1
|
Topçu BT, Bozdağ Pehlivan S, Akdağ Y, Mut M, Öner L. Antibody Conjugated Nano-Enabled Drug Delivery Systems Against Brain Tumors. J Pharm Sci 2024; 113:1455-1469. [PMID: 38555997 DOI: 10.1016/j.xphs.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
The use of antibody-conjugated nanoparticles for brain tumor treatment has gained significant attention in recent years. Nanoparticles functionalized with anti-transferrin receptor antibodies have shown promising results in facilitating nanoparticle uptake by endothelial cells of brain capillaries and post-capillary venules. This approach offers a potential alternative to the direct conjugation of biologics to antibodies. Furthermore, studies have demonstrated the potential of antibody-conjugated nanoparticles in targeting brain tumors, as evidenced by the specific binding of these nanoparticles to brain cancer cells. Additionally, the development of targeted nanoparticles designed to transcytoses the blood-brain barrier (BBB) to deliver small molecule drugs and therapeutic antibodies to brain metastases holds promise for brain tumor treatment. While the use of nanoparticles as a delivery method for brain cancer treatment has faced challenges, including the successful delivery of nanoparticles to malignant brain tumors due to the presence of the BBB and infiltrating cancer cells in the normal brain, recent advancements in nanoparticle-mediated drug delivery systems have shown potential for enhancing the efficacy of brain cancer therapy. Moreover, the development of brain-penetrating nanoparticles capable of distributing over clinically relevant volumes when administered via convection-enhanced delivery presents a promising strategy for improving drug delivery to brain tumors. In conclusion, the use of antibody-conjugated nanoparticles for brain tumor treatment shows great promise in overcoming the challenges associated with drug delivery to the brain. By leveraging the specific targeting capabilities of these nanoparticles, researchers are making significant strides in developing effective and targeted therapies for brain tumors.
Collapse
Affiliation(s)
- Beril Taş Topçu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University 06100, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University 06100, Ankara, Turkey.
| | - Yagmur Akdağ
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University 06100, Ankara, Turkey
| | - Melike Mut
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22903, USA
| | - Levent Öner
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University 06100, Ankara, Turkey
| |
Collapse
|
2
|
Ultra-Small and Metabolizable Near-Infrared Au/Gd Nanoclusters for Targeted FL/MRI Imaging and Cancer Theranostics. BIOSENSORS 2022; 12:bios12080558. [PMID: 35892455 PMCID: PMC9329954 DOI: 10.3390/bios12080558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Tumor accurate imaging can effectively guide tumor resection and accurate follow-up targeted therapy. The development of imaging-stable, safe, and metabolizable contrast agents is key to accurate tumor imaging. Herein, ultra-small and metabolizable dual-mode imaging probe Au/Gd@FA NCs is rationally engineered by a simple hydrothermal method to achieve accurate FL/MRI imaging of tumors. The probes exhibit ultra-small size (2.5–3.0 nm), near-infrared fluorescence (690 nm), high quantum yield (4.4%), and a better T1 nuclear magnetic signal compared to commercial MRI contrast agents. By modifying the folic acid (FA) molecules, the uptake and targeting of the probes are effectively improved, enabling specific fluorescence imaging of breast cancer. Au/Gd@FA NCs with good biosafety were found to be excreted in the feces after imaging without affecting the normal physiological metabolism of mice. Intracellular reactive oxygen species (ROS) increased significantly after incubation of Au/Gd@FA NCs with tumor cells under 660 nm laser irradiation, indicating that Au/Gd@FA NCs can promote intracellular ROS production and effectively induce cell apoptosis. Thus, metabolizable Au/Gd@FA NCs provide a potential candidate probe for multimodal imaging and tumor diagnosis in clinical basic research. Meanwhile, Au/Gd@FA NCs mediated excessive intracellular production of ROS that could help promote tumor cell death.
Collapse
|
3
|
Ha Y, Kim I. Recent Developments in Innovative Magnetic Nanoparticles-Based Immunoassays: From Improvement of Conventional Immunoassays to Diagnosis of COVID-19. BIOCHIP JOURNAL 2022; 16:351-365. [PMID: 35822174 PMCID: PMC9263806 DOI: 10.1007/s13206-022-00064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
During the ongoing COVID-19 pandemic, the development of point-of-care (POC) detection with high sensitivity and rapid detection time is urgently needed to prevent transmission of infectious diseases. Magnetic nanoparticles (MNPs) have been considered attractive materials for enhancing sensitivity and reducing the detection time of conventional immunoassays due to their unique properties including magnetic behavior, high surface area, excellent stability, and easy biocompatibility. In addition, detecting target analytes through color development is necessary for user-friendly POC detection. In this review, recent advances in different types of MNPs-based immunoassays such as improvement of the conventional enzyme-linked immunosorbent assay (ELISA), immunoassays based on the peroxidase-like activity of MNPs and based on the dually labeled MNPs, filtration method, and lateral-flow immunoassay are described and we analyze the advantages and strategies of each method. Furthermore, immunoassays incorporating MNPs for COVID-19 diagnosis through color development are also introduced, demonstrating that MNPs can become common tools for on-site diagnosis.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Ijung Kim
- Department of Civil and Environmental Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul, 04066 Republic of Korea
| |
Collapse
|
4
|
Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Dubreil C, Sainte Catherine O, Lalatonne Y, Journé C, Ou P, van Endert P, Motte L. Tolerogenic Iron Oxide Nanoparticles in Type 1 Diabetes: Biodistribution and Pharmacokinetics Studies in Nonobese Diabetic Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802053. [PMID: 30184337 DOI: 10.1002/smll.201802053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Nanoparticle (NP) administration is among the most attractive approaches to exploit the synergy of different copackaged molecules for the same target. In this work, iron oxide NPs are surface-engineered for the copackaging of the autoantigen proinsulin, a major target of adaptive immunity in type 1 diabetes (T1D), and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methylester (ITE), a small drug conditioning a tolerogenic environment. Magnetic resonance imaging (MRI) combined with magnetic quantification are used to investigate NP biokinetics in nonobese diabetic (NOD) mice and control mice in different organs. Different NP biodistribution, with in particular enhanced kidney elimination and a stronger accumulation in the pancreas for prediabetic NOD mice, is observed. This is related to preferential NP accumulation in the pancreatic inflammatory zone and to enhancement of renal elimination by diabetic nephropathy. For both mouse strains, an MRI T2 contrast enhancement at 72 h in the liver, pancreas, and kidneys, and indicating recirculating NPs, is also found. This unexpected result is confirmed by magnetic quantification at different time points as well as by histological evaluation. Besides, such NPs are potential MRI contrast agents for early diagnosis of T1D.
Collapse
Affiliation(s)
- Chloe Dubreil
- Inserm, Unité 1151, Université Paris Descartes, Faculté de médecine, CNRS, UMR 8253, 75015, Paris, France
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017, Bobigny, France
| | - Odile Sainte Catherine
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017, Bobigny, France
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017, Bobigny, France
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009, Bobigny, France
| | - Clément Journé
- Inserm, U1148, Laboratory for Vascular Translational Science, Plateforme de Recherche FRIM, Université Paris 7, Sorbonne Paris Cité, CHU X Bichat, 46 rue H. Huchard, F-75877, Paris, France
| | - Phalla Ou
- Inserm, U1148, Laboratory for Vascular Translational Science, Plateforme de Recherche FRIM, Université Paris 7, Sorbonne Paris Cité, CHU X Bichat, 46 rue H. Huchard, F-75877, Paris, France
| | - Peter van Endert
- Inserm, Unité 1151, Université Paris Descartes, Faculté de médecine, CNRS, UMR 8253, 75015, Paris, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017, Bobigny, France
| |
Collapse
|
6
|
Richard S, Boucher M, Saric A, Herbet A, Lalatonne Y, Petit PX, Mériaux S, Boquet D, Motte L. Optimization of pegylated iron oxide nanoplatforms for antibody coupling and bio-targeting. J Mater Chem B 2017; 5:2896-2907. [PMID: 32263983 DOI: 10.1039/c6tb03080g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PEGylation has been established as a valuable strategy to minimize nanoparticle clearance by the reticulo-endothelial system due to hydrophilicity and steric repulsion of PEG chains. In this study we functionalized superparamagnetic iron oxide nanoparticle surface with two PEG differing in their length (n = 23 and 44) and terminal functionality, COOH and CH3. By varying the ratio of the two different PEG, we optimized the molecular architecture of the nanoplatform to obtain maximum stability and low toxicity under physiological conditions. The best nanoplatform was evaluated as MRI contrast for mouse brain vascularization imaging at 7 T. The carboxylic acid functions of the nanoplatform were used to covalently bind an antibody, Ab. This antibody, labeled with a fluorophore, targets the ETA receptor, a G-protein-coupled receptor involved in the endothelin axis and overexpressed in various solid tumours, including ovarian, prostate, colon, breast, bladder and lung cancers. In vitro studies, performed by flow cytometry and magnetic quantification, showed the targeting efficiency of the Ab-nanoplatforms. Clearly, an imaging tracer for cancer diagnosis from a bimodal contrast agent (fluorescence and MRI) was thus obtained.
Collapse
Affiliation(s)
- S Richard
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Richard S, Boucher M, Lalatonne Y, Mériaux S, Motte L. Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors. Biochim Biophys Acta Gen Subj 2016; 1861:1515-1520. [PMID: 28017683 DOI: 10.1016/j.bbagen.2016.12.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/07/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
Abstract
In this article, a specific targeting Magnetic Resonance Imaging (MRI) nanoplatform, composed by iron oxide nanoparticle (NP) with cRGD peptides as targeting agent onto NP surface, is explored for the diagnosis of brain tumors by MRI using intracranial U87MG mice xenograft tumor. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Sophie Richard
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot, 75205 Paris Cedex 05, France
| | - Marianne Boucher
- Unité d'Imagerie par Résonance Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191, Gif-sur-Yvette, France
| | - Yoann Lalatonne
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France; Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Sébastien Mériaux
- Unité d'Imagerie par Résonance Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191, Gif-sur-Yvette, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France.
| |
Collapse
|
8
|
Zhao X, Shang T, Zhang X, Ye T, Wang D, Rei L. Passage of Magnetic Tat-Conjugated Fe 3O 4@SiO 2 Nanoparticles Across In Vitro Blood-Brain Barrier. NANOSCALE RESEARCH LETTERS 2016; 11:451. [PMID: 27726119 PMCID: PMC5056918 DOI: 10.1186/s11671-016-1676-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/05/2016] [Indexed: 05/22/2023]
Abstract
Delivery of diagnostic or therapeutic agents across the blood-brain barrier (BBB) remains a major challenge of brain disease treatment. Magnetic nanoparticles are actively being developed as drug carriers due to magnetic targeting and subsequently reduced off-target effects. In this paper, we developed a magnetic SiO2@Fe3O4 nanoparticle-based carrier bound to cell-penetrating peptide Tat (SiO2@Fe3O4-Tat) and studied its fates in accessing BBB. SiO2@Fe3O4-Tat nanoparticles (NPs) exhibited suitable magnetism and good biocompatibility. NPs adding to the apical chamber of in vitro BBB model were found in the U251 glioma cells co-cultured at the bottom of the Transwell, indicating that particles passed through the barrier and taken up by glioma cells. Moreover, the synergistic effects of Tat and magnetic field could promote the efficient cellular internalization and the permeability across the barrier. Besides, functionalization with Tat peptide allowed particles to locate into the nucleus of U251 cells than the non-conjugated NPs. These results suggest that SiO2@Fe3O4-Tat NPs could penetrate the BBB through the transcytosis of brain endothelial cells and magnetically mediated dragging. Therefore, SiO2@Fe3O4-Tat NPs could be exploited as a potential drug delivery system for chemotherapy and gene therapy of brain disease.
Collapse
Affiliation(s)
- Xueqin Zhao
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Ting Shang
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| | - Xiaodan Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Dajin Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Lei Rei
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005 People’s Republic of China
| |
Collapse
|
9
|
Richard S, Saric A, Boucher M, Slomianny C, Geffroy F, Mériaux S, Lalatonne Y, Petit PX, Motte L. Antioxidative Theranostic Iron Oxide Nanoparticles toward Brain Tumors Imaging and ROS Production. ACS Chem Biol 2016; 11:2812-2819. [PMID: 27513597 DOI: 10.1021/acschembio.6b00558] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gliomas are the most common primary brain tumor in humans. To date, the only treatment of care consists of surgical removal of the tumor bulk, irradiation, and chemotherapy, finally resulting in a very poor prognosis due to the lack of efficiency in diagnostics. In this context, nanomedicine combining both diagnostic and magnetic resonance imaging (MRI) and therapeutic applications is a relevant strategy referred to theranostic. Magnetic nanoparticles (NP) are excellent MRI contrast agents because of their large magnetic moment, which induces high transverse relaxivity (r2) characteristic and increased susceptibility effect (T2*). NP can be also used for drug delivery by coating their surface with therapeutic molecules. Preliminary in vitro studies show the high potential of caffeic acid (CA), a natural polyphenol, as a promising anticancer drug due to its antioxidant, anti-inflammatory, and antimetastatic properties. In this study, the antioxidative properties of iron oxide NP functionalized with caffeic acid (γFe2O3@CA NP) are investigated in vitro on U87-MG brain cancer cell lines. After intravenous injection of these NP in mice bearing a U87 glioblastoma, a negative contrast enhancement was specifically observed on 11.7 T MRI images in cancerous tissue, demonstrating a passive targeting of the tumor with these nanoplatforms.
Collapse
Affiliation(s)
- Sophie Richard
- Laboratoire CSPBAT, CNRS UMR 7244 UFR SMBH, Université Paris 13 Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Ana Saric
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire,
INSERM U1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, F-75270 Paris Cedex 06, France
- Division of Molecular Medicine, Rudger Boskivic Institute, Zagreb, Croatia
| | - Marianne Boucher
- Unité d’Imagerie par Résonance
Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191 Gif-sur-Yvette, France
| | - Christian Slomianny
- Inserm, U100, Laboratoire de Physiologie Cellulaire, Université Lille 1, F-59655 Villeneuve d’Ascq, France
| | - Françoise Geffroy
- Unité d’Imagerie par Résonance
Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191 Gif-sur-Yvette, France
| | - Sébastien Mériaux
- Unité d’Imagerie par Résonance
Magnétique et de Spectroscopie, CEA/DRF/I2BM/NeuroSpin, F-91191 Gif-sur-Yvette, France
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational
Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
- Service de Médecine Nucléaire, Hôpital Avicenne
Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Patrice X. Petit
- Laboratoire de Toxicologie, Pharmacologie et Signalisation Cellulaire,
INSERM U1124, Université Paris-Descartes, Centre Universitaire des Saints-Pères, F-75270 Paris Cedex 06, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational
Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| |
Collapse
|
10
|
Effects of coating spherical iron oxide nanoparticles. Biochim Biophys Acta Gen Subj 2016; 1861:3621-3626. [PMID: 27217073 DOI: 10.1016/j.bbagen.2016.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 01/13/2023]
Abstract
We investigate the effect of several coatings applied in biomedical applications to iron oxide nanoparticles on the size, structure and composition of the particles. The four structural techniques employed - TEM, DLS, VSM, SAXS and EXAFS - show no significant effects of the coatings on the spherical shape of the bare nanoparticles, the average sizes or the local order around the Fe atoms. The NPs coated with hydroxylmethylene bisphosphonate or catechol have a lower proportion of magnetite than the bare and citrated ones, raising the question whether the former are responsible for increasing the valence state of the oxide on the NP surfaces and lowering the overall proportion of magnetite in the particles. VSM measurements show that these two coatings lead to a slightly higher saturation magnetization than the citrate. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
|
11
|
Zeng YP, Luo SL, Yang ZY, Huang JW, Li H, Liu C, Wang WD, Li R. A folic acid conjugated polyethylenimine-modified PEGylated nanographene loaded photosensitizer: photodynamic therapy and toxicity studies in vitro and in vivo. J Mater Chem B 2016; 4:2190-2198. [PMID: 32263186 DOI: 10.1039/c6tb00108d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Targeted cancer therapies are currently a strong focus in biomedical research. Our recent studies have demonstrated that polyethylenimine-modified PEGylated nanographene loaded chlorin e6 (PPG-Ce6) shows excellent photodynamic efficacy because of the significantly enhanced intracellular targeted delivery of Ce6 to lysosomes. Based on our previous research, in this work, a novel nanographene-based tumor targeting delivery system was developed to selectively transport the photosensitizer into the tumor cells. In brief, we describe that the folic acid (FA) conjugated polyethylenimine-modified PEGylated nanographene system (PPG-FA) delivered in a targeted manner chlorin e6 (Ce6) to the tumor to simultaneously achieve targeted photodynamic therapy and biological imaging. The cellular internalization and the cellular uptake of PPG-FA-Ce6 were assessed, which indicated that the intracellular uptake of PPG-FA-Ce6 was target-specific. In vitro and in vivo photodynamic therapy results showed that PPG-FA-Ce6 exhibits excellent targeted delivery of Ce6, leading to simultaneous significant targeted photodynamic therapy and imaging. More importantly, the toxicity studies showed that PPG-FA-Ce6 had low toxicity as evidenced by blood biochemistry, hematological analysis, and histological examination. Our present work demonstrates that PPG-FA-Ce6 has high photodynamic therapy efficacy with no obvious toxicity because of its good tumor targeting property which can be potentially utilized in the biomedicine field.
Collapse
Affiliation(s)
- Yi-Ping Zeng
- State Key Laboratory of Trauma Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 40038, China.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Alric C, Aubrey N, Allard-Vannier É, di Tommaso A, Blondy T, Dimier-Poisson I, Chourpa I, Hervé-Aubert K. Covalent conjugation of cysteine-engineered scFv to PEGylated magnetic nanoprobes for immunotargeting of breast cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra06076e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Orientation- and site-directed covalent conjugation of cysteine-engineered scFv to PEGylated SPIONs allows antigen recognition while preserving colloidal properties of nanoprobes.
Collapse
Affiliation(s)
- Christophe Alric
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Nicolas Aubrey
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Émilie Allard-Vannier
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Anne di Tommaso
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Thibaut Blondy
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Isabelle Dimier-Poisson
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Igor Chourpa
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Katel Hervé-Aubert
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| |
Collapse
|