1
|
Wang X, Zhang R, Ma X, Xu Z, Ma M, Zhang T, Ma Y, Shi F. Carbon dots@noble metal nanoparticle composites: research progress report. Analyst 2024; 149:665-688. [PMID: 38205593 DOI: 10.1039/d3an01580g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Carbon dots@noble metal nanoparticle composites are formed by combining carbon dots and metal nanoparticles using various strategies. Carbon dots exhibit a reducing ability and function as stabilisers; consequently, metal-ion solutions can be directly reduced by them to synthesise gold, silver, and gold-silver alloy particles. Carbon dots@gold/silver/gold-silver particle composites have demonstrated the potential for several practical applications owing to their superior properties and simple preparation process. Until now, several review articles have been published to summarise fluorescent carbon dots or noble metal nanomaterials. Compared with metal-free carbon dots, carbon dots@noble metal nanoparticles have a unique morphology and structure, resulting in new physicochemical properties, which allow for sensing, bioimaging, and bacteriostasis applications. Therefore, to promote the effective development of carbon dots@noble metal nanoparticle composites, this paper primarily reviews carbon dots@gold/silver/gold-silver alloy nanoparticle composites for the first time in terms of the following aspects. (1) The synthesis strategies of carbon dots@noble metal nanoparticle composites are outlined. The principle and function of carbon dots in the synthesis strategies are examined. The advantages and disadvantages of these methods and composites are analysed. (2) The characteristics and properties of such composites are described. (3) The applications of these composite materials are summarised. Finally, the potentials and limitations of carbon dots@noble metal nanoparticle composites are discussed, thus laying the foundation for their further development.
Collapse
Affiliation(s)
- Xuejing Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Renyin Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Xiaoyu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Zhihua Xu
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Mingze Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Tieying Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Yu Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Feng Shi
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
2
|
Das S, Mondal S, Ghosh D. Carbon quantum dots in bioimaging and biomedicines. Front Bioeng Biotechnol 2024; 11:1333752. [PMID: 38318419 PMCID: PMC10841552 DOI: 10.3389/fbioe.2023.1333752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Carbon quantum dots (CQDs) are gaining a lot more attention than traditional semiconductor quantum dots owing to their intrinsic fluorescence property, chemical inertness, biocompatibility, non-toxicity, and simple and inexpensive synthetic route of preparation. These properties allow CQDs to be utilized for a broad range of applications in various fields of scientific research including biomedical sciences, particularly in bioimaging and biomedicines. CQDs are a promising choice for advanced nanomaterials research for bioimaging and biomedicines owing to their unique chemical, physical, and optical properties. CQDs doped with hetero atom, or polymer composite materials are extremely advantageous for biochemical, biological, and biomedical applications since they are easy to prepare, biocompatible, and have beneficial properties. This type of CQD is highly useful in phototherapy, gene therapy, medication delivery, and bioimaging. This review explores the applications of CQDs in bioimaging and biomedicine, highlighting recent advancements and future possibilities to increase interest in their numerous advantages for therapeutic applications.
Collapse
Affiliation(s)
- Surya Das
- Department of Chemistry, University of Kalyani, Kalyani, India
| | - Somnath Mondal
- Department of Chemistry, Pennsylvania State University, State College, PA, United States
| | - Dhiman Ghosh
- Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| |
Collapse
|
3
|
Zhuo X, Liu Z, Aishajiang R, Wang T, Yu D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023; 15:2293. [PMID: 37765262 PMCID: PMC10534922 DOI: 10.3390/pharmaceutics15092293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Nanotechnology, an emerging and promising therapeutic tool, may improve the effectiveness of phototherapy (PT) in antitumor therapy because of the development of nanomaterials (NMs) with light-absorbing properties. The tumor-targeted PTs, such as photothermal therapy (PTT) and photodynamic therapy (PDT), transform light energy into heat and produce reactive oxygen species (ROS) that accumulate at the tumor site. The increase in ROS levels induces oxidative stress (OS) during carcinogenesis and disease development. Because of the localized surface plasmon resonance (LSPR) feature of copper (Cu), a vital trace element in the human body, Cu-based NMs can exhibit good near-infrared (NIR) absorption and excellent photothermal properties. In the tumor microenvironment (TME), Cu2+ combines with H2O2 to produce O2 that is reduced to Cu1+ by glutathione (GSH), causing a Fenton-like reaction that reduces tumor hypoxia and simultaneously generates ROS to eliminate tumor cells in conjunction with PTT/PDT. Compared with other therapeutic modalities, PTT/PDT can precisely target tumor location to kill tumor cells. Moreover, multiple treatment modalities can be combined with PTT/PDT to treat a tumor using Cu-based NMs. Herein, we reviewed and briefly summarized the mechanisms of actions of tumor-targeted PTT/PDT and the role of Cu, generated from Cu-based NMs, in PTs. Furthermore, we described the Cu-based NMs used in PTT/PDT applications.
Collapse
Affiliation(s)
| | | | | | - Tiejun Wang
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (X.Z.); (Z.L.); (R.A.)
| |
Collapse
|
4
|
Musib D, Upadhyay A, Pal M, Raza MK, Saha I, Kunwar A, Roy M. Red light-activable biotinylated copper(II) complex-functionalized gold nanocomposite (Biotin-Cu@AuNP) towards targeted photodynamic therapy. J Inorg Biochem 2023; 243:112183. [PMID: 36933341 DOI: 10.1016/j.jinorgbio.2023.112183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
We report the synthesis and characterization of red-light activable gold nanoparticle functionalized with biotinylated copper(II) complex of general molecular formula, [Cu(L3)(L6)]-AuNPs (Biotin-Cu@AuNP), where L3 = N-(3-((E)-3,5-di-tert-butyl-2-hydroxybenzylideneamino)-4-hydroxyphenyl)-5-((3aS,4S,6aR)-2-oxo-hexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamide, L6 = 5-(1,2-dithiolan-3-yl)-N-(1,10-phenanthrolin-5-yl)pentanamide, which was explored for their photophysical, theoretical and photo-cytotoxic potentials. The nanoconjugate exhibits differential uptake in biotin positive and biotin negative cancer cells as well as normal cells. The nanoconjugate also shows remarkable photodynamic activity against biotin positive A549 (IC50: 13 μg/mL in red light; >150 μg/mL in dark) and HaCaT (IC50: 23 μg/mL in red light; >150 μg/mL in dark) cells under red light (600-720 nm, 30 Jcm-2) irradiation, with significantly high photo-indices (PI>15). The nanoconjugate is less toxic to HEK293T (biotin negative) and HPL1D (normal) cells. Confocal microscopy confirms preferential mitochondrial and partly cytoplasmic localization of Biotin-Cu@AuNP in A549 cells. Several photo-physical and theoretical studies reveal the red light-assisted generation of singlet oxygen (1O2) (Ф (1O2) =0.68) as a reactive oxygen species (ROS) which results in remarkable oxidative stress and mitochondrial membrane damage, leading to caspase 3/7-dependent apoptosis of A549 cells. Overall, the nanocomposite (Biotin-Cu@AuNP) exhibiting red light-assisted targeted photodynamic activity has emerged as the ideal next generation PDT agents.
Collapse
Affiliation(s)
- Dulal Musib
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, CV Raman Avenue, Bangalore 560012, India
| | - Maynak Pal
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, CV Raman Avenue, Bangalore 560012, India
| | - Indranil Saha
- Department of Physics, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Amit Kunwar
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Anushaktinagar, Mumbai 400085, India.
| | - Mithun Roy
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal West, 795004, India.
| |
Collapse
|
5
|
Copper Oxide Nanoparticle-Decorated Carbon Nanoparticle Composite Colloidal Preparation through Laser Ablation for Antimicrobial and Antiproliferative Actions against Breast Cancer Cell Line, MCF-7. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9863616. [PMID: 35299896 PMCID: PMC8923787 DOI: 10.1155/2022/9863616] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Copper oxide (CuO) nanoparticle- (NP-) decorated carbon NPs (CNPs) were produced as colloidal suspension through pulsed laser ablation technique in liquid (PLAL) medium. The antimicrobial activity of the produced NPs was tested against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), and anticancer activity was tested against breast cancer cell line, MCF-7, together with the biocompatibility assessment of these NPs. The X-ray diffraction (XRD) patterns of the obtained CNPs showed peaks at 26.58° and 43.78° (2θ) identical to (002) and (111) planes, respectively, of the carbon phases. It also displayed new peaks at 38.5° and 48.64° (2θ) after doping with CuO NPs. Transmission electron microscope (TEM) images revealed the crystalline nature with the spherical shape of the prepared CNPs with 5-40 nm diameter ranges. In addition, the NP effects on the bacterial cell walls and nucleic acid were confirmed using a scanning electron microscope (SEM) and microscopic fluorescence analysis. The NPs showed antibacterial activity through SEM examinations against the pathogenic microbial species, S. aureus and E. coli. In the cellular material release assay, the optical density of the bacterial cells, treated with NPs, displayed a significant increase with the time of exposure to NPs, and the cytotoxicity reached more than 80% of the level for the CNPs decorated with CuO NPs. The morphology of the MCF-7 cells treated with NPs decreased numbers, and the loss of contact with the surrounding cells was observed. These results confirmed that the CNPs decorated with CuO NPs have no observable side effects and can be safely used for therapeutic applications. It is also noteworthy that it is the first report of preparation of CuO NPs decorated with CNPs (CuO NPs-CNPs) by PLAL, and the produced NPs showed antimicrobial antiproliferative activities against breast cancer cell lines, MCF-7. The main advantage of the PLAL technique of synthesizing CuO NPs-CNPs provided a two-step, cost-effective, and eco-friendly method.
Collapse
|
6
|
Chen D, Li B, Lei T, Na D, Nie M, Yang Y, Congjia, Xie, He Z, Wang J. Selective mediation of ovarian cancer SKOV3 cells death by pristine carbon quantum dots/Cu 2O composite through targeting matrix metalloproteinases, angiogenic cytokines and cytoskeleton. J Nanobiotechnology 2021; 19:68. [PMID: 33663548 PMCID: PMC7934478 DOI: 10.1186/s12951-021-00813-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
It was shown that some nanomaterials may have anticancer properties, but lack of selectivity is one of challenges, let alone selective suppression of cancer growth by regulating the cellular microenvironment. Herein, we demonstrated for the first time that carbon quantum dots/Cu2O composite (CQDs/Cu2O) selectively inhibited ovarian cancer SKOV3 cells by targeting cellular microenvironment, such as matrix metalloproteinases, angiogenic cytokines and cytoskeleton. The result was showed CQDs/Cu2O possessed anticancer properties against SKOV3 cells with IC50 = 0.85 μg mL-1, which was approximately threefold lower than other tested cancer cells and approximately 12-fold lower than normal cells. Compared with popular anticancer drugs, the IC50 of CQDs/Cu2O was approximately 114-fold and 75-fold lower than the IC50 of commercial artesunate (ART) and oxaliplatin (OXA). Furthermore, CQDs/Cu2O possessed the ability to decrease the expression of MMP-2/9 and induced alterations in the cytoskeleton of SKOV3 cells by disruption of F-actin. It also exhibited stronger antiangiogenic effects than commercial antiangiogenic inhibitor (SU5416) through down-regulating the expression of VEGFR2. In addition, CQDs/Cu2O has a vital function on transcriptional regulation of multiple genes in SKOV3 cells, where 495 genes were up-regulated and 756 genes were down-regulated. It is worth noting that CQDs/Cu2O also regulated angiogenesis-related genes in SKOV3 cells, such as Maspin and TSP1 gene, to suppress angiogenesis. Therefore, CQDs/Cu2O selectively mediated of ovarian cancer SKOV3 cells death mainly through decreasing the expression of MMP-2, MMP-9, F-actin, and VEGFR2, meanwhile CQDs/Cu2O caused apoptosis of SKOV3 via S phase cell cycle arrest. These findings reveal a new application for the use of CQDs/Cu2O composite as potential therapeutic interventions in ovarian cancer SKOV3 cells.
Collapse
Affiliation(s)
- Daomei Chen
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
| | - Bin Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Tao Lei
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Di Na
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Minfang Nie
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yepeng Yang
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | | | - Xie
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zijuan He
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Jiaqiang Wang
- National Center for International Research On Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, People's Republic of China.
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, 650091, People's Republic of China.
- School of Chemical Sciences & Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
7
|
Arshad F, Pal A, Alam T, Khan JA, Sk MP. Luminescent carbogenic dots for the detection and determination of hemoglobin in real samples. NEW J CHEM 2020. [DOI: 10.1039/d0nj00401d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Formation of luminescent carbogenic dots have been reported during SnO2 NCs synthesis. These carbogenic dots have been successfully employed for selective and sensitive detection of hemoglobin.
Collapse
Affiliation(s)
- Farwa Arshad
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Ayan Pal
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Tipu Alam
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Javed Alam Khan
- Department of Metallurgical Engineering and Materials Science
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | | |
Collapse
|
8
|
Unveiling the interaction between carbon nanodot and IR light emitting fluorescent dyes inside the confined micellar environment. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Khashan KS, Jabir MS, Abdulameer FA. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/1742-6596/1003/1/012100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Tai YW, Chiu YC, Wu PT, Yu J, Chin YC, Wu SP, Chuang YC, Hsieh HC, Lai PS, Yu HP, Liao MY. Degradable NIR-PTT Nanoagents with a Potential Cu@Cu 2O@Polymer Structure. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5161-5174. [PMID: 29359551 DOI: 10.1021/acsami.7b15109] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cu@Cu2O@PSMA polymer nanoparticles (Cu@Cu2O@polymer NPs) with near-infrared (NIR) absorption were successfully synthesized in a single-step oxidation reaction of Cu@PSMA polymer NPs at 100 °C for 20 min. The shape, structure, and optical properties of the Cu@Cu2O@polymer NPs were tailorable by controlling the reaction parameters, for example, using the initial Cu@PSMA polymer NP as a template and varying the halide ion content, heating temperature, and reaction time. The Cu@Cu2O@polymer NPs exhibited robust NIR absorption between 650 and 710 nm and possessed superior oxidation resistance in water and culture media. In vitro assays demonstrated the low cytotoxicity of the Cu@Cu2O@PSMA polymer NPs to HeLa cells through an improved cell viability, high IC50, low injury incidence from the supernatant of the partly dissociated Cu@Cu2O@PSMA polymer NPs, and minor generation of reactive oxygen species. More importantly, we demonstrated that the inorganic Cu-based nanocomposite [+0.34 V vs normal hydrogen electrode (NHE)] was degradable in an endogenous H2O2 (+1.78 V vs NHE) environment. Cu ions were detected in the urine of mice, which illustrates the possibility of extraction after the degradation of the Cu-based particles. 'After an treatment of the HeLa cells with the Cu@Cu2O@polymer NPs and a 660 nm light-emitting diode, the photoablation of 50 and 90% cells was observed at NP doses of 20 and 50 ppm, respectively. These results demonstrate that NIR-functional and moderate redox-active Cu@Cu2O@polymer NPs are potential next-generation photothermal therapy (PTT) nanoagents because of combined features of degradation resistance in the physiological environment, enabling the delivery of efficient PTT, a possibly improved ability to selectively harm cancer cells by releasing Cu ions under high-H2O2 and/or low-pH conditions, and ability to be extracted from the body after biodegradation.
Collapse
Affiliation(s)
- Yu-Wei Tai
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Yi-Chun Chiu
- Division of Urology, Department of Surgery, Zhongxiao Branch, Taipei City Hospital , Taipei 11556, Taiwan
| | - Po-Ting Wu
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Yu-Cheng Chin
- Department of Applied Chemistry, National Pingtung University , Pingtung 90003, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center , Hsinchu 300, Taiwan
| | - Ho-Chen Hsieh
- Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University , Taichung 402, Taiwan
| | - Hsiu-Ping Yu
- Department of Chemistry, National Chung Hsing University , Taichung 402, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University , Pingtung 90003, Taiwan
| |
Collapse
|
11
|
Li L, Rashidi LH, Yao M, Ma L, Chen L, Zhang J, Zhang Y, Chen W. CuS nanoagents for photodynamic and photothermal therapies: Phenomena and possible mechanisms. Photodiagnosis Photodyn Ther 2017; 19:5-14. [DOI: 10.1016/j.pdpdt.2017.04.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/21/2017] [Accepted: 04/03/2017] [Indexed: 12/29/2022]
|
12
|
Ahmad K, Gogoi SK, Begum R, Sk MP, Paul A, Chattopadhyay A. An Interactive Quantum Dot and Carbon Dot Conjugate for pH-Sensitive and Ratiometric Cu2+Sensing. Chemphyschem 2017; 18:610-616. [DOI: 10.1002/cphc.201601249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/02/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Kafeel Ahmad
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| | | | - Raihana Begum
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| | - Md Palashuddin Sk
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| | - Anumita Paul
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| | - Arun Chattopadhyay
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
- Centre for Nanotechnology; Indian Institute of Technology Guwahati; Guwahati 781039 Assam India
| |
Collapse
|
13
|
Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.02.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|