407. [PMID: 37818265 PMCID: PMC10561372 DOI: 10.1039/d3ra04514e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Small tripeptides composed entirely of β3-amino acids have been shown to self-assemble into fibres following acylation of the N-terminus. Given the use of Fmoc as a strategy to initiate self-assembly in α-peptides, we hypothesized that the acyl cap can be replaced by an Fmoc without perturbation to the self-assembly and enable simpler synthetic protocols. We therefore replaced the N-acyl cap for an Fmoc group and herein we show that these Fmoc-protected β3-peptides produce regular spherical particles, rather than fibrous structures, that are stable and capable of encapsulating cargo. We then demonstrated that these particles were able to deliver cargo to cells without any obvious signs of cytotoxicity. This is the first description of such regular nanoparticles derived from Fmoc-protected β3-peptides.
Collapse
Affiliation(s)
- Yi-Kai Chen
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Isabella A Simon
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ivan Maslov
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ivan E Oyarce-Pino
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Denham Hopper
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne VIC 3000 Australia
| | - Brad Rs Broughton
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University Clayton VIC 3800 Australia
- Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
| |
Collapse
|
6
|
McFetridge ML, Kulkarni K, Lee TH, Del Borgo MP, Aguilar MI, Ricardo SD. Elucidating the cell penetrating properties of self-assembling β-peptides. NANOSCALE 2023; 15:14971-14980. [PMID: 37661822 DOI: 10.1039/d3nr03673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Self-assembling lipopeptide hydrogels have been widely developed for the delivery of therapeutics due to their rapid gelation, injectability, and highly controlled physicochemical properties. Lipopeptides are also known for their membrane-associating and cell penetrating properties, which may impact on their application in cell-encapsulation. Self-assembling lipidated-β3-peptide materials developed in our laboratory have previously been used in cell culture as 2D substrates, thus as a continuation of this work we aimed to encapsulate cells in 3D by forming a hydrogel. We therefore assessed the self-assembling lipidated-β3-peptides for cell-penetrating properties in mesenchymal stems cells (MSC) using fluorescence microscopy and membrane association with surface plasmon resonance spectroscopy (SPR). The results demonstrated that lipidated β3-peptides penetrate the MSC plasma membrane and localise to the mitochondrial network. While self-assembling lipopeptide hydrogels have shown tremendous potential for delivery of therapeutics, further optimisation may be required to minimise the membrane uptake of the lipidated-β3-peptides for cell encapsulation applications.
Collapse
Affiliation(s)
- Meg L McFetridge
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Mark P Del Borgo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
7
|
Sang P, Cai J. Unnatural helical peptidic foldamers as protein segment mimics. Chem Soc Rev 2023; 52:4843-4877. [PMID: 37401344 PMCID: PMC10389297 DOI: 10.1039/d2cs00395c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 07/05/2023]
Abstract
Unnatural helical peptidic foldamers have attracted considerable attention owing to their unique folding behaviours, diverse artificial protein binding mechanisms, and promising applications in chemical, biological, medical, and material fields. Unlike the conventional α-helix consisting of molecular entities of native α-amino acids, unnatural helical peptidic foldamers are generally comprised of well-defined backbone conformers with unique and unnatural structural parameters. Their folded structures usually arise from unnatural amino acids such as N-substituted glycine, N-substituted-β-alanine, β-amino acid, urea, thiourea, α-aminoxy acid, α-aminoisobutyric acid, aza-amino acid, aromatic amide, γ-amino acid, as well as sulfono-γ-AA amino acid. They can exhibit intriguing and predictable three-dimensional helical structures, generally featuring superior resistance to proteolytic degradation, enhanced bioavailability, and improved chemodiversity, and are promising in mimicking helical segments of various proteins. Although it is impossible to include every piece of research work, we attempt to highlight the research progress in the past 10 years in exploring unnatural peptidic foldamers as protein helical segment mimics, by giving some representative examples and discussing the current challenges and future perspectives. We expect that this review will help elucidate the principles of structural design and applications of existing unnatural helical peptidic foldamers in protein segment mimicry, thereby attracting more researchers to explore and generate novel unnatural peptidic foldamers with unique structural and functional properties, leading to more unprecedented and practical applications.
Collapse
Affiliation(s)
- Peng Sang
- Tianjian Laboratory of Advanced Biomedical Sciences, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
8
|
Petit N, Dyer JM, Gerrard JA, Domigan LJ, Clerens S. Insight into the self-assembly and gel formation of a bioactive peptide derived from bovine casein. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
9
|
McFetridge ML, Kulkarni K, Hilsenstein V, Del Borgo MP, Aguilar MI, Ricardo SD. A comparison of fixation methods for SEM analysis of self-assembling peptide hydrogel nanoarchitecture. NANOSCALE 2023; 15:1431-1440. [PMID: 36594515 DOI: 10.1039/d2nr04598b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Determining the porosity of hydrogels is an important component of material characterisation. While scanning electron microscopy (SEM) is a widely used method to study hydrogel nanoarchitecture, it is well-established that SEM sample preparation methods can alter the structure of hydrogels. Herein we describe the impact of sample preparation on the SEM analysis of self-assembling β-peptide hydrogels. Three methods of hydrogel preparation for SEM were compared, and each method preserved distinctly different nanoarchitecture, specifically, different levels of fibre alignment and porosity. Comparison of conventional SEM preparation and our hybrid method, which comprises high pressure freezing, freeze substitution without fixative and critical point drying, showed a high degree of similarity at the nanometre scale and diverging architecture at the micron scale. This study quantified the impact of chemical fixation versus high pressure freezing on self-assembling β3-peptide hydrogels, demonstrated the effect of sample preparation on fibre alignment and porosity, and presents a novel hybrid preparation method where chemical fixation can be avoided when conventional SEM is desired.
Collapse
Affiliation(s)
- Meg L McFetridge
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Volker Hilsenstein
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
- European Molecular Biology Laboratory (EMBL), Alexandrov Group, Meyerhofstr. 1, Heidelberg, Germany
| | - Mark P Del Borgo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
10
|
Cao L, Huang Y, Parakhonskiy B, Skirtach AG. Nanoarchitectonics beyond perfect order - not quite perfect but quite useful. NANOSCALE 2022; 14:15964-16002. [PMID: 36278502 DOI: 10.1039/d2nr02537j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoarchitectonics, like architectonics, allows the design and building of structures, but at the nanoscale. Unlike those in architectonics, and even macro-, micro-, and atomic-scale architectonics, the assembled structures at the nanoscale do not always follow the projected design. In fact, they do follow the projected design but only for self-assembly processes producing structures with perfect order. Here, we look at nanoarchitectonics allowing the building of nanostructures without a perfect arrangement of building blocks. Here, fabrication of structures from molecules, polymers, nanoparticles, and nanosheets to polymer brushes, layer-by-layer assembly structures, and hydrogels through self-assembly processes is discussed, where perfect order is not necessarily the aim to be achieved. Both planar substrate and spherical template-based assemblies are discussed, showing the challenging nature of research in this field and the usefulness of such structures for numerous applications, which are also discussed here.
Collapse
Affiliation(s)
- Lin Cao
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Yanqi Huang
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Misra R, Tang Y, Chen Y, Chakraborty P, Netti F, Vijayakanth T, Shimon LJW, Wei G, Adler-Abramovich L. Exploiting Minimalistic Backbone Engineered γ-Phenylalanine for the Formation of Supramolecular Co-Polymer. Macromol Rapid Commun 2022; 43:e2200223. [PMID: 35920234 DOI: 10.1002/marc.202200223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Ordered supramolecular hydrogels assembled by modified aromatic amino acids often exhibit low mechanical rigidity. Aiming to stabilize the hydrogel and understand the impact of conformational freedom and hydrophobicity on the self-assembly process, we designed two building blocks based on 9-fluorenyl-methoxycarbonyl-phenylalanine (Fmoc-Phe) gelator which contain two extra methylene units in the backbone, generating Fmoc-γPhe and Fmoc-(3-hydroxy)-γPhe. Fmoc-γPhe spontaneously assembled in aqueous media forming a hydrogel with exceptional mechanical and thermal stability. Moreover, Fmoc-(3-hydroxy)-γPhe, with an extra backbone hydroxyl group decreasing its hydrophobicity while maintaining some molecular flexibility, self-assembled into a transient fibrillar hydrogel, that later formed microcrystalline aggregates through phase transition. Molecular dynamics simulations and single crystal X-ray analyses revealed the mechanism underlying the two residues' distinct self-assembly behaviors. Finally, we demonstrated Fmoc-γPhe and Fmoc-(3-OH)-γPhe co-assembly to form a supramolecular hydrogel with notable mechanical properties. We believe that the understanding of the structure-assembly relationship will enable the design of new functional amino acid-based hydrogels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rajkumar Misra
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, the Center for Nanoscience and Nanotechnology, the Center for the Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv, 69978, Israel.,Dept. of Med. Chem, NIPER Mohali, S.A.S. Nagar (Mohali), 160062, India
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE) and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai, 200433, P. R. China
| | - Yujie Chen
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE) and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai, 200433, P. R. China
| | - Priyadarshi Chakraborty
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, the Center for Nanoscience and Nanotechnology, the Center for the Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Francesca Netti
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, the Center for Nanoscience and Nanotechnology, the Center for the Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Thangavel Vijayakanth
- The Shmunis School of Biomedicine and Cancer Research George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE) and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai, 200433, P. R. China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, the Center for Nanoscience and Nanotechnology, the Center for the Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
12
|
Chowdhary S, Schmidt RF, Sahoo AK, Tom Dieck T, Hohmann T, Schade B, Brademann-Jock K, Thünemann AF, Netz RR, Gradzielski M, Koksch B. Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation. NANOSCALE 2022; 14:10176-10189. [PMID: 35796261 DOI: 10.1039/d2nr01648f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Advanced peptide-based nanomaterials composed of self-assembling peptides (SAPs) are of emerging interest in pharmaceutical and biomedical applications. The introduction of fluorine into peptides, in fact, offers unique opportunities to tune their biophysical properties and intermolecular interactions. In particular, the degree of fluorination plays a crucial role in peptide engineering as it can be used to control the characteristics of fluorine-specific interactions and, thus, peptide conformation and self-assembly. Here, we designed and explored a series of amphipathic peptides by incorporating the fluorinated amino acids (2S)-4-monofluoroethylglycine (MfeGly), (2S)-4,4-difluoroethylglycine (DfeGly) and (2S)-4,4,4-trifluoroethylglycine (TfeGly) as hydrophobic components. This approach enabled studying the impact of fluorination on secondary structure formation and peptide self-assembly on a systematic basis. We show that the interplay between polarity and hydrophobicity, both induced differentially by varying degrees of side chain fluorination, does affect peptide folding significantly. A greater degree of fluorination promotes peptide fibrillation and subsequent formation of physical hydrogels in physiological conditions. Molecular simulations revealed the key role played by electrostatically driven intra-chain and inter-chain contact pairs that are modulated by side chain fluorination and give insights into the different self-organization behaviour of selected peptides. Our study provides a systematic report about the distinct features of fluorinated oligomeric peptides with potential applications as peptide-based biomaterials.
Collapse
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.
| | - Robert Franz Schmidt
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Anil Kumar Sahoo
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Tiemo Tom Dieck
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.
| | - Thomas Hohmann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.
| | - Boris Schade
- Institute of Chemistry and Biochemistry and Core Facility BioSupraMol, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Kerstin Brademann-Jock
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas F Thünemann
- Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Gradzielski
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany.
| |
Collapse
|
13
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Kulkarni K, Minehan RL, Gamot T, Coleman HA, Bowles S, Lin Q, Hopper D, Northfield SE, Hughes RA, Widdop RE, Aguilar MI, Parkington HC, Del Borgo MP. Esterase-Mediated Sustained Release of Peptide-Based Therapeutics from a Self-Assembled Injectable Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58279-58290. [PMID: 34756031 DOI: 10.1021/acsami.1c14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A synthetic strategy for conjugating small molecules and peptide-based therapeutics, via a cleavable ester bond, to a lipidated β3-tripeptide is presented. The drug-loaded β3-peptide was successfully co-assembled with a functionally inert lipidated β3-tripeptide to form a hydrogel. Quantitative release of lactose from the hydrogel, by the action of serum esterases, is demonstrated over 28 days. The esterase-mediated sustained release of the bioactive brain-derived neurotrophic factor (BDNF) peptide mimics from the hydrogel resulted in increased neuronal survival and normal neuronal function of peripheral neurons. These studies define a versatile strategy for the facile synthesis and co-assembly of self-assembling β3-peptide-based hydrogels with the ability to control drug release using endogenous esterases with potential in vivo applications for sustained localized drug delivery.
Collapse
Affiliation(s)
- Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rachel L Minehan
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Tanesh Gamot
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Harold A Coleman
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Simon Bowles
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qingqing Lin
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Denham Hopper
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Susan E Northfield
- Department of Biochemistry & Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard A Hughes
- Pharmacy and Pharmaceutical Sciences Education, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
15
|
La Manna S, Di Natale C, Onesto V, Marasco D. Self-Assembling Peptides: From Design to Biomedical Applications. Int J Mol Sci 2021; 22:12662. [PMID: 34884467 PMCID: PMC8657556 DOI: 10.3390/ijms222312662] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
Self-assembling peptides could be considered a novel class of agents able to harvest an array of micro/nanostructures that are highly attractive in the biomedical field. By modifying their amino acid composition, it is possible to mime several biological functions; when assembled in micro/nanostructures, they can be used for a variety of purposes such as tissue regeneration and engineering or drug delivery to improve drug release and/or stability and to reduce side effects. Other significant advantages of self-assembled peptides involve their biocompatibility and their ability to efficiently target molecular recognition sites. Due to their intrinsic characteristics, self-assembled peptide micro/nanostructures are capable to load both hydrophobic and hydrophilic drugs, and they are suitable to achieve a triggered drug delivery at disease sites by inserting in their structure's stimuli-responsive moieties. The focus of this review was to summarize the most recent and significant studies on self-assembled peptides with an emphasis on their application in the biomedical field.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Concetta Di Natale
- Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, Università di Napoli Federico II, Piazzale Tecchio, 80, 80125 Napoli, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, CNR NANOTEC, via Monteroni, c/o Campus Ecotekne, 73100 Lecce, Italy;
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
16
|
Mirzaei S, Kulkarni K, Zhou K, Crack PJ, Aguilar MI, Finkelstein DI, Forsythe JS. Biomaterial Strategies for Restorative Therapies in Parkinson's Disease. ACS Chem Neurosci 2021; 12:4224-4235. [PMID: 34634903 DOI: 10.1021/acschemneuro.1c00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disorder, in which dopaminergic midbrain neurons degenerate, leading to dopamine depletion that is associated with neuronal death. In this Review, we initially describe the pathogenesis of PD and established therapies that unfortunately only delay progression of the disease. With a rapidly escalating incidence in PD, there is an urgent need to develop new therapies that not only halt progression but even reverse degeneration. Biomaterials are playing critical roles in these new therapies which include controlled and site-specific delivery of neurotrophins, increased engraftment of implanted neural stem cells, and redirection of endogenous stem cell populations away from their niche to encourage reparative mechanisms. This Review will therefore cover important design features of biomaterials used in regenerative medicine and tissue engineering strategies targeted at PD.
Collapse
Affiliation(s)
- Samaneh Mirzaei
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Kun Zhou
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Peter J. Crack
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Wang X, Liu X, Ma Z, Mu C, Li W. Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids. SOFT MATTER 2021; 17:10140-10148. [PMID: 34730172 DOI: 10.1039/d1sm01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new class of supramolecular hydrogels have been designed and synthesized via the co-assembly of basic amino acids (AAs) and heteropoly acids (HPAs) under acidic conditions. The formation of gel-like samples is identified using an inverted tube method, rheology, and scanning and transmission electron microscopy. Fourier transform infrared spectroscopy reveals that the structural integrity of the HPAs is maintained during the gelation process. X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance spectroscopy demonstrate that the anionic HPAs interact with both the protonated α-NH2 and the protonated side groups of the basic amino acids, initiating the preferential growth of one-dimensional nanofibers. These nanofibers bundle and entangle with each other to form extended three-dimensional network structures. The resulting AA/HPA supramolecular hydrogels show clear stereoselectivity of the basic amino acids. With the decreasing enantiomeric excess of the basic amino acids, the gelation propensity of the AA/HPA complexes is found to be depressed. The co-assembled hydrogels show the UV-responsive photochromic behaviour because of the presence of HPAs. The corresponding XPS data confirm that the photochromism of the hydrogels is attributed to the intervalence charge-transfer transition resulting from the reduction of HPAs. Interestingly, the reduced HPAs within the hydrogel matrix can absorb the near-infrared (NIR) light and exhibit photo-thermal conversion properties, which elevates the bulk temperature of the AA/HPA hydrogels and induces the gel-to-sol transition. This study unveils that HPAs have unique capacity to promote the gelation of basic amino acids for the construction of supramolecular soft materials with functional features.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Zhiyuan Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Chuanling Mu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
18
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
19
|
Petit N, Dyer JM, Clerens S, Gerrard JA, Domigan LJ. Oral delivery of self-assembling bioactive peptides to target gastrointestinal tract disease. Food Funct 2021; 11:9468-9488. [PMID: 33155590 DOI: 10.1039/d0fo01801e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peptides are known for their diverse bioactivities including antioxidant, antimicrobial, and anticancer activity, all three of which are potentially useful in treating colon-associated diseases. Beside their capability to stimulate positive health effects once released in the body, peptides are able to form useful nanostructures such as hydrogels. Combining peptide bioactivity and peptide gel-forming potentials can create interesting systems that can be used for oral delivery. This combination, acting as a two-in-one system, has the potential to avoid the need for delicate entrapment of a drug or natural bioactive compound. We here review the context and research progress, to date, in this area.
Collapse
Affiliation(s)
- Noémie Petit
- Riddet Institute, Massey University, PB 11 222, Palmerston North 4442, New Zealand
| | | | | | | | | |
Collapse
|
20
|
Payne JAE, Kulkarni K, Izore T, Fulcher AJ, Peleg AY, Aguilar MI, Cryle MJ, Del Borgo MP. Staphylococcus aureus entanglement in self-assembling β-peptide nanofibres decorated with vancomycin. NANOSCALE ADVANCES 2021; 3:2607-2616. [PMID: 36134162 PMCID: PMC9419598 DOI: 10.1039/d0na01018a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 06/16/2023]
Abstract
The increasing resistance of pathogenic microbes to antimicrobials and the shortage of antibiotic drug discovery programs threaten the clinical use of antibiotics. This threat calls for the development of new methods for control of drug-resistant microbial pathogens. We have designed, synthesised and characterised an antimicrobial material formed via the self-assembly of a population of two distinct β-peptide monomers, a lipidated tri-β-peptide (β3-peptide) and a novel β3-peptide conjugated to a glycopeptide antibiotic, vancomycin. The combination of these two building blocks resulted in fibrous assemblies with distinctive structures determined by atomic force microscopy and electron microscopy. These fibres inhibited the growth of methicillin resistant Staphylococcus aureus (MRSA) and associated directly with the bacteria, acting as a peptide nanonet with fibre nucleation sites on the bacteria observed by electron microscopy and confocal microscopy. Our results provide insights into the design of peptide based supramolecular assemblies with antibacterial activity and establish an innovative strategy to develop self-assembled antimicrobial materials for future biomedical application.
Collapse
Affiliation(s)
- Jennifer A E Payne
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
| | - Thierry Izore
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University Clayton Victoria 3800 Australia
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University Clayton Victoria 3800 Australia
- Department of Infectious Diseases, The Alfred Hospital, Central Clinical School, Monash University Melbourne Victoria 3004 Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
| | - Max J Cryle
- Infection and Immunity Program, The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University Clayton Victoria 3800 Australia
- EMBL Australia, Monash University Clayton Victoria 3800 Australia
- The ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University Clayton Victoria 3800 Australia
| | - Mark P Del Borgo
- Department of Pharmacology, Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
21
|
Ali MA, Bhuiyan MH. Types of biomaterials useful in brain repair. Neurochem Int 2021; 146:105034. [PMID: 33789130 DOI: 10.1016/j.neuint.2021.105034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/21/2023]
Abstract
Biomaterials is an emerging field in the study of brain tissue engineering and repair or neurogenesis. The fabrication of biomaterials that can replicate the mechanical and viscoelastic features required by the brain, including the poroviscoelastic responses, force dissipation, and solute diffusivity are essential to be mapped from the macro to the nanoscale level under physiological conditions in order for us to gain an effective treatment for neurodegenerative diseases. This research topic has identified a critical study gap that must be addressed, and that is to source suitable biomaterials and/or create reliable brain-tissue-like biomaterials. This chapter will define and discuss the various types of biomaterials, their structures, and their function-properties features which would enable the development of next-generation biomaterials useful in brain repair.
Collapse
Affiliation(s)
- M Azam Ali
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| | - Mozammel Haque Bhuiyan
- Center for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
22
|
Chen J, Zhao Y, Yao Q, Gao Y. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomed Mater 2021; 16:022011. [PMID: 33630754 DOI: 10.1088/1748-605x/abc2e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptidic self-assembly provides a powerful method to build biomedical materials with integrated functions. In particular, pathological environment instructed peptidic supramolecular have gained great progress in treating various diseases. Typically, certain pathology related factors convert hydrophilic precursors to corresponding more hydrophobic motifs to assemble into supramolecular structures. Herein, we would like to review the recent progress of nanomedicines based on the development of instructed self-assembly against several specific disease models. Firstly we introduce the cancer instructed self-assembly. These assemblies have exhibited great inhibition efficacy, as well as enhanced imaging contrast, against cancer models both in vitro and in vivo. Then we discuss the infection instructed peptidic self-assembly. A number of different molecular designs have demonstrated the potential antibacterial application with satisfied efficiency for peptidic supramolecular assemblies. Further, we discuss the application of instructed peptidic self-assembly for other diseases including neurodegenerative disease and vaccine. The assemblies have succeeded in down-regulating abnormal Aβ aggregates and immunotherapy. In summary, the self-assembly precursors are typical two-component molecules with (1) a self-assembling motif and (2) a cleavable trigger responsive to the pathological environment. Upon cleavage, the self-assembly occurs selectively in pathological loci whose targeting capability is independent from active targeting. Bearing the novel targeting regime, we envision that the pathological conditions instructed peptidic self-assembly will lead a paradigm shift on biomedical materials.
Collapse
Affiliation(s)
- Jiali Chen
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Zhao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
23
|
Yamada Y, Fichman G, Schneider JP. Serum Protein Adsorption Modulates the Toxicity of Highly Positively Charged Hydrogel Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8006-8014. [PMID: 33590757 PMCID: PMC9169696 DOI: 10.1021/acsami.0c21596] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hydrogels formed from peptide self-assembly are a class of materials that are being explored for their utility in tissue engineering, drug and cell delivery, two- and three-dimensional cell culture, and as adjuvants in surgical procedures. Most self-assembled peptide gels can be syringe-injected in vivo to facilitate the local delivery of payloads, including cells, directly to the targeted tissue. Herein, we report that highly positively charged peptide gels are inherently toxic to cells, which would seem to limit their utility. However, adding media containing fetal bovine serum, a common culture supplement, directly transforms these toxic gels into cytocompatible materials capable of sustaining cell viability even in the absence of added nutrients. Multistage mass spectrometry showed that at least 40 serum proteins can absorb to a gel's surface through electrostatic attraction ameliorating its toxicity. Further, cell-based studies employing model gels having only bovine serum albumin, fetuin-A, or vitronectin absorbed to the gel surface showed that single protein additives can also be effective depending on the identity of the cell line. Separate studies employing these model gels showed that the mechanism(s) responsible for mitigating apoptosis involve both the pacification of gel surface charge and adsorbed protein-mediated cell signaling events that activate both the PI3/Akt and MAPK/ERK pathways which are known to facilitate resistance to stress-induced apoptosis and overall cell survival.
Collapse
Affiliation(s)
- Yuji Yamada
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Galit Fichman
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Joel P Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
24
|
Abstract
Supramolecular biopolymers (SBPs) are those polymeric units derived from macromolecules that can assemble with each other by noncovalent interactions. Macromolecular structures are commonly found in living systems such as proteins, DNA/RNA, and polysaccharides. Bioorganic chemistry allows the generation of sequence-specific supramolecular units like SBPs that can be tailored for novel applications in tissue engineering (TE). SBPs hold advantages over other conventional polymers previously used for TE; these materials can be easily functionalized; they are self-healing, biodegradable, stimuli-responsive, and nonimmunogenic. These characteristics are vital for the further development of current trends in TE, such as the use of pluripotent cells for organoid generation, cell-free scaffolds for tissue regeneration, patient-derived organ models, and controlled delivery systems of small molecules. In this review, we will analyse the 3 subtypes of SBPs: peptide-, nucleic acid-, and oligosaccharide-derived. Then, we will discuss the role that SBPs will be playing in TE as dynamic scaffolds, therapeutic scaffolds, and bioinks. Finally, we will describe possible outlooks of SBPs for TE.
Collapse
|
25
|
Kulkarni K, Kelderman J, Coleman H, Aguilar MI, Parkington H, Del Borgo M. Self-assembly of trifunctional tripeptides to form neural scaffolds. J Mater Chem B 2021; 9:4475-4479. [PMID: 34036977 DOI: 10.1039/d0tb02959a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Peptide self-assembly has been exploited to generate a multitude of biomaterials that exhibit biocompatibility due to their similarity to naturally occurring proteins. Previously, we have shown that β-tripeptides self-assemble despite containing sterically bulky, functional sidechains. Herein, we describe the synthesis of a novel β-amino acid to allow for the synthesis of a trifunctional β-tripeptide that remarkably maintains self-assembly and acts as a bioactive neuronal scaffold. These scaffolds show promise for studies involving neuronal cell growth and development.
Collapse
Affiliation(s)
- Ketav Kulkarni
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Jenisi Kelderman
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Harold Coleman
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Helena Parkington
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Mark Del Borgo
- Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
26
|
Mukherjee N, Adak A, Ghosh S. Recent trends in the development of peptide and protein-based hydrogel therapeutics for the healing of CNS injury. SOFT MATTER 2020; 16:10046-10064. [PMID: 32724981 DOI: 10.1039/d0sm00885k] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traumatic brain injury (TBI) and spinal cord injury (SCI) cause millions of deaths and permanent or prolonged physical disabilities around the globe every year. It generally happens due to various incidents, such as accidents during sports, war, physical assault, and strokes which result in severe damage to brain and spinal cord. If this remains untreated, traumatic CNS injuries may lead to early development of several neurodegenerative diseases like Alzheimer's, Parkinson, multiple sclerosis, and other mental illnesses. The initial physical reaction, which is also termed as the primary phase, includes swelling, followed by inflammation as a result of internal haemorrhage causing damage to indigenous tissue, i.e., axonal shear injury, rupture of blood vessels, and partial impaired supply of oxygen and essential nutrients in the neurons, thereby initiating a cascade of events causing secondary injuries such as hypoxia, hypotension, cognitive impairment, seizures, imbalanced calcium homeostasis and glutamate-induced excitotoxicity resulting in concomitant neuronal cell death and cumulative permanent tissue damage. In the modern era of advanced biomedical technology, we are still living with scarcity of the clinically applicable comparative non-invasive therapeutic strategies for regeneration or functional recovery of neurons or neural networks after a massive CNS injury. One of the key reasons for this scarcity is the limited regenerative ability of neurons in CNS. Growth-impermissive glial scar and the lack of a synthetic biocompatible platform for proper neural tissue engineering and controlled supply of drugs further retard the healing process. Injectable or implantable hydrogel materials, consisting majorly of water in its porous three-dimensional (3D) structure, can serve as an excellent drug delivery platform as well as a transplanted cell-supporting scaffold medium. Among the various neuro-compatible bioinspired materials, we are limiting our discussion to the recent advancement of engineered biomaterials comprising mainly of peptides and proteins due to their growing demand, low immunogenicity and versatility in the fabrication of neuro regenerative medicine. In this article, we try to explore all the recent scientific avenues that are developing gradually to make peptide and peptide-conjugated biomaterial hydrogels as a therapeutic and supporting scaffold for treating CNS injuries.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.
| | | | | |
Collapse
|
27
|
Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, Su Z, Wei G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. SOFT MATTER 2020; 16:10029-10045. [PMID: 32696801 DOI: 10.1039/d0sm00966k] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled peptide-based nanomaterials have exhibited wide application potential in the fields of materials science, nanodevices, biomedicine, tissue engineering, biosensors, energy storage, environmental science, and others. Due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization, three-dimensional self-assembled peptide hydrogels revealed promising potential in bio-related applications. To present the advances in this interesting topic, we present a review on the synthesis and functionalization of peptide hydrogels, as well as their applications in drug delivery, antibacterial materials, cell culture, biomineralization, bone tissue engineering, and biosensors. Specifically, we focus on the fabrication methods of peptide hydrogels through physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by incorporation with polymers, DNA, protein, nanoparticles, and carbon materials is introduced and discussed in detail. It is expected that this work will be helpful not only for the design and synthesis of various peptide-based nanostructures and nanomaterials, but also for the structural and functional tailoring of peptide-based nanomaterials to meet specific demands.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bellotto O, Kralj S, De Zorzi R, Geremia S, Marchesan S. Supramolecular hydrogels from unprotected dipeptides: a comparative study on stereoisomers and structural isomers. SOFT MATTER 2020; 16:10151-10157. [PMID: 32935720 DOI: 10.1039/d0sm01191f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amino acid stereoconfiguration has been shown to play a key role in the self-assembly of unprotected tripeptides into hydrogels under physiological conditions. Dramatic changes were noted for hydrophobic sequences based on the diphenylalanine motif from the formation of amorphous aggregates in the case of homochiral peptides to nanostructured and stable hydrogels in the case of heterochiral stereoisomers. Herein, we report that by further shortening the sequence to a dipeptide, the overall differences between isomers are less marked, with both homo- and hetero-chiral dipeptides forming gels, although with different stability over time. The soft materials are studied by a number of spectroscopic and microcopic techniques, and single-crystal X-ray diffraction to unveil the supramolecular interactions of these hydrogel building blocks.
Collapse
Affiliation(s)
- Ottavia Bellotto
- University of Trieste, Chem. Pharm. Sc. Dept., Via Giorgieri 1, 34127 Trieste, Italy.
| | | | | | | | | |
Collapse
|
29
|
Shankar S, Junaid Ur Rahim, Rai R. Self-Assembly in Peptides Containing β-and γ-amino Acids. Curr Protein Pept Sci 2020; 21:584-597. [DOI: 10.2174/1389203721666200127112244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
The peptides containing β-and γ-amino acids as building blocks display well-defined secondary
structures with unique morphologies. The ability of such peptides to self-assemble into complex
structures of controlled geometries has been exploited in biomedical applications. Herein, we have
provided an updated overview about the peptides containing β-and γ-amino acids considering the significance
and advancement in the area of development of peptide-based biomaterials having diverse
applications.
Collapse
Affiliation(s)
- Sudha Shankar
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Junaid Ur Rahim
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Rajkishor Rai
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| |
Collapse
|
30
|
Rinaldi S. The Diverse World of Foldamers: Endless Possibilities of Self-Assembly. Molecules 2020; 25:E3276. [PMID: 32708440 PMCID: PMC7397133 DOI: 10.3390/molecules25143276] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Collapse
Affiliation(s)
- Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
31
|
Szigyártó IC, Mihály J, Wacha A, Bogdán D, Juhász T, Kohut G, Schlosser G, Zsila F, Urlacher V, Varga Z, Fülöp F, Bóta A, Mándity I, Beke-Somfai T. Membrane active Janus-oligomers of β 3-peptides. Chem Sci 2020; 11:6868-6881. [PMID: 33042513 PMCID: PMC7504880 DOI: 10.1039/d0sc01344g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of an acyclic β3-hexapeptide with alternating side chain chirality, into nanometer size oligomeric bundles showing membrane activity and hosting capacity for hydrophobic small molecules.
Self-assembling peptides offer a versatile set of tools for bottom-up construction of supramolecular biomaterials. Among these compounds, non-natural peptidic foldamers experience increased focus due to their structural variability and lower sensitivity to enzymatic degradation. However, very little is known about their membrane properties and complex oligomeric assemblies – key areas for biomedical and technological applications. Here we designed short, acyclic β3-peptide sequences with alternating amino acid stereoisomers to obtain non-helical molecules having hydrophilic charged residues on one side, and hydrophobic residues on the other side, with the N-terminus preventing formation of infinite fibrils. Our results indicate that these β-peptides form small oligomers both in water and in lipid bilayers and are stabilized by intermolecular hydrogen bonds. In the presence of model membranes, they either prefer the headgroup regions or they insert between the lipid chains. Molecular dynamics (MD) simulations suggest the formation of two-layered bundles with their side chains facing opposite directions when compared in water and in model membranes. Analysis of the MD calculations showed hydrogen bonds inside each layer, however, not between the layers, indicating a dynamic assembly. Moreover, the aqueous form of these oligomers can host fluorescent probes as well as a hydrophobic molecule similarly to e.g. lipid transfer proteins. For the tested, peptides the mixed chirality pattern resulted in similar assemblies despite sequential differences. Based on this, it is hoped that the presented molecular framework will inspire similar oligomers with diverse functionality.
Collapse
Affiliation(s)
- Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - András Wacha
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Dóra Bogdán
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Gergely Kohut
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Gitta Schlosser
- Institute of Chemistry , Eötvös Loránd University , H-1117 Budapest , Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Vlada Urlacher
- Institute of Biochemistry , Heinrich-Heine University , 40225 Düsseldorf , Germany
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - Ferenc Fülöp
- MTA-SZTE Stereochemistry Research Group , Institute of Pharmaceutical Chemistry , University of Szeged , H-6720 Szeged , Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ;
| | - István Mándity
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Organic Chemistry , Faculty of Pharmacy , Semmelweis University , H-1092 Budapest , Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , H-1117 Budapest , Hungary . ; .,Department of Chemistry and Chemical Engineering , Physical Chemistry , Chalmers University of Technology , SE-41296 Göteborg , Sweden
| |
Collapse
|
32
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
33
|
Morton LD, Hillsley A, Austin MJ, Rosales AM. Tuning hydrogel properties with sequence-defined, non-natural peptoid crosslinkers. J Mater Chem B 2020; 8:6925-6933. [PMID: 32436556 DOI: 10.1039/d0tb00683a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The native extracellular matrix (ECM) is composed of hierarchically structured biopolymers containing precise monomer sequences and chain shapes to yield bioactivity. Recapitulating this structure in synthetic hydrogels is of particular interest for tissue engineering and in vitro disease models to accurately mimic biological microenvironments. However, despite extensive research on hydrogels, it remains a challenge to recapitulate the hierarchical structure of native ECM with completely synthetic hydrogel platforms. Toward this end, this work presents a synthetic hydrogel system using commercially available poly(ethylene glycol) macromers with sequence-defined poly(N-substituted glycines) (peptoids) as crosslinkers. We demonstrate that bulk hydrogel mechanics, specifically as shear storage modulus, can be controlled by altering peptoid sequence and structure. Notably, the helical peptoid sequence investigated here increases the storage modulus of the resulting hydrogels with increasing helical content and chain length, in a fashion similar to helical peptide-crosslinked hydrogels. In addition, the resulting hydrogels are shown to be hydrolytically and enzymatically stable due to the N-substituted peptidomimetic backbone of the crosslinkers. We further demonstrate the potential utility of these peptoid-crosslinked hydrogels as a viable cell culture platform using seeded human dermal fibroblasts in comparison to peptide-crosslinked hydrogels as a control. Taken together, our system offers a strategy toward ECM mimics that replicate the hierarchy of biological matrices with completely synthetic, sequence-defined molecules.
Collapse
Affiliation(s)
- Logan D Morton
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Hailong Fan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,
N21W10, Kita-ku, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Global Station for Soft Matter GI-CoRE, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| |
Collapse
|
35
|
Habila N, Kulkarni K, Lee TH, Al-Garawi ZS, Serpell LC, Aguilar MI, Del Borgo MP. Transition of Nano-Architectures Through Self-Assembly of Lipidated β 3-Tripeptide Foldamers. Front Chem 2020; 8:217. [PMID: 32296680 PMCID: PMC7136582 DOI: 10.3389/fchem.2020.00217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
β3-peptides consisting exclusively of β3-amino acids adopt a variety of non-natural helical structures and can self-assemble into well-defined hierarchical structures by axial head-to-tail self-assembly resulting in fibrous materials of varying sizes and shapes. To allow control of fiber morphology, a lipid moiety was introduced within a tri-β3-peptide sequence at each of the three amino acid positions and the N-terminus to gain finer control over the lateral assembly of fibers. Depending on the position of the lipid, the self-assembled structures formed either twisted ribbon-like fibers or distinctive multilaminar nanobelts. The nanobelt structures were comprised of multiple layers of peptide fibrils as revealed by puncturing the surface of the nanobelts with an AFM probe. This stacking phenomenon was completely inhibited through changes in pH, indicating that the layer stacking was mediated by electrostatic interactions. Thus, the present study is the first to show controlled self-assembly of these fibrous structures, which is governed by the location of the acyl chain in combination with the 3-point H-bonding motif. Overall, the results demonstrate that the nanostructures formed by the β3-tripeptide foldamers can be tuned via sequential lipidation of N-acetyl β3-tripeptides which control the lateral interactions between peptide fibrils and provide defined structures with a greater homogeneous population.
Collapse
Affiliation(s)
- Nathan Habila
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Zahraa S Al-Garawi
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Chemistry Department, Mustansiriyah University, Baghdad, Iraq
| | - Louise C Serpell
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
36
|
The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomater 2020; 102:1-12. [PMID: 31751809 DOI: 10.1016/j.actbio.2019.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Functional deficits due to neuronal loss are a common theme across multiple neuropathologies, including traumatic brain injury (TBI). Apart from mitigating cell death, another approach to treating brain injuries involves re-establishing the neural circuitry at the lesion site by utilizing exogeneous and/or endogenous stem cells to achieve functional recovery. While there has been limited success, the emergence of new bioactive matrices that promote neural repair introduces new perspectives on the development of regenerative therapies for TBI. This review briefly discusses current development on cell-based therapies and the use of bioactive matrices, hydrogels in particular, when incorporated in regenerative therapies. Desirable characteristics of bioactive matrices that have been shown to augment neural repair in TBI models were identified and further discussed. Understanding the relative outcomes of newly developed biomaterials implanted in vivo can better guide the development of biomaterials as a therapeutic strategy, for biomaterial-based cellular therapies are still in their nascent stages. Nonetheless, the value of bioactive matrices as a treatment for acute brain injuries should be appreciated and further developed. STATEMENT OF SIGNIFICANCE: Cell-based therapies have received attention as an alternative therapeutic strategy to improve clinical outcome post-traumatic brain injury but have achieved limited success. Whilst the incorporation of newly developed biomaterials in regenerative therapies has shown promise in augmenting neural repair, studies have revealed new hurdles which must be overcome to improve their therapeutic efficacy. This review discusses the recent development of cell-based therapies with a specific focus on the use of bioactive matrices in the form of hydrogels, to complement cell transplantation within the injured brain. Moreover, this review consolidates in vivo animal studies that demonstrate relative functional outcome upon the implantation of different biomaterials to highlight their desirable traits to guide their development for regenerative therapies in traumatic brain injury.
Collapse
|
37
|
Zou P, Chen WT, Sun T, Gao Y, Li LL, Wang H. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis. Biomater Sci 2020; 8:4975-4996. [DOI: 10.1039/d0bm00789g] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacterial infections, especially the refractory treatment of drug-resistant bacteria, are one of the greatest threats to human health. Self-assembling peptide-based strategies can specifically detect the bacteria at the site of infection in the body and kill it.
Collapse
Affiliation(s)
- Pengfei Zou
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Wen-Ting Chen
- Department of Chemistry and the Department of Physics and Astronomy
- University of Waterloo
- Waterloo
- Canada
| | - Tongyi Sun
- School of Life Science and Technology
- Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering
- Shandong Universities Key Laboratory of Biopharmaceuticals
- Weifang Medical University
- Weifang
| | - Yuanyuan Gao
- School of Pharmacy
- Weifang Medical University
- Weifang
- China
| | - Li-Li Li
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| |
Collapse
|
38
|
Chen J, Zou X. Self-assemble peptide biomaterials and their biomedical applications. Bioact Mater 2019; 4:120-131. [PMID: 31667440 PMCID: PMC6812166 DOI: 10.1016/j.bioactmat.2019.01.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Inspired by self-assembling peptides found in native proteins, deliberately designed engineered peptides have shown outstanding biocompatibility, biodegradability, and extracellular matrix-mimicking microenvironments. Assembly of the peptides can be triggered by external stimuli, such as electrolytes, temperature, and pH. The formation of nanostructures and subsequent nanocomposite materials often occur under physiological conditions. The respective properties of side chains in each amino acids provide numerous sites for chemical modification and conjugation choices of the peptides, enabling various resulting supramolecular nanostructures and hydrogels with adjustable mechanical and physicochemical properties. Moreover, additional functionalities can be easily induced into the hydrogels, including shear-thinning, bioactivity, self-healing, and shape memory. It further broaden the scope of application of self-assemble peptide materials. This review outlines designs of self-assembly peptide (β-sheet, α-helix, collagen-like peptides, elastin-like polypeptides, and peptide amphiphiles) with potential additional functionalities and their biomedical applications in bioprinting, tissue engineering, and drug delivery.
Collapse
Affiliation(s)
- Jun Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, PR China
| | - Xuenong Zou
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, PR China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, 510080, PR China
| |
Collapse
|
39
|
Motamed S, Del Borgo MP, Zhou K, Kulkarni K, Crack PJ, Merson TD, Aguilar MI, Finkelstein DI, Forsythe JS. Migration and Differentiation of Neural Stem Cells Diverted From the Subventricular Zone by an Injectable Self-Assembling β-Peptide Hydrogel. Front Bioeng Biotechnol 2019; 7:315. [PMID: 31788470 PMCID: PMC6856563 DOI: 10.3389/fbioe.2019.00315] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Neural stem cells, which are confined in localised niches are unable to repair large brain lesions because of an inability to migrate long distances and engraft. To overcome these problems, previous research has demonstrated the use of biomaterial implants to redirect increased numbers of endogenous neural stem cell populations. However, the fate of the diverted neural stem cells and their progeny remains unknown. Here we show that neural stem cells originating from the subventricular zone can migrate to the cortex with the aid of a long-lasting injectable hydrogel within a mouse brain. Specifically, large numbers of neuroblasts were diverted to the cortex through a self-assembling β-peptide hydrogel that acted as a tract from the subventricular zone to the cortex of transgenic mice (NestinCreERT2:R26eYFP) in which neuroblasts and their progeny are permanently fluorescently labelled. Moreover, neuroblasts differentiated into neurons and astrocytes 35 days post implantation, and the neuroblast-derived neurons were Syn1 positive suggesting integration into existing neural circuitry. In addition, astrocytes co-localised with neuroblasts along the hydrogel tract, suggesting that they assisted migration and simulated pathways similar to the native rostral migratory stream. Lower levels of astrocytes were found at the boundary of hydrogels with encapsulated brain-derived neurotrophic factor, comparing with hydrogel implants alone.
Collapse
Affiliation(s)
- Sepideh Motamed
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mark P Del Borgo
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kun Zhou
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
| | - Ketav Kulkarni
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter J Crack
- Department of Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - David I Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - John S Forsythe
- Department of Materials Science and Engineering, Monash Institute of Medical Engineering, Monash University, Clayton, VIC, Australia
| |
Collapse
|
40
|
Yamada Y, Patel NL, Kalen JD, Schneider JP. Design of a Peptide-Based Electronegative Hydrogel for the Direct Encapsulation, 3D Culturing, in Vivo Syringe-Based Delivery, and Long-Term Tissue Engraftment of Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34688-34697. [PMID: 31448901 PMCID: PMC8274941 DOI: 10.1021/acsami.9b12152] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Soft materials that facilitate the three-dimensional (3D) encapsulation, proliferation, and facile local delivery of cells to targeted tissues will aid cell-based therapies, especially those that depend on the local engraftment of implanted cells. Herein, we develop a negatively charged fibrillar hydrogel based on the de novo-designed self-assembling peptide AcVES3-RGDV. Cells are easily encapsulated during the triggered self-assembly of the peptide leading to gel formation. Self-assembly is induced by adjusting the ionic strength and/or temperature of the solution, while avoiding large changes in pH. The AcVES3-RGDV gel allows cell-material attachment enabling both two-dimensional and 3D cell culture of adherent cells. Gel-cell constructs display shear-thin/recovery rheological properties enabling their syringe-based delivery. In vivo cellular fluorescence as well as tissue resection experiments show that the gel supports the long-term engraftment of cells delivered subcutaneously into mice.
Collapse
Affiliation(s)
- Y. Yamada
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| | - N. L. Patel
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Incorporation, Frederick, Maryland 21702, United States
| | - J. D. Kalen
- Small Animal Imaging Program, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Incorporation, Frederick, Maryland 21702, United States
| | - J. P. Schneider
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
41
|
John-White M, Gardiner J, Johanesen P, Lyras D, Dumsday G. β-Aminopeptidases: Insight into Enzymes without a Known Natural Substrate. Appl Environ Microbiol 2019; 85:e00318-19. [PMID: 31126950 PMCID: PMC6643246 DOI: 10.1128/aem.00318-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 02/05/2023] Open
Abstract
β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions.IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.
Collapse
Affiliation(s)
- Marietta John-White
- CSIRO Manufacturing, Clayton, Victoria, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - Priscilla Johanesen
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
42
|
Yang L, Li H, Yao L, Yu Y, Ma G. Amyloid-Based Injectable Hydrogel Derived from Hydrolyzed Hen Egg White Lysozyme. ACS OMEGA 2019; 4:8071-8080. [PMID: 31459897 PMCID: PMC6648635 DOI: 10.1021/acsomega.8b03492] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/24/2019] [Indexed: 05/28/2023]
Abstract
Injectable hydrogels based on synthetic peptides have shown great promise in many biomedical applications. Yet, the high cost generally associated with synthetic peptides hinders the practical use of such peptide-based injectable hydrogel. To overcome this drawback, here, we propose to use the peptides from hydrolyzed low-cost natural protein as an economical and convenient peptide source to prepare an injectable hydrogel. We demonstrate the effectiveness of this alternative strategy using hen egg white lysozyme (HEWL) as an example. We used the peptide fragments from hydrolyzed HEWL as the gelator, and the magnesium ion as the performance enhancer to prepare the injectable hydrogel. We showed that the hydrogel is an amyloid gel as it was formed by a dense network of amyloid fibrils. We also showed that the hydrogel possesses a thixotropic property and displays a low cytotoxicity. The hydrolysis extent of HEWL was found to be a critical factor that influences the performance of the hydrogel. A fluorescence assay based on 8-anilinonaphthalene-1-sulfonic acid was proposed as a mean to precisely and conveniently control the hydrolysis extent of HEWL to enable the best injectability performance. At last, using doxorubicin as a model compound, we explored the potential of this amyloid-based hydrogel as an injectable drug carrier.
Collapse
Affiliation(s)
- Lujuan Yang
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Haoyi Li
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
- College
of Chemistry and Materials Science, Langfang
Teachers University, Langfang 065000, China
| | - Linxia Yao
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Yang Yu
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Gang Ma
- Key
Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry
of Education, Key Laboratory of Analytical Science and Technology
of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
43
|
Li S, Wang J, Ye M, Li X, Chen N, Li X, Liu Y, Hou X, Zhao J, Cui Z, Yuan X. Matricryptic peptide-inspired hydrogels for promoting osteogenic differentiation. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1452222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sidi Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Jianwei Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Mingming Ye
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Xue Li
- School of laboratory medicine, Tianjin Medicine University, Tianjin, People’s Republic of China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Xueping Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Yunde Liu
- School of laboratory medicine, Tianjin Medicine University, Tianjin, People’s Republic of China
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Zhenduo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
44
|
Gong C, Sun S, Zhang Y, Sun L, Su Z, Wu A, Wei G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. NANOSCALE 2019; 11:4147-4182. [PMID: 30806426 DOI: 10.1039/c9nr00218a] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bioinspired synthesis offers potential green strategies to build highly complex nanomaterials by utilizing the unique nanostructures, functions, and properties of biomolecules, in which the biomolecular recognition and self-assembly processes play important roles in tailoring the structures and functions of bioinspired materials. Further understanding of biomolecular self-assembly for inspiring the formation and assembly of nanoparticles would promote the design and fabrication of functional nanomaterials for various applications. In this review, we focus on recent advances in bioinspired synthesis and applications of hierarchical nanomaterials based on biomolecular self-assembly. We first discuss biomolecular self-assembly towards biological nanomaterials, in which the mechanisms and ways of biomolecular self-assembly as well as various self-assembled biomolecular nanostructures are demonstrated. Secondly, the bioinspired synthesis strategies including molecule-molecule interaction, molecule-material recognition, molecule-mediated nucleation and growth, and molecule-mediated reduction/oxidation are introduced and discussed. Meanwhile, typical examples and discussions on how biomolecular self-assembly inspires the formation of hierarchical hybrid nanomaterials are presented. Finally, the applications of bioinspired nanomaterials in biofuel cells, light-harvesting systems, batteries, supercapacitors, catalysis, water/air purification, and environmental monitoring are presented and discussed. We believe that this review will be very helpful for readers to understand the self-assembly of biomolecules and the biomimetic/bioinspired strategies for synthesizing hierarchical nanomaterials on the one hand, and on the other hand to design novel materials for extended applications in nanotechnology, materials science, analytical science, and biomedical engineering.
Collapse
Affiliation(s)
- Coucong Gong
- Faculty of Production Engineering and Center for Environmental Research and Sustainable technology (UFT), University of Bremen, D-28359 Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Fukunaga K, Tsutsumi H, Mihara H. Self-Assembling Peptides as Building Blocks of Functional Materials for Biomedical Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180293] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kazuto Fukunaga
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroshi Tsutsumi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
46
|
Kulkarni K, Habila N, Del Borgo MP, Aguilar MI. Novel Materials From the Supramolecular Self-Assembly of Short Helical β 3-Peptide Foldamers. Front Chem 2019; 7:70. [PMID: 30828574 PMCID: PMC6384263 DOI: 10.3389/fchem.2019.00070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/25/2019] [Indexed: 11/13/2022] Open
Abstract
Self-assembly is the spontaneous organization of small components into higher-order structures facilitated by the collective balance of non-covalent interactions. Peptide-based self-assembly systems exploit the ability of peptides to adopt distinct secondary structures and have been used to produce a range of well-defined nanostructures, such as nanotubes, nanofibres, nanoribbons, nanospheres, nanotapes, and nanorods. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been reported to undergo supramolecular self-assembly, and have been used to produce materials-such as hydrogels-that are tailored for applications in tissue engineering, cell culture and drug delivery. This review provides an overview of self-assembled peptide nanostructures obtained via the supramolecular self-assembly of short β-peptide foldamers with a specific focus on N-acetyl-β3-peptides and their applications as bio- and nanomaterials.
Collapse
Affiliation(s)
| | | | - Mark P. Del Borgo
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash Univdersity, Melbourne, VIC, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology and Biomedicine Discovery Institute, Monash Univdersity, Melbourne, VIC, Australia
| |
Collapse
|
47
|
Hong A, Aguilar MI, Del Borgo MP, Sobey CG, Broughton BRS, Forsythe JS. Self-assembling injectable peptide hydrogels for emerging treatment of ischemic stroke. J Mater Chem B 2019. [DOI: 10.1039/c9tb00257j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ischaemic stroke remains one of the leading causes of death and disability worldwide, without any long-term effective treatments targeted at regeneration. This has led to developments of novel, biomaterial-based strategies using self-assembling peptide hydrogels.
Collapse
Affiliation(s)
- Andrew Hong
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Mark P. Del Borgo
- Department of Biochemistry & Molecular Biology
- Monash Biomedicine Discovery Institute
- Monash University
- Clayton
- Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group
- Department of Physiology
- Anatomy and Microbiology
- La Trobe University
- Bundoora
| | - Brad R. S. Broughton
- Cardiovascular & Pulmonary Pharmacology Group
- Biomedicine Discovery Institute and Department of Pharmacology
- Monash University
- Clayton
- Australia
| | - John S. Forsythe
- Department of Materials Science and Engineering
- Monash Institute of Medical Engineering
- Monash University
- Clayton
- Australia
| |
Collapse
|
48
|
Wu C, Liu J, Liu B, He S, Dai G, Xu B, Zhong W. NIR light-responsive short peptide/2D NbSe2 nanosheets composite hydrogel with controlled-release capacity. J Mater Chem B 2019. [DOI: 10.1039/c8tb03326a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of light-responsive peptide hydrogels with controllable drug release characteristics is still a challenge.
Collapse
Affiliation(s)
- Can Wu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Jing Liu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Bin Liu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Suyun He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Guoru Dai
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Bo Xu
- Department of Physics
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Wenying Zhong
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
49
|
Nekkaa I, Bogdán D, Gáti T, Béni S, Juhász T, Palkó M, Paragi G, Tóth GK, Fülöp F, Mándity IM. Flow-chemistry enabled efficient synthesis of β-peptides: backbone topology vs. helix formation. Chem Commun (Camb) 2019; 55:3061-3064. [DOI: 10.1039/c8cc10147g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enantiodiscriminative helix formation was observed for β-peptide H14 helices when enantiomers of bridged bicyclic residues were introduced.
Collapse
|
50
|
Kulkarni K, Hung J, Fulcher AJ, Chan AH, Hong A, Forsythe JS, Aguilar MI, Wise SG, Del Borgo MP. β3-Tripeptides Coassemble into Fluorescent Hydrogels for Serial Monitoring in Vivo. ACS Biomater Sci Eng 2018; 4:3843-3847. [DOI: 10.1021/acsbiomaterials.8b01065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Juichien Hung
- Heart Research Institute, Newtown, New South Wales 2042, Australia
| | | | - Alex H.P. Chan
- Heart Research Institute, Newtown, New South Wales 2042, Australia
| | | | | | | | - Steven G. Wise
- Heart Research Institute, Newtown, New South Wales 2042, Australia
- Sydney Medical School, Sydney University, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|