1
|
de Moraes Segundo JDDP, de Moraes MOS, Brito WR, Matos RS, Salerno M, Barcelay YR, Segala K, da Fonseca Filho HD, d’Ávila MA. Molecularly Imprinted Membrane Produced by Electrospinning for β-Caryophyllene Extraction. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7275. [PMID: 36295339 PMCID: PMC9610809 DOI: 10.3390/ma15207275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Molecularly imprinted membrane of β-caryophyllene (MIM-βCP) was fabricated incorporating β-caryophyllene molecularly imprinted polymer nanoparticles (βCP-NP) into polycaprolactone (PCL) fibers via electrospinning. The βCP-NP were synthesized by precipitation polymerization using the βCP as a template molecule and acrylic acid as a functional monomer in the proportion of 1:4 mol, respectively. Atomic force microscopy images and X-ray diffraction confirmed the nanoparticles' incorporation into MIM-βCP. MIM-βCP functionalization was evaluated by gas chromatography. The binding capacity was 1.80 ± 0.05 μmol/cm2, and the selectivity test was performed with a mixing solution of βCP and caryophyllene oxide, as an analog compound, that extracted 77% of the βCP in 5 min. The electrospun MIM-βCP can be used to detect and extract the βCP, applications in the molecular sieve, and biosensor production and may also contribute as an initial methodology to enhance versatile applications in the future, such as in the treatment of skin diseases, filters for extraction, and detection of βCP to prevent counterfeiting of commercial products, and smart clothing with insect-repellent properties.
Collapse
Affiliation(s)
| | - Maria Oneide Silva de Moraes
- Department of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
- Thematic Laboratory of Microscopy and Nanotechnology, National Institute of Amazonian Research, Manaus 69067-001, Brazil
| | - Walter Ricardo Brito
- Department of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
| | - Robert S. Matos
- Postgraduate Program in Materials Science and Engineering, Federal University of Sergipe-UFS, São Cristóvão 49100-000, Brazil
| | - Marco Salerno
- Institute for Globally Distributed Open Research and Education (IGDORE), Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069 Dresden, Germany
| | - Yonny Romaguera Barcelay
- Department of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
- BioMark@UC/CEB–LABBELS, Faculty of Sciences and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Karen Segala
- Department of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
| | - Henrique Duarte da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy, Physics Department, Federal University of Amazonas-UFAM, Manaus 69067-005, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, University of Campinas, Campinas 13083-860, Brazil
| |
Collapse
|
2
|
Zheng Y, Su D, Yuan J, Zha L, Xiao Y, Che J. Electrospun Poly(ε‐Caprolactone)/Silk Fibroin Coaxial Core‐Sheath Nanofibers Applied to Scaffolds and Drug Carriers. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25339] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yahui Zheng
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210014 China
| | - Dan Su
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210014 China
| | - Jingjing Yuan
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210014 China
| | - Li Zha
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210014 China
| | - Yinghong Xiao
- Collaborative Innovation Center of Biomedical Functional MaterialsNanjing Normal University Nanjing China
| | - Jianfei Che
- School of Chemical EngineeringNanjing University of Science and Technology Nanjing 210014 China
| |
Collapse
|
3
|
Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W, He Q. Functionalized cell-free scaffolds for bone defect repair inspired by self-healing of bone fractures: A review and new perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1241-1251. [PMID: 30813005 DOI: 10.1016/j.msec.2019.01.075] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/15/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Studies have demonstrated that scaffolds, a component of bone tissue engineering, play an indispensable role in bone repair. However, these scaffolds involving ex-vivo cultivated cells seeded have disadvantages in clinical practice, such as limited autologous cells, time-consuming cell expansion procedures, low survival rate and immune-rejection issues. To overcome these disadvantages, recent focus has been placed on the design of functionalized cell-free scaffolds, instead of cell-seeded scaffolds, that can reduplicate the natural self-healing events of bone fractures, such as inflammation, cell recruitment, vascularization, and osteogenic differentiation. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of functionalized cell-free scaffolds for bone repair. In this review, the self-healing processes were highlighted, and approaches for the functionalization were summarized. Also, ongoing efforts and breakthroughs in the field of functionalization for bone defect repair were discussed. Finally, a brief summery and new perspectives for functionalization strategies were presented to provide guidelines for further efforts in the design of bioinspired cell-free scaffolds.
Collapse
Affiliation(s)
- Li Li
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongwei Lu
- Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Yulan Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Jiangming Luo
- Center of Joint Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, PR China.
| | - Qingyi He
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Orthopedic Department, Southwest Hospital, Army Medical University, Chongqing 400038, PR China; Orthopedic Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
4
|
Kosik-Kozioł A, Graham E, Jaroszewicz J, Chlanda A, Kumar PTS, Ivanovski S, Święszkowski W, Vaquette C. Surface Modification of 3D Printed Polycaprolactone Constructs via a Solvent Treatment: Impact on Physical and Osteogenic Properties. ACS Biomater Sci Eng 2018; 5:318-328. [DOI: 10.1021/acsbiomaterials.8b01018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alicja Kosik-Kozioł
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Elizabeth Graham
- Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Adrian Chlanda
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - P. T. Sudheesh Kumar
- School of Dentistry and Oral Health, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Saso Ivanovski
- School of Dentistry and Oral Health, Gold Coast Campus, Griffith University, Gold Coast, Queensland 4222, Australia
- School of Dentistry, The University of Queensland (UQ), Brisbane, Queensland 4006, Australia
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology (WUT), 02-507 Warsaw, Poland
| | - Cedryck Vaquette
- Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
- School of Dentistry, The University of Queensland (UQ), Brisbane, Queensland 4006, Australia
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland 4001, Australia
| |
Collapse
|
5
|
Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:318-329. [DOI: 10.1016/j.msec.2018.05.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 04/30/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
|
6
|
Tian Y, Wang J, Wang L. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29219-29226. [PMID: 30113807 DOI: 10.1021/acsami.8b09212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a gas-in-water microfluidic method to precisely fabricate well-controlled versatile microfibers with cavity knots (named cavity-microfiber), like tiny-cavity-microfiber, hybrid-cavity-microfiber, cavity-microfiber, and chained microfiber. The cavity-microfibers are endowed with tunable morphologies, unique surface properties, high specific surface area, assembling ability, flexibility, cytocompatibility, and hydroscopicity. We assemble cavity-microfibers as 3D scaffolds for culturing the human umbilical vein endothelial cells (HUVECs) and dehumidifying. The HUVECs on the scaffolds demonstrate good cell viability and 3D HUVECs frameworks, confirming the unique cytocompatibility of cavity-microfiber. And the cavity-microfibers and their scaffolds also demonstrate excellent dehumidifying ability and large-scale dehumidifying, respectively. Our cavity-microfiber can offer a broad range of applications in sensor, wearable electronics, dehumidifying, water collection engineering, drug delivery, biomaterials, and tissue engineering.
Collapse
Affiliation(s)
- Ye Tian
- Department of Mechanical Engineering , The University of Hong Kong , Hong Kong , China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI) , Hangzhou , Zhejiang 311300 , China
| | - Jianchun Wang
- Center for Transport Phenomena, Energy Research Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250014 , China
| | - Liqiu Wang
- Department of Mechanical Engineering , The University of Hong Kong , Hong Kong , China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI) , Hangzhou , Zhejiang 311300 , China
| |
Collapse
|
7
|
Guha Ray P, Pal P, Srivas PK, Basak P, Roy S, Dhara S. Surface Modification of Eggshell Membrane with Electrospun Chitosan/Polycaprolactone Nanofibers for Enhanced Dermal Wound Healing. ACS APPLIED BIO MATERIALS 2018; 1:985-998. [DOI: 10.1021/acsabm.8b00169] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Preetam Guha Ray
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Pallabi Pal
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pavan Kumar Srivas
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Somenath Roy
- Central Glass and Ceramic Research Institute, Khurja Center, Khurja 203131, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
8
|
Mi HY, Jing X, Thomsom JA, Turng LS. Promoting Endothelial Cell Affinity and Antithrombogenicity of Polytetrafluoroethylene (PTFE) by Mussel-Inspired Modification and RGD/Heparin Grafting. J Mater Chem B 2018; 6:3475-3485. [PMID: 30455952 PMCID: PMC6238965 DOI: 10.1039/c8tb00654g] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
When used as small-diameter vascular grafts (SDVGs), synthetic biomedical materials like polytetrafluoroethylene (PTFE) may induce thrombosis and intimal hyperplasia due to the lack of an endothelial cell layer. Modification of the PTFE in an aqueous solution is difficult because of its hydrophobicity. Herein, aiming to simultaneously promote endothelial cell affinity and antithrombogenicity, a mussel-inspired modification approach was employed to enable the grafting of various bioactive molecules like RGD and heparin. This approach involves a series of pragmatic steps including oxygen plasma treatment, dopamine (DA) coating, polyethylenimine (PEI) grafting, and RGD or RGD/heparin immobilization. Successful modification in each step was verified via Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Plasma treatment increased the hydrophilicity of PTFE, thereby allowing it to be efficiently coated with dopamine. Grafting of dopamine, RGD, and heparin led to an increase in surface roughness and a decrease in water contact angle due to increased surface energy. Platelet adhesion increased after dopamine and RGD modification, but it dramatically decreased when heparin was introduced. All of these modifications, especially the incorporation of RGD, showed favorable effects on endothelial cell attachment, viability, and proliferation. Due to strong cell-substrate interactions between endothelial cells and RGD, the RGD/heparin-grafted PTFE demonstrated high endothelial cell affinity. This facile modification method is highly suitable for all hydrophobic surfaces and provides a promising technique for SDVG modification to stimulate fast endothelialization and effective antithrombosis.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| | - Xin Jing
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| | - James A. Thomsom
- Morgridge Institute for Research, University of Wisconsin–Madison, WI, 53715, USA
| | - Lih-Sheng Turng
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, WI, 53715, USA
- Department of Mechanical Engineering, University of Wisconsin–Madison, WI, 53706, USA
| |
Collapse
|
9
|
Sharif S, Ai J, Azami M, Verdi J, Atlasi MA, Shirian S, Samadikuchaksaraei A. Collagen-coated nano-electrospun PCL seeded with human endometrial stem cells for skin tissue engineering applications. J Biomed Mater Res B Appl Biomater 2018; 106:1578-1586. [PMID: 28792664 DOI: 10.1002/jbm.b.33966] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/27/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
Human endometrial stem cells (hEnSCs) are known as an attractive source of stem cells for regenerative medicine. hEnSCs are easily isolated and are capable of repairing uterine through their strong ability of creating new capillaries. In this study, a three-dimensional (3D) nanofibrous polycaprolactone (PCL)/collagen scaffold was fabricated and characterized in order to be applied as a new approach for skin reconstruction. Furthermore, the behavior of hEnSCs on this scaffold was investigated. First, a PCL 3D scaffold was constructed using electrospinning technique. Plasma treated and PCL was grafted by collagen. The constructs were characterized for mechanical and structural properties. Cell attachment, proliferation, viability, and differentiation of hEnSCs were assessed after being seeded on PCL and PCL/collagen scaffolds using scanning electron microscopy, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, and real-time polymerase chain reaction tests. The results showed higher wettability for the PCL/collagen scaffold with desirable mechanical and structural characteristics compared to PCL and collagen alone. The attachment and proliferation rates of hEnSCs on the PCL/collagen scaffold were higher compared to those on the bare PCL. Hence, hEnSCs are newly discovered stem cell source for skin tissue engineering in vitro, particularly when developed on PCL/collagen nanofiber scaffolds. Therefore, application of hEnSCs for skin regeneration is a novel therapeutic approach for temporary skin substitute. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1578-1586, 2018.
Collapse
Affiliation(s)
- Shiva Sharif
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Verdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Ali Atlasi
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wang X, Lou T, Zhao W, Song G, Li C, Cui G. The effect of fiber size and pore size on cell proliferation and infiltration in PLLA scaffolds on bone tissue engineering. J Biomater Appl 2016; 30:1545-51. [DOI: 10.1177/0885328216636320] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The scaffold microstructure has a great impact on cell functions in tissue engineering. Herein, the PLLA scaffolds with hierarchical fiber size and pore size were successfully fabricated by thermal-induced phase separation or combined thermal-induced phase separation and salt leaching methods. The PLLA scaffolds were fabricated as microfibrous scaffolds, microfibrous scaffolds with macropores (50–350 µm), nanofibrous scaffolds with micropores (100 nm to 10 µm), and nanofibrous scaffolds with both macropores and micropores by tailoring selective solvents for forming different fiber size and pre-sieved salts for creating controlled pore size. Among the four kinds of PLLA scaffolds, the nanofibrous scaffolds with both macropores and micropores provided a favorable microenvironment for protein adsorption, cell proliferation, and cell infiltration. The results further confirmed the significance of fiber size and pore size on the biological properties, and a scaffold with both micropores and macropores, and a nanofibrous matrix might have promising applications in bone tissue engineering.
Collapse
Affiliation(s)
- Xuejun Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Tao Lou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Wenhua Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Guojun Song
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Chunyao Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Guangpeng Cui
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Jeon H, Lee J, Lee H, Kim GH. Nanostructured surface of electrospun PCL/dECM fibres treated with oxygen plasma for tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra03840a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoscale patterns on the surface of PCL-based dECM were developed by a selective plasma treatment.
Collapse
Affiliation(s)
- HoJun Jeon
- Department of Biomechatronic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon 440-746
- South Korea
| | - JaeYoon Lee
- Department of Biomechatronic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon 440-746
- South Korea
| | - Hyeongjin Lee
- Department of Biomechatronic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon 440-746
- South Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering
- College of Biotechnology and Bioengineering
- Sungkyunkwan University
- Suwon 440-746
- South Korea
| |
Collapse
|