1
|
He J, Song R, Xiao F, Wang M, Wen L. Cu 3P/1-MT Nanocomposites Potentiated Photothermal-Immunotherapy. Int J Nanomedicine 2023; 18:3021-3033. [PMID: 37312933 PMCID: PMC10258043 DOI: 10.2147/ijn.s414117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Purpose Photothermal therapy (PTT) is a promising anticancer treatment that involves inducing thermal ablation and enhancing antitumor immune responses. However, it is difficult to completely eradicate tumor foci through thermal ablation alone. Additionally, the PTT elicited antitumor immune responses are often insufficient to prevent tumor recurrence or metastasis, due to the presence of an immunosuppressive microenvironment. Therefore, combining photothermal and immunotherapy is believed to be a more effective treatment approach as it can modulate the immune microenvironment and amplify the post-ablation immune response. Methods Herein, the indoleamine 2, 3-dioxygenase-1 inhibitors (1-MT) loaded copper (I) phosphide nanocomposites (Cu3P/1-MT NPs) are prepared for PTT and immunotherapy. The thermal variations of the Cu3P/1-MT NPs solution under different conditions were measured. The cellular cytotoxicity and immunogenic cell death (ICD) induction efficiency of Cu3P/1-MT NPs were analyzed by cell counting kit-8 assay and flow cytometry in 4T1 cells. And the immune response and antitumor therapeutic efficacy of Cu3P/1-MT NPs were evaluated in 4T1-tumor bearing mice. Results Even at low energy of laser irradiation, Cu3P/1-MT NPs remarkably enhanced PTT efficacy and induced immunogenic tumor cell death. Particularly, the tumor-associated antigens (TAAs) could help promote the maturation of dendritic cells (DCs) and antigen presentation, which further activates infiltration of CD8+ T cells through synergistically inhibiting the indoleamine 2, 3-dioxygenase-1. Additionally, Cu3P/1-MT NPs decreased the suppressive immune cells such as regulatory T cells (Tregs) and M2 macrophages, indicating an immune suppression modulation effect. Conclusion Cu3P/1-MT nanocomposites with excellent photothermal conversion efficiency and immunomodulatory properties were prepared. In addition to enhanced the PTT efficacy and induced immunogenic tumor cell death, it also modulated the immunosuppressive microenvironment. Thereby, this study is expected to offer a practical and convenient approach to amplify the antitumor therapeutic efficiency with photothermal-immunotherapy.
Collapse
Affiliation(s)
- Jiawen He
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, People’s Republic of China
| | - Ruixiang Song
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, People’s Republic of China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, People’s Republic of China
| | - Meng Wang
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, Shenzhen, People’s Republic of China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, People’s Republic of China
| |
Collapse
|
2
|
Shobana N, Prakash P, Samrot AV, Saigeetha S, Sathiyasree M, Thirugnanasambandam R, Sridevi V, Basanta Kumar M, Gokul Shankar S, Dhiva S, Remya R. Nanotoxicity studies of Azadirachta indica mediated silver nanoparticles against Eudrilus eugeniae, Danio rerio and its embryos. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3
|
Gupta R, Kaur T, Chauhan A, Kumar R, Kuanr BK, Sharma D. Tailoring nanoparticles design for enhanced heating efficiency and improved magneto-chemo therapy for glioblastoma. BIOMATERIALS ADVANCES 2022; 139:213021. [PMID: 35882116 DOI: 10.1016/j.bioadv.2022.213021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Development of multifunctional magnetic nanomaterials (MNPs) with improved heat-generating capabilities and effective combination with localized chemotherapy has emerged as a promising therapeutic regime for solid tumors like glioblastoma. In this regard, the shape-dependent hyperthermic and chemo-therapeutic potential of nanomaterials, has not been extensively explored. Here we present, development of various morphological designs of MNPs including spherical, clusters, rods and cubic; to compare the effect of shape on tuning the properties of MNPs that are relevant to many potential biomedical applications like drug delivery, cellular uptake and heat generation. The study includes extensive comparison of morpho-structural characteristics, size distributions, chemical composition, surface area measurements and magnetic properties of the variable shaped MNPs. Further the heating efficiencies in aqueous and cellular environments and heat triggered drug release profiles for successful magneto-chemotherapy were compared among all in-house synthesized MNPs. Under biosafety limit considerations given by Hergt's limit (H*f value <5 × 109 Am-1 s-1), cuboidal shaped MNPs demonstrated highest heating efficiency owing to magnetosome-like chain formation along with sustained drug release profile as compared to other synthesized MNPs. The mechanism of cancer cell death mediated via magneto-chemotherapy was elucidated to be the oxidative stress-mediated apoptotic cell death pathway. In vivo studies further demonstrated complete tumor regression only in the magneto-chemotherapy treated group. These findings suggest the potential of combinatorial therapy to overcome the clinical limitations of the independent therapies for advanced thermotherapy of glioblastoma.
Collapse
Affiliation(s)
- Ruby Gupta
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Tashmeen Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Anjali Chauhan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India; Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
4
|
Park Y, Demessie AA, Luo A, Taratula OR, Moses AS, Do P, Campos L, Jahangiri Y, Wyatt CR, Albarqi HA, Farsad K, Slayden OD, Taratula O. Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107808. [PMID: 35434932 PMCID: PMC9232988 DOI: 10.1002/smll.202107808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.
Collapse
Affiliation(s)
- Youngrong Park
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Addie Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Olena R Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Peter Do
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Younes Jahangiri
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
- Advanced Imaging Research Center, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Hassan A Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, King Abdulaziz Road, Najran, 55461, Saudi Arabia
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
5
|
Włodarczyk A, Gorgoń S, Radoń A, Bajdak-Rusinek K. Magnetite Nanoparticles in Magnetic Hyperthermia and Cancer Therapies: Challenges and Perspectives. NANOMATERIALS 2022; 12:nano12111807. [PMID: 35683663 PMCID: PMC9182445 DOI: 10.3390/nano12111807] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Until now, strategies used to treat cancer are imperfect, and this generates the need to search for better and safer solutions. The biggest issue is the lack of selective interaction with neoplastic cells, which is associated with occurrence of side effects and significantly reduces the effectiveness of therapies. The use of nanoparticles in cancer can counteract these problems. One of the most promising nanoparticles is magnetite. Implementation of this nanoparticle can improve various treatment methods such as hyperthermia, targeted drug delivery, cancer genotherapy, and protein therapy. In the first case, its feature makes magnetite useful in magnetic hyperthermia. Interaction of magnetite with the altered magnetic field generates heat. This process results in raised temperature only in a desired part of a patient body. In other therapies, magnetite-based nanoparticles could serve as a carrier for various types of therapeutic load. The magnetic field would direct the drug-related magnetite nanoparticles to the pathological site. Therefore, this material can be used in protein and gene therapy or drug delivery. Since the magnetite nanoparticle can be used in various types of cancer treatment, they are extensively studied. Herein, we summarize the latest finding on the applicability of the magnetite nanoparticles, also addressing the most critical problems faced by smart nanomedicine in oncological therapies.
Collapse
Affiliation(s)
- Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Szymon Gorgoń
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Radoń
- Łukasiewicz Research Network—Institute of Non-Ferrous Metals, Sowinskiego 5 St., 44-100 Gliwice, Poland;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
6
|
Plummer LK, Hutchison JE. Understanding the Effects of Iron Precursor Ligation and Oxidation State Leads to Improved Synthetic Control for Spinel Iron Oxide Nanocrystals. Inorg Chem 2020; 59:15074-15087. [PMID: 33006469 DOI: 10.1021/acs.inorgchem.0c02040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Iron oxide nanocrystals have the potential for use in a wide variety of applications if we can finely control and tune the diverse structural attributes that lead to specific, desired properties. At the high temperatures utilized for thermal decomposition based syntheses, commonly used Fe(III) alkylcarboxylate precursors are inadvertently reduced and produce wüstite (FeO), which is paramagnetic, as opposed to the desired ferrimagnetic spinel phases of magnetite (Fe3O4) and maghemite (γ-Fe2O3). To circumvent this issue, we carried out syntheses at lower temperatures (∼230 °C) using an esterification-mediated approach. Under these conditions, formation of the FeO phase can be avoided. However, we found that the precursor oxidation state and ligation had a surprisingly strong influence on the morphologies of the resulting nanocrystals. To investigate the cause of these morphological effects, we carried out analogous nanocrystal syntheses with a series of precursors. The use of Fe(III) oleate precursors yielded highly crystalline, largely twin-free nanocrystals; however, small amounts of acetylacetonate ligation yielded nanocrystals with morphologies characteristic of twin defects. During synthesis at 230 °C, the Fe(III) oleate precursor is partially reduced, providing sufficient quantities of Fe(II) that are needed to grow the Fe3O4 nanocrystals (wherein one-third of the iron atoms are in the Fe(II) state) without twinning. Our investigations suggest that the acetylacetonate ligands prevent reduction of Fe(III) to Fe(II), leading to twinned structures during synthesis. Harnessing this insight, we identified conditions to predictably and continuously grow octahedral, spinel nanocrystals as well as conditions to synthesize highly twinned nanocrystals. These findings also help explain observations in the thermal decomposition synthesis literature which suggest that iron oxide nanocrystals produced from Fe(acac)3 are less prone to FeO contamination in comparison to those produced from Fe(III) alkylcarboxylates.
Collapse
Affiliation(s)
- L Kenyon Plummer
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - James E Hutchison
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
7
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
8
|
Magnetic Nanomaterials for Magnetically-Aided Drug Delivery and Hyperthermia. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic nanoparticles have continuously gained importance for the purpose of magnetically-aided drug-delivery, magnetofection, and hyperthermia. We have summarized significant experimental approaches, as well as their advantages and disadvantages with respect to future clinical translation. This field is alive and well and promises meaningful contributions to the development of novel cancer therapies.
Collapse
|
9
|
Albarqi HA, Wong LH, Schumann C, Sabei FY, Korzun T, Li X, Hansen MN, Dhagat P, Moses AS, Taratula O, Taratula O. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. ACS NANO 2019; 13:6383-6395. [PMID: 31082199 PMCID: PMC6645784 DOI: 10.1021/acsnano.8b06542] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite its promising therapeutic potential, nanoparticle-mediated magnetic hyperthermia is currently limited to the treatment of localized and relatively accessible cancer tumors because the required therapeutic temperatures above 40 °C can only be achieved by direct intratumoral injection of conventional iron oxide nanoparticles. To realize the true potential of magnetic hyperthermia for cancer treatment, there is an unmet need for nanoparticles with high heating capacity that can efficiently accumulate at tumor sites following systemic administration and generate desirable intratumoral temperatures upon exposure to an alternating magnetic field (AMF). Although there have been many attempts to develop the desired nanoparticles, reported animal studies reveal the challenges associated with reaching therapeutically relevant intratumoral temperatures following systemic administration at clinically relevant doses. Therefore, we developed efficient magnetic nanoclusters with enhanced heating efficiency for systemically delivered magnetic hyperthermia that are composed of cobalt- and manganese-doped, hexagon-shaped iron oxide nanoparticles (CoMn-IONP) encapsulated in biocompatible PEG-PCL (poly(ethylene glycol)- b-poly(ε-caprolactone))-based nanocarriers. Animal studies validated that the developed nanoclusters are nontoxic, efficiently accumulate in ovarian cancer tumors following a single intravenous injection, and elevate intratumoral temperature up to 44 °C upon exposure to safe and tolerable AMF. Moreover, the obtained results confirmed the efficiency of the nanoclusters to generate the required intratumoral temperature after repeated injections and demonstrated that nanocluster-mediated magnetic hyperthermia significantly inhibits cancer growth. In summary, this nanoplatform is a milestone in the development of systemically delivered magnetic hyperthermia for the treatment of cancer tumors that are difficult to access for intratumoral injection.
Collapse
Affiliation(s)
- Hassan A. Albarqi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudia Arabia
| | - Leon H. Wong
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Canan Schumann
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Fahad Y. Sabei
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Xiaoning Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Mikkel N. Hansen
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Pallavi Dhagat
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR 97201, USA
| |
Collapse
|
10
|
Ramakrishnan V, Alex C, Nair AN, John NS. Designing Metallic MoO
2
Nanostructures on Rigid Substrates for Electrochemical Water Activation. Chemistry 2018; 24:18003-18011. [DOI: 10.1002/chem.201803570] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/30/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Vivek Ramakrishnan
- Centre for Nano and Soft Matter Sciences (CeNS) Jalahalli Bengaluru 560013 India
| | - C. Alex
- Centre for Nano and Soft Matter Sciences (CeNS) Jalahalli Bengaluru 560013 India
| | - Aruna N. Nair
- Centre for Nano and Soft Matter Sciences (CeNS) Jalahalli Bengaluru 560013 India
| | - Neena S. John
- Centre for Nano and Soft Matter Sciences (CeNS) Jalahalli Bengaluru 560013 India
| |
Collapse
|
11
|
Luo X, Al-Antaki AHM, Alharbi TMD, Hutchison WD, Zou YC, Zou J, Sheehan A, Zhang W, Raston CL. Laser-Ablated Vortex Fluidic-Mediated Synthesis of Superparamagnetic Magnetite Nanoparticles in Water Under Flow. ACS OMEGA 2018; 3:11172-11178. [PMID: 31459226 PMCID: PMC6645571 DOI: 10.1021/acsomega.8b01606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 05/22/2023]
Abstract
Selective formation of only one iron oxide phase is a major challenge in conventional laser ablation process, as is scaling up the process. Herein, superparamagnetic single-phase magnetite nanoparticles of hexagonal and spheroidal-shape, with an average size of ca. 15 nm, are generated by laser ablation of bulk iron metal at 1064 nm in a vortex fluidic device (VFD). This is a one-step continuous flow process, in air at ambient pressure, with in situ uptake of the nanoparticles in the dynamic thin film of water in the VFD. The process minimizes the generation of waste by avoiding the need for any chemicals or surfactants and avoids time-consuming purification steps in reducing any negative impact of the processing on the environment.
Collapse
Affiliation(s)
- Xuan Luo
- Flinders
Institute for NanoScale Science and Technology, College
of Science and Engineering, and Centre for Marine Bioproducts Development,
College of Medicine and Public Health, Flinders
University, Adelaide, South Australia 5042, Australia
| | - Ahmed H. M. Al-Antaki
- Flinders
Institute for NanoScale Science and Technology, College
of Science and Engineering, and Centre for Marine Bioproducts Development,
College of Medicine and Public Health, Flinders
University, Adelaide, South Australia 5042, Australia
| | - Thaar M. D. Alharbi
- Flinders
Institute for NanoScale Science and Technology, College
of Science and Engineering, and Centre for Marine Bioproducts Development,
College of Medicine and Public Health, Flinders
University, Adelaide, South Australia 5042, Australia
| | - Wayne D. Hutchison
- School
of PEMS, University of New South Wales, ADFA campus, Canberra BC, Australian Capital Territory 2610, Australia
| | - Yi-chao Zou
- Materials
Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jin Zou
- Materials
Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Antony Sheehan
- TGR
Biosciences Pty Ltd, 31 Dalgleish Street, Thebarton, Adelaide, South Australia 5031, Australia
| | - Wei Zhang
- Flinders
Institute for NanoScale Science and Technology, College
of Science and Engineering, and Centre for Marine Bioproducts Development,
College of Medicine and Public Health, Flinders
University, Adelaide, South Australia 5042, Australia
| | - Colin L. Raston
- Flinders
Institute for NanoScale Science and Technology, College
of Science and Engineering, and Centre for Marine Bioproducts Development,
College of Medicine and Public Health, Flinders
University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
12
|
Zheng M, Lu J, Zhao D. Effects of starch-coating of magnetite nanoparticles on cellular uptake, toxicity and gene expression profiles in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:930-941. [PMID: 29227944 DOI: 10.1016/j.scitotenv.2017.12.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Engineered magnetite nanoparticles (Fe3O4 NPs) have been used in many fields. To prevent particle agglomeration, stabilizers or coatings are often required. While such coatings have been shown to enhance performances, the environmental impact or toxicity of stabilized or coated Fe3O4 NPs remain poorly understood. In an effort to understand the impacts of such coatings on the toxicity of Fe3O4 NPs, we used the transcriptome sequencing (RNA-seq) technique to characterize the gill and liver transcriptomes from adult zebrafish when exposed to bare and starch-stabilized Fe3O4 NPs for 7days, demonstrating remarkable differences in gene expression profiles, also known as differentially expressed genes (DEGs) profiles, in both tissues. Bare Fe3O4 NPs exerted greater toxicity than starch-coated Fe3O4 NPs in gill; in contrast, starch-Fe3O4 NPs triggered more severe damage on liver, though both bare and stabilized NPs appeared to share similar regulatory mechanisms. Quantitative real-time polymerase chain reactions using six genes each for the two tissues verified the RNA-seq results. The surface coatings play an important role in determining the nanoparticle toxicity, which in turn modulate cell uptake and biological responses, consequently impacting the potential safety and efficacy of nanomaterials.
Collapse
Affiliation(s)
- Min Zheng
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA; School of Marine Sciences, Sun Yat-sen University, Guangdong 510275, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Guangdong 510275, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA; School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.02.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Hexagonal-shaped aminosilane magnetite nanoparticles: Preparation, characterization and hybrid film deposition. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Wang X, Liao Y, Zhang H, Wen T, Zhang D, Li Y, Liu M, Li F, Wen Q, Zhong Z, Yin X. Low Temperature-Derived 3D Hexagonal Crystalline Fe 3O 4 Nanoplates for Water Purification. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3644-3651. [PMID: 29350912 DOI: 10.1021/acsami.7b17582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fe3O4 nanoplates were fabricated by an anodic oxidation process and a subsequent water assisted crystallization process at low temperature, which was found to be very efficient and environmentally friendly. The as-prepared Fe3O4 nanoplates have hexagonal outlines with a thickness of about 20 nm. Tremendous grooves were distributed on the entire surfaces of the nanoplates, making the two-dimension nanoplates have a unique 3D morphology. Transmission electron microscopy results confirmed that the single-crystalline nature of the nanoplates was well maintained. Owing to the unique structures and porous morphologies, the as-prepared 3D nanoplates show excellent ability for absorbing solar energy and absorbing organic pollutants, which can be utilized for cleaning up water. Moreover, the Fe3O4 nanoplates show good magnetic properties that enable them to be easily collected and recycled. We believe this study will inspire the application of Fe3O4 nanoplates with 3D structures in energy and environmental areas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xingtian Yin
- Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, School of Electronic & Information Engineering, Xi'an Jiaotong University , Xi'an, Shanxi 710049, China
| |
Collapse
|
16
|
McWilliams BT, Wang H, Binns VJ, Curto S, Bossmann SH, Prakash P. Experimental Investigation of Magnetic Nanoparticle-Enhanced Microwave Hyperthermia. J Funct Biomater 2017; 8:E21. [PMID: 28640198 PMCID: PMC5618272 DOI: 10.3390/jfb8030021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to evaluate microwave heating enhancements offered by iron/iron oxide nanoparticles dispersed within tissue-mimicking media for improving efficacy of microwave thermal therapy. The following dopamine-coated magnetic nanoparticles (MNPs) were considered: 10 and 20 nm diameter spherical core/shell Fe/Fe₃O₄, 20 nm edge-length cubic Fe₃O₄, and 45 nm edge-length/10 nm height hexagonal Fe₃O₄. Microwave heating enhancements were experimentally measured with MNPs dissolved in an agar phantom, placed within a rectangular waveguide. Effects of MNP concentration (2.5-20 mg/mL) and microwave frequency (2.0, 2.45 and 2.6 GHz) were evaluated. Further tests with 10 and 20 nm diameter spherical MNPs dispersed within a two-compartment tissue-mimicking phantom were performed with an interstitial dipole antenna radiating 15 W power at 2.45 GHz. Microwave heating of 5 mg/mL MNP-agar phantom mixtures with 10 and 20 nm spherical, and hexagonal MNPs in a waveguide yielded heating rates of 0.78 ± 0.02 °C/s, 0.72 ± 0.01 °C/s and 0.51 ± 0.03 °C/s, respectively, compared to 0.5 ± 0.1 °C/s for control. Greater heating enhancements were observed at 2.0 GHz compared to 2.45 and 2.6 GHz. Heating experiments in two-compartment phantoms with an interstitial dipole antenna demonstrated potential for extending the radial extent of therapeutic heating with 10 and 20 nm diameter spherical MNPs, compared to homogeneous phantoms (i.e., without MNPs). Of the MNPs considered in this study, spherical Fe/Fe₃O₄ nanoparticles offer the greatest heating enhancement when exposed to microwave radiation. These nanoparticles show strong potential for enhancing the rate of heating and radial extent of heating during microwave hyperthermia and ablation procedures.
Collapse
Affiliation(s)
- Brogan T McWilliams
- Department of Electrical and Computer Engineering, Kansas State University, 3078 Engineering Hall, Manhattan, KS 66506, USA.
| | - Hongwang Wang
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506, USA.
| | - Valerie J Binns
- Department of Electrical and Computer Engineering, Kansas State University, 3078 Engineering Hall, Manhattan, KS 66506, USA.
| | - Sergio Curto
- Department of Electrical and Computer Engineering, Kansas State University, 3078 Engineering Hall, Manhattan, KS 66506, USA.
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506, USA.
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, 3078 Engineering Hall, Manhattan, KS 66506, USA.
| |
Collapse
|
17
|
Su C. Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:48-84. [PMID: 27477792 PMCID: PMC7306924 DOI: 10.1016/j.jhazmat.2016.06.060] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 05/12/2023]
Abstract
This review focuses on environmental implications and applications of engineered magnetite (Fe3O4) nanoparticles (MNPs) as a single phase or a component of a hybrid nanocomposite that exhibits superparamagnetism and high surface area. MNPs are synthesized via co-precipitation, thermal decomposition and combustion, hydrothermal process, emulsion, microbial process, and green approaches. Aggregation/sedimentation and transport of MNPs depend on surface charge of MNPs and geochemical parameters such as pH, ionic strength, and organic matter. MNPs generally have low toxicity to humans and ecosystem. MNPs are used for constructing chemical/biosensors and for catalyzing a variety of chemical reactions. MNPs are used for air cleanup and carbon sequestration. MNP nanocomposites are designed as antimicrobial agents for water disinfection and flocculants for water treatment. Conjugated MNPs are widely used for adsorptive/separative removal of organics, dyes, oil, arsenic, phosphate, molybdate, fluoride, selenium, Cr(VI), heavy metal cations, radionuclides, and rare earth elements. MNPs can degrade organic/inorganic contaminants via chemical reduction or catalyze chemical oxidation in water, sediment, and soil. Future studies should further explore mechanisms of MNP interactions with other nanomaterials and contaminants, economic and green approaches of MNP synthesis, and field scale demonstration of MNP utilization.
Collapse
Affiliation(s)
- Chunming Su
- Ground Water and Ecosystems Restoration Division, National Risk Management Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK 74820, USA.
| |
Collapse
|
18
|
In situ immobilized, magnetite nanoplatelets over holey graphene nanoribbons for high performance solid state supercapacitor. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|