1
|
Zhang D, Jia D, Fang Z, Min H, Xu X, Li Y. The Detection of Anthrax Biomarker DPA by Ratiometric Fluorescence Probe of Carbon Quantum Dots and Europium Hybrid Material Based on Poly(ionic)- Liquid. Molecules 2023; 28:6557. [PMID: 37764333 PMCID: PMC10537030 DOI: 10.3390/molecules28186557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Bacillus anthracis has gained international attention as a deadly bacterium and a potentially deadly biological warfare agent. Dipicolinic acid (DPA) is the main component of the protective layer of anthracis spores, and is also an anthrax biomarker. Therefore, it is of great significance to explore an efficient and sensitive DPA detection method. Herein, a novel ratio hybrid probe (CQDs-PIL-Eu3+) was prepared by a simple one-step hydrothermal method using carbon quantum dots (CQDs) as an internal reference fluorescence and a covalent bond between CQDs and Eu3+ by using a polyionic liquid (PIL) as a bridge molecule. The ratiometric fluorescence probe was found to have the characteristics of sensitive fluorescence visual sensing in detecting DPA. The structure and the sensing properties of CQDs-PIL-Eu3+ were investigated in detail. In particular, the fluorescence intensity ratio of Eu3+ to CQDs (I616/I440) was linear with the concentration of DPA in the range of 0-50 μM, so the detection limit of the probe was as low as 32 nm, which was far lower than the DPA dose released by the number of anthrax spores in human body (60 μM) and, thus, can achieve sensitive detection. Therefore, the ratiometric fluorescence probe in this work has the characteristics of strong anti-interference, visual sensing, and high sensitivity, which provides a very promising scheme for the realization of anthrax biomarker DPA detection.
Collapse
Affiliation(s)
- Dongliang Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| | - Dongsheng Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| | - Zhou Fang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| | - Hua Min
- Technology Transfer Center, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Xiaoyi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| | - Ying Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (D.Z.); (D.J.); (Z.F.); (X.X.)
| |
Collapse
|
2
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
3
|
Graphene quantum dots: synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim Acta 2022; 189:258. [PMID: 35701638 DOI: 10.1007/s00604-022-05353-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
GQDs exhibits exceptional electrochemical activity owing to their active edge sites that make them very attractive for biosensing applications. However, their use in the design of new biosensing devices for application to the detection and quantification of toxins, pathogens, and clinical biomarkers has so far not investigated in detail. In this regard, herein we provide a detailed review on various methodologies employed for the synthesis of GQDs, including bottom-up and top-down approaches, with a special focus on their applications in biosensing via fluorescence, photoluminescence, chemiluminescence, electrochemiluminescence, fluorescence resonance energy transfer, and electrochemical techniques. We believe that this review will shed light on the critical issues and widen the applications of GQDs for the design of biosensors with improved analytical response for future applications. HIGHLIGHTS: • Properties of GQDs play a critical role in biosensing applications. • Synthesis of GQDs using top-down and bottom-up approaches is discussed comprehensively. • Overview of advancements in GQD-based sensors over the last decade. • Methods for the design of selective and sensitive GQD-based sensors. • Challenges and opportunities for future GQD-based sensors.
Collapse
|
4
|
Alp M, Pamuk Algi M, Algi F. Eu(III)-DO3A and BODIPY dyad as a chemosensor for anthrax biomarker. LUMINESCENCE 2021; 36:1953-1960. [PMID: 34337847 DOI: 10.1002/bio.4129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022]
Abstract
The sensitive and selective determination of Bacillus anthracis spores before the infection is vital for human health and safety. Dipicolinic acid (DPA) is an excellent biomarker due to its presence in the nucleus of bacterial spores at high concentrations (up to 1 M, about 15% dry weight). In the present work, a new molecular chemosensor 1, based on europium(III)-DO3A and BODIPY dyad, is developed to detect DPA in phosphate-buffered saline (PBS) buffered solution and tap water samples. Also, 1 can be used as a ratiometric optical chemosensor to track DPA.
Collapse
Affiliation(s)
- Meltem Alp
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Laboratory, Aksaray University, Aksaray, Turkey
| | - Melek Pamuk Algi
- Department of Chemistry & ASUBTAM Memduh Bilmez BioNanoTech Laboratory, Aksaray University, Aksaray, Turkey
| | - Fatih Algi
- Department of Biotechnology & ASUBTAM Memduh Bilmez BioNanoTech Laboratory, Aksaray University, Aksaray, Turkey
| |
Collapse
|
5
|
Guo J, Liu A, Zeng Y, Cai H, Ye S, Li H, Yan W, Zhou F, Song J, Qu J. Noval Dual-Emission Fluorescence Carbon Dots as a Ratiometric Probe for Cu 2+ and ClO - Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1232. [PMID: 34067118 PMCID: PMC8150300 DOI: 10.3390/nano11051232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
The use of carbon dots (CDs) with dual emission based on ratiometric fluorescence has been attracting attention in recent times for more accurate ion detection since they help avoid interference from background noise, probe concentration, and complexity. Herein, novel dual-emission nitrogen-doped CDs (NCDs) were prepared by a simple method for Cu2+ and ClO- detection. The NCDs showed excellent anti-interference ability and selectivity for different emissions. In addition, a good linear relationship was observed between the fluorescence intensity (FI) of the NCD solutions in different emissions with Cu2+ (0-90 μM) and ClO- (0-75 μM). The limits of both Cu2+ detection and ClO- were very low, at 17.7 and 11.6 nM, respectively. The NCDs developed herein also showed a good recovery rate in water for Cu2+ and ClO- detection. Hence, they are expected to have a more extensive application prospect in real samples.
Collapse
Affiliation(s)
- Jiaqing Guo
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Aikun Liu
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Yutian Zeng
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Haojie Cai
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Shuai Ye
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Hao Li
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Wei Yan
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Feifan Zhou
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems, Center for Biomedical Optics and Photonics (CBOP), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (J.G.); (A.L.); (Y.Z.); (H.C.); (W.Y.); (F.Z.); (J.S.); (J.Q.)
- Moscow Engineering Physics Institute, National Research Nuclear University, MEPhI, 115409 Moscow, Russia
| |
Collapse
|
6
|
Ratiometric fluorescence detection of anthrax biomarker based on terbium (III) functionalized graphitic carbon nitride nanosheets. Talanta 2021; 230:122311. [PMID: 33934776 DOI: 10.1016/j.talanta.2021.122311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/20/2023]
Abstract
Detection of anthrax biomarker dipicolinic acid (DPA) is of great importance upon the crisis of bioterrorism. Development of fluorescent materials for DPA detection, particularly one that fully depends on single luminescent response, faces the challenge of being susceptible to interferences. The accompanying accuracy problems offer great opportunities for the establishment of more reliable ratiometric analysis method. Herein, a ratiometric fluorescent probe based on terbium functionalized graphitic carbon nitride nanosheets (Tb-g-C3N4NS) is attempted for quantitative detection of DPA to address the distinct function of g-C3N4NS as both carrier and reference fluorophore, which is a so-far unexplored option in fluorescent detection approaches. We achieve the incorporation of Tb3+ into framework of g-C3N4NS by using a simple synthetic strategy comprised of thermal pyrolysis and ultrasonic exfoliation. Combining the reference signal over g-C3N4NS at 440 nm (I440) with the response signal of Tb3+ at 546 nm (I546), concentration of DPA can be easily calculated via its linear correlation with the intensity ratio (I546/I440), giving a precise measurement towards DPA with a detection limit as low as 9.9 nM. Besides enabling an excellent self-calibrating detection of DPA, this work also inspires broader use of g-C3N4NS for relevant process.
Collapse
|
7
|
Zhou Q, Fang Y, Li J, Hong D, Zhu P, Chen S, Tan K. A design strategy of dual-ratiomentric optical probe based on europium-doped carbon dots for colorimetric and fluorescent visual detection of anthrax biomarker. Talanta 2021; 222:121548. [DOI: 10.1016/j.talanta.2020.121548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
|
8
|
Wang ZX, Hu L, Gao YF, Kong FY, Li HY, Zhu J, Fang HL, Wang W. Aggregation-Induced Emission Behavior of Dual-NIR-Emissive Zinc-Doped Carbon Nanosheets for Ratiometric Anthrax Biomarker Detection. ACS APPLIED BIO MATERIALS 2020; 3:9031-9042. [DOI: 10.1021/acsabm.0c01260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Yuan-Fei Gao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Jing Zhu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Hai-Lin Fang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China
| |
Collapse
|
9
|
Wang J, Li D, Qiu Y, Liu X, Huang L, Wen H, Hu J. An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta 2020; 220:121377. [DOI: 10.1016/j.talanta.2020.121377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
|
10
|
Deng J, Zhao S, Liu Y, Liu C, Sun J. Nanosensors for Diagnosis of Infectious Diseases. ACS APPLIED BIO MATERIALS 2020; 4:3863-3879. [DOI: 10.1021/acsabm.0c01247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Butler SM, Jolliffe KA. Molecular recognition and sensing of dicarboxylates and dicarboxylic acids. Org Biomol Chem 2020; 18:8236-8254. [PMID: 33001119 DOI: 10.1039/d0ob01761b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recognition and detection of dicarboxylic acids and dicarboxylates is of significance for a wide variety of applications, including medical diagnosis, monitoring of health and of environmental contaminants, and in industry. Hence small molecule receptors and sensors for dicarboxylic acids and dicarboxylates have great potential for applications in these fields. This review outlines the challenges faced in the recognition and detection of these species, strategies that have been used to obtain effective and observable interactions with dicarboxylic acids and dicarboxylates, and progress made in this field in the period from 2014 to 2020.
Collapse
Affiliation(s)
- Stephen M Butler
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW 2006, Australia. and The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Huang C, Ma R, Luo Y, Shi G, Deng J, Zhou T. Stimulus Response of TPE-TS@Eu/GMP ICPs: Toward Colorimetric Sensing of an Anthrax Biomarker with Double Ratiometric Fluorescence and Its Coffee Ring Test Kit for Point-of-Use Application. Anal Chem 2020; 92:12934-12942. [DOI: 10.1021/acs.analchem.0c01570] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chunyu Huang
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Ruixue Ma
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Yuxin Luo
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Guoyue Shi
- Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Institute of Eco-Chongming, 3663 Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
13
|
Toward Fluorimetric-Paired-Emitter-Detector-Diode test for Bacillus anthracis DNA based on graphene oxide. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Na M, Zhang S, Liu J, Ma S, Han Y, Wang Y, He Y, Chen H, Chen X. Determination of pathogenic bacteria-Bacillus anthrax spores in environmental samples by ratiometric fluorescence and test paper based on dual-emission fluorescent silicon nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121956. [PMID: 31884372 DOI: 10.1016/j.jhazmat.2019.121956] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Many lanthanide ions-based probes have been widely used for detecting anthrax spores biomarker-dipicolinic acid (DPA). However, little work has realized detection of bacillus anthrax spores in real environmental samples. In this work, a novel ratiometric fluorescent nanoprobe based on europium (Eu)-doped silicon nanoparticles (Eu@SiNPs) was fabricated for the first time by one-pot method without post-modification for determination of the DPA in bacillus subtilis spores (simulant bacillus anthrax spores). Based on Eu(III) in the Eu@SiNPs could be sensitized by DPA to emit intrinsic fluorescence and the fluorescence intensity of SiNPs in the Eu@SiNPs almost remained stable, a new ratiometric fluorescent method for determination of micro DPA in bacillus subtilis spores and bacillus subtilis spores in real environmental samples, such as Yellow river water, tap water and soil was established. Under the optimum conditions, the limit of detection (LOD) of the method toward bacillus subtilis spores was as low as 2.38×104 spore/mL. Simple, fast and visual DPA and bacillus subtilis spores determination was also achieved by the Eu@SiNPs-based test paper. Therefore, the newly established method was expected to be a powerful tool for efficiently determination of bacillus anthrax spores to avoid anthrax threats.
Collapse
Affiliation(s)
- Min Na
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Juanjuan Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Sudai Ma
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Yangxia Han
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Yong Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou 730000, China
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Xingguo Chen
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
15
|
Ren H, Wang X, Gong R, Li M, Zhu H, Zhang J, Duan E. Atomically dispersed Eu(III) sites in natural deep eutectic solvents based fluorescent probe efficient identification of Fe 3+ and Cu 2+ in wastewater. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117874. [PMID: 31813718 DOI: 10.1016/j.saa.2019.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal ions in wastewater have brought serious environmental pollution. To improve the detection efficiency, it is important to find useful fluorescent probes. The emerging green natural deep eutectic solvents (NADESs) offer attractive option for "green" detection for its good biocompatibility, easy preparation, and high sensitivity. In this study, a multi-functionalized fluorescent probe with atomically dispersed EuCl3·6H2O in amino acid-based NADESs (l-Glutamic acid/Glycerol, l-Glu/Gly) was synthesized by metal-ligand coordination interactions with a mass ratio of 15:1. Combined with the NADESs and rare earth metal, the l-Glu/Gly/EuCl3·6H2O could form the amino site and Eu2+ site fluorescent centers. Under the excitation wavelength of 370 nm, it had dual emission peaks at 425 nm and 470 nm with efficient resonance energy transfer. The stable optoelectronic properties of l-Glu/Gly/EuCl3·6H2O under external factors, such as mass ratio (13,1 to 18:1), temperature (30-50 °C), pH (1 to 14) and storage time ( >42 days), approved l-Glu/Gly/EuCl3·6H2O an excellent fluorescence probe. In the application of water-quality monitoring, Fe3+ and Cu2+ could react with l-Glu/Gly/EuCl3·6H2O in different reactive patterns. The blue fluorescence was quenched by Fe3+ and enhanced by Cu2+, thus metal ions could be distinguished with high sensitivity. The detective process was determined and the fluorescent mechanism was also proposed. l-Glu/Gly/EuCl3·6H2O fluorescent probe was demonstrated to be an efficient fluorescent probe for metal detection avoiding the hydrothermal process, and the cumbersome of ilter, dialysis, freeze drying.
Collapse
Affiliation(s)
- Hongwei Ren
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China
| | - Xue Wang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Ruiquan Gong
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Meiyu Li
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Hongyu Zhu
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China
| | - Jinfeng Zhang
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, PR China; Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, Hebei 050018, PR China.
| |
Collapse
|
16
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
17
|
|
18
|
Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7949037. [PMID: 33123683 PMCID: PMC7585038 DOI: 10.34133/2020/7949037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.
Collapse
Affiliation(s)
- Ruitao Liu
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Xiongying Ye
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
19
|
Hou L, Song Y, Xiao Y, Wu R, Wang L. Ratiometric fluorescence detection of dipicolinic acid based on Microporous Ln/melamine-terephthaladehyde schiff base networks complex. Talanta 2019; 209:120534. [PMID: 31892026 DOI: 10.1016/j.talanta.2019.120534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/14/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
Lanthanide-based fluorescence sensor in the detection of major Anthrax biomarker dipicolinic acid (DPA) is attracting wide attention. In this work, we proposed a new strategy for ratiometric fluorescence detection of DPA based on microporous Ln/melamine-terephthaladehyde Schiff base networks (Ln/MTSNW) complex for the first time. The microporous MTSNW was prepared by amine-aldehyde condensation between melamine and terephthaladehyde and presented lamellar and octahedral structure. Lanthanide ions, Eu3+ or Tb3+ were coordinated with N atoms of MTSNW to form Ln/MTSNW complex. The microporous Ln/MTSNW complex not only provided large surface area to improve the sensitivity of DPA detection, but also constructed ratiometric fluorescence sensors to eliminate environmental effects and instrument fluctuation. DPA was a highly efficient antenna molecule for Eu3+ and Tb3+ and transferred the energy to Eu3+ or Tb3+ to sensitize their fluorescence. The Ln/MTSNW complex were uniformly and stably dispersed in aqueous solution for DPA detection with a linear range from 15 nM to 7 μM and low detection limit of 5.2 nM for Eu/MTSNW and a linear range from 4 nM to 2.5 μM and low detection limit of 1.4 nM for Tb/MTSNW. Due to the simple preparation of Ln/MTSNW complex and low technical requirement, the ratiometric fluorescence DPA sensor based on Ln/MTSNW complex might show great potential in practical applications.
Collapse
Affiliation(s)
- Linli Hou
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China; Jiangxi Ji'an Hydrology Bureau, 3 Bamboo Lane Road, Ji'an, 343100, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China
| | - Yingjie Xiao
- Jiangxi Ji'an Hydrology Bureau, 3 Bamboo Lane Road, Ji'an, 343100, China
| | - Rong Wu
- Jiangxi Ji'an Hydrology Bureau, 3 Bamboo Lane Road, Ji'an, 343100, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022, China.
| |
Collapse
|
20
|
Luo Y, Zhang L, Zhang L, Yu B, Wang Y, Zhang W. Multiporous Terbium Phosphonate Coordination Polymer Microspheres as Fluorescent Probes for Trace Anthrax Biomarker Detection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15998-16005. [PMID: 30951283 DOI: 10.1021/acsami.9b01123] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lanthanide coordination polymers have been recently regarded as attractive sensing materials because of their selectivity, high sensitivity, and rapid response ability. In this research, the multiporous terbium phosphonate coordination polymer microspheres (TbP-CPs) were prepared as a novel fluorescent probe, which showed a fluorescence turn-on response capability for the detection of the trace anthrax biomarker dipicolinate acid (DPA). The morphology and chemical composition of as-prepared TbP-CPs were characterized in detail. The TbP-CPs have the vegetable-flower-like structure and microporous surface. In addition, the as-prepared TbP-CPs not only possess the merits of convenience and simple preparation with high yield but also have the excellent characters as fluorescent probes, such as high stability, good selectivity, and rapid detection ability within 30 s. This proposed sensor could detect DPA with a linear relationship in concentrations ranging from 0 to 8.0 μM and a high detection sensitivity of 5.0 nM. Furthermore, the successful applications of DPA detection in urine and bovine serum were demonstrated. As a result, the recovery ranged from 93.93-101.6%, and the relative standard deviations (RSD) were less than 5%.
Collapse
Affiliation(s)
- Yongquan Luo
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yajie Wang
- Department of Pharmacy , Anhui Medical College , Hefei 230601 , China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
21
|
Wang J, Zheng Y, Teng Q, Wu D. Facile Synthesis of Functional Graphene Quantum Dots and Their Application to Cu(II) Ion Sensing. CHEM LETT 2019. [DOI: 10.1246/cl.180967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jingwei Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yongji Zheng
- Hangzhou Unitest Technology Co., Ltd., Hangzhou 310000, P. R. China
| | - Qiaoqiao Teng
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Datong Wu
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
22
|
Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180280] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopalan Sai-Anand
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Arumugam Sivanesan
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Metrohm Australia, 56 Buffalo Road, Gladesville, NSW 2111, Australia
| | - Mercy R Benzigar
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Anantha-Iyengar Gopalan
- Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Korea
| | - Arun Vijay Baskar
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hamid Ilbeygi
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Venkata Kambala
- Hudson Marketing Pty Ltd, Level 2/131 Macquarie St, Sydney NSW 2000, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
24
|
Xu J, Shen X, Jia L, Ge Z, Zhou D, Yang Y, Ma T, Luo Y, Zhu T. GdPO 4-Based Nanoprobe for Bioimaging and Selective Recognition of Dipicolinic Acid and Cysteine by a Sensing Ensemble Approach. ACS Biomater Sci Eng 2019; 5:996-1004. [PMID: 33405790 DOI: 10.1021/acsbiomaterials.8b01126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple functions incorporated in one single-component nanoplatform pave the way for important biomedicine applications. Herein, a multifunctional terbium-doped gadolinium orthophosphate (GdPO4:Tb-EDTA) nanoplatform was prepared through a simple, ecofriendly, one-step hydrothermal method. Results showed that dipicolinic acid (DPA), the biomarker of bacterial spores, significantly increased the fluorescence intensity of this nanoplatform and conferred it with rapid response and excellent selectivity. Subsequently, the fluorescence of the ensemble GdPO4:Tb-EDTA-DPA can be remarkably quenched by Cu2+, which led to a rewritable nanosensor used in the detection of cysteine (Cys) with excellent sensitivity. In addition, GdPO4:Tb-EDTA can also be a potential T1-weighted magnetic resonance imaging (MRI) contrast agent, which indicated a satisfactory in vitro MRI with r1 relaxivity values of 13.9 mM-1 s-1 and in vivo MRI through intravenous administration on a rat model. Overall, the proposed assay may have great theoretical and practical significance for designing multifunctional biomaterials.
Collapse
Affiliation(s)
- Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001, Shiji Road, Jiaozuo 454000, P. R. China
| | - Xiaoke Shen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001, Shiji Road, Jiaozuo 454000, P. R. China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001, Shiji Road, Jiaozuo 454000, P. R. China
| | - Zhijun Ge
- The Affiliated Yixing Hospital of Jiangsu University, No. 75, Tongzhenguan Road, Yixing 214200, P. R. China
| | - Dong Zhou
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Road, Guangzhou 510080, P. R. China
| | - Yong Yang
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, No. 106, Zhongshan Road, Guangzhou 510080, P. R. China
| | - Tieliang Ma
- The Affiliated Yixing Hospital of Jiangsu University, No. 75, Tongzhenguan Road, Yixing 214200, P. R. China
| | - Yifeng Luo
- The Affiliated Yixing Hospital of Jiangsu University, No. 75, Tongzhenguan Road, Yixing 214200, P. R. China
| | - Taofeng Zhu
- The Affiliated Yixing Hospital of Jiangsu University, No. 75, Tongzhenguan Road, Yixing 214200, P. R. China
| |
Collapse
|
25
|
Xu J, Shen XK, Jia L, Cao JL, Wang Y, Zhao XL, Bi N, Guo SL, Ma TY. A lanthanide-based magnetic nanosensor as an erasable and visible platform for multi-color point-of-care detection of multiple targets and the potential application by smartphone. J Mater Chem B 2019; 7:734-743. [DOI: 10.1039/c8tb02791a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A magnetic Fe3O4@CePO4:Tb-EDTA-Eu nanosensor as an erasable and visible platform for the multi-color detection of multiple targets was designed.
Collapse
Affiliation(s)
- Jun Xu
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Xiao-Ke Shen
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Lei Jia
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Jian-Liang Cao
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Yan Wang
- School of Safety Science and Engineering
- State Key Laboratory Cultivation Base for Gas Geology and Gas Control
- Henan Polytechnic University
- Jiaozuo 454000
- China
| | - Xiao-Lei Zhao
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Ning Bi
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Sheng-Li Guo
- College of Chemistry and Chemical Engineering
- Henan Polytechnic University
- Jiaozuo
- China
| | - Tian-Yi Ma
- Discipline of Chemistry
- University of Newcastle
- Newcastle
- Australia
| |
Collapse
|
26
|
Granger JH, Porter MD. The Case for Human Serum as a Highly Preferable Sample Matrix for Detection of Anthrax Toxins. ACS Sens 2018; 3:2303-2310. [PMID: 30350950 DOI: 10.1021/acssensors.8b00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper describes preliminary results on the surprising impact of human serum as a sample matrix on the detectability of protective antigen (PA) and lethal factor (LF), two antigenic protein markers of Bacillus anthracis, in a heterogeneous immunometric assay. Two sample matrices were examined: human serum and physiological buffer. Human serum is used as a specimen in the diagnostic testing of potentially infected individuals. Physiological buffers are often applied to the recovery of biomarkers dispersed in suspicious white powders and other suspect specimens and as a serum diluent to combat contributions to the measured test response from nonspecific adsorption. The results of these experiments using a sandwich immunoassay read out by surface-enhanced Raman scattering yielded estimates for the limit of detection (LOD) for both markers when using spiked human serum that were remarkably lower than those of spiked physiological buffer (∼70,000× for PA and ∼25,000× for LF). The difference in LODs is attributed to a degradation in the effectiveness of the capture and/or labeling steps in the immunoassay due to the known propensity for both proteins to denature in buffer. These findings indicate that the use of physiological buffer for serum dilution or recovery from a powdered matrix is counter to the low-level detection of these two antigenic proteins. The potential implications of these results with respect to the ability to detect markers of other pathogenic agents are briefly discussed.
Collapse
|
27
|
Verma M, Kaur N, Singh N. Naphthalimide-Based DNA-Coupled Hybrid Assembly for Sensing Dipicolinic Acid: A Biomarker for Bacillus anthracis Spores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6591-6600. [PMID: 29787278 DOI: 10.1021/acs.langmuir.8b00340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We have designed and synthesized a novel, water-soluble naphthalimide-histidine receptor (1) with excellent fluorescent properties. Functioning of the synthesized receptor was performed through developing their DNA-receptor hybrid assembly (DRHA), which has shown significant changes in the emission profile upon interactions with dipicolinic acid (DPA), a biomarker for Bacillus anthracis spores. DRHA showed fluorescence enhancement upon binding with DPA with the characteristic of internal charge transfer. It is notable that this assembly exhibited a significant limit of detection (12 nM) toward DPA. The mechanism of sensing was fully defined using ethidium bromide (EtBr) interaction studies as well as Fourier transform infrared spectroscopic analysis, which describes the binding mode of DRHA with DPA. This assembly selectively interacts with DPA over other anions, common cellular cations, and aromatic acids in aqueous media.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar , Punjab , India
| | - Navneet Kaur
- Department of Chemistry , Panjab University , Chandigarh 160014 , India
| | - Narinder Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar , Punjab , India
| |
Collapse
|
28
|
Gao N, Zhang Y, Huang P, Xiang Z, Wu FY, Mao L. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores. Anal Chem 2018; 90:7004-7011. [DOI: 10.1021/acs.analchem.8b01365] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nan Gao
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yunfang Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Pengcheng Huang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zhehao Xiang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Performance Characterization of Two-Dimensional Paper Chromatography-based Biosensors for Biodefense, Exemplified by Detection of Bacillus anthracis Spores. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-017-2108-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Rong M, Deng X, Chi S, Huang L, Zhou Y, Shen Y, Chen X. Ratiometric fluorometric determination of the anthrax biomarker 2,6-dipicolinic acid by using europium(III)-doped carbon dots in a test stripe. Mikrochim Acta 2018; 185:201. [DOI: 10.1007/s00604-018-2741-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
|
31
|
Zhang D, Zhou Y, Cuan J, Gan N. A lanthanide functionalized MOF hybrid for ratiometric luminescence detection of an anthrax biomarker. CrystEngComm 2018. [DOI: 10.1039/c7ce01994g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A dual-emitting hybrid platform based on a lanthanide functionalized MOF was demonstrated as a fluorescent indicator for ratiometric detection of an anthrax biomarker—dipicolinic acid (DPA).
Collapse
Affiliation(s)
- Denan Zhang
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - You Zhou
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Jing Cuan
- Institute for Superconducting & Electronic Materials
- School of Mechanical, Materials and Mechatronics Engineering
- University of Wollongong
- Wollongong
- Australia
| | - Ning Gan
- Faculty of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- China
| |
Collapse
|
32
|
Donmez M, Oktem HA, Yilmaz MD. Ratiometric fluorescence detection of an anthrax biomarker with Eu3+-chelated chitosan biopolymers. Carbohydr Polym 2018; 180:226-230. [DOI: 10.1016/j.carbpol.2017.10.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023]
|
33
|
Fateixa S, Carvalho RS, Daniel‐da‐Silva AL, Nogueira HIS, Trindade T. Luminescent Carrageenan Hydrogels Containing Lanthanopolyoxometalates. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sara Fateixa
- Department of Chemistry‐CICECO University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Rui S. Carvalho
- Department of Chemistry‐CICECO University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Ana L. Daniel‐da‐Silva
- Department of Chemistry‐CICECO University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Helena I. S. Nogueira
- Department of Chemistry‐CICECO University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| | - Tito Trindade
- Department of Chemistry‐CICECO University of Aveiro Campus Universitário de Santiago 3810‐193 Aveiro Portugal
| |
Collapse
|
34
|
Teradal NL, Jelinek R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv Healthc Mater 2017; 6. [PMID: 28777502 DOI: 10.1002/adhm.201700574] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/12/2017] [Indexed: 12/31/2022]
Abstract
The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential.
Collapse
Affiliation(s)
- Nagappa L. Teradal
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanotechnology; Ben Gurion University of the Negev; Beer Sheva 84105 Israel
| |
Collapse
|
35
|
Cai K, Zeng M, Liu F, Liu N, Huang Z, Song Y, Wang L. BSA-AuNPs@Tb-AMP metal-organic frameworks for ratiometric fluorescence detection of DPA and Hg 2. LUMINESCENCE 2017; 32:1277-1282. [PMID: 28569414 DOI: 10.1002/bio.3321] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/11/2022]
Abstract
An easy and effective strategy for synthesizing a ratiometric fluorescent nanosensor has been demonstrated in this work. Novel fluorescent BSA-AuNPs@Tb-AMP (BSA, bovine serum albumin; AMP, adenosine 5'-monophosphate; AuNPs, Au nanoparticles) metal-organic framework (MOF) nanostructures were synthesized by encapsulating BSA-AuNPs into Tb-AMP MOFs for the detection of 2,6-pyridinedicarboxylic acid (DPA) and Hg2+ . DPA could strongly co-ordinate with Tb3+ to replace water molecules from the Tb3+ center and accordingly enhanced the fluorescence of Tb-AMP MOFs. The fluorescence of BSA-AuNPs at 405 nm remained constant. While the fluorescence of BSA-AuNPs at 635 nm was quenched after Hg2+ was added, the fluorescence of Tb-AMP MOFs remained constant. Accordingly, a ratiometric fluorescence nanosensor was constructed for detection of DPA and Hg2+ . The ratiometric nanosensor exhibited good selectivity to DPA over other substances. The F545 /F405 linearly increased with increase of DPA concentration in the range of 50 nM to 10 μM with a detection limit as low as 17.4 nM. F635 /F405 increased linearly with increase of Hg2+ concentration ranging from 50 nM to 1 μM with a detection limit as low as 20.9 nM. Additionally, the nanosensor could be successfully applied for the determination of DPA and Hg2+ in running water.
Collapse
Affiliation(s)
- Keying Cai
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Mulan Zeng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Fenfen Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Nan Liu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Zhenzhong Huang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Yonghai Song
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Li Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
36
|
Seo H, Singha S, Ahn KH. Ratiometric Fluorescence Detection of Anthrax Biomarker with EuIII
-EDTA Functionalized Mixed Poly(diacetylene) Liposomes. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hyewon Seo
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Republic of Korea
| | - Subhankar Singha
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry; Pohang University of Science and Technology (POSTECH); 77 Cheongam-Ro, Nam-Gu Pohang 37673 Republic of Korea
| |
Collapse
|
37
|
Liu G, Zhang K, Ma K, Care A, Hutchinson MR, Goldys EM. Graphene quantum dot based "switch-on" nanosensors for intracellular cytokine monitoring. NANOSCALE 2017; 9:4934-4943. [PMID: 28368062 DOI: 10.1039/c6nr09381g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The detection of cytokines in body fluids, cells, tissues and organisms continues to attract considerable attention due to the importance of these key cell signalling molecules in biology and medicine. We report a graphene quantum dot (GQD) based aptasensor able to specifically detect ultra-small amounts of cytokine molecules intracellularly. Graphene quantum dots modified with cytokine aptamers (Ap-GQDs) and epitope modified GQDs (Ep-GQDs) were prepared; both are normally fluorescent at sufficient dilution. However, the fluorescence of the conjugates of Ap-GQDs and Ep-GQDs is quenched due to aggregation between Ap-GQDs and Ep-GQDs. After incubation of the cytokine-secreting cells with the conjugates of Ap-GQDs and Ep-GQDs, the cytokines secreted in cells compete for binding with the epitope which is then displaced. The ensuing binding of cytokines with the aptamers results in the disaggregation of Ap-GQDs and Ep-GQDs, and the recovery of fluorescence. The conjugates of Ap-GQDs and Ep-GQDs were used as nanosensors for monitoring intracellular cytokine IFN-γ secretion with very high sensitivity (2 pg mL-1). The disaggregation based sensing strategy in this nanosensor design is simple and universal; similar nanosensors can be used for the detection of a broad spectrum of cell-secreted molecules. Such nanosensors will serve as potential biomaterials for in vivo devices to monitor a variety of biological phenomena, in particular to understand cytokine secretion pathways in live cells.
Collapse
Affiliation(s)
- Guozhen Liu
- ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Macquarie University, North Ryde 2109, Australia.
| | | | | | | | | | | |
Collapse
|
38
|
Liu J, Zhang F, Liu F, Liu H, Zhang J, Guo S. Sorting Graphene Quantum Dots by Using Aluminum Ions. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingyuan Liu
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 200237 Shanghai P.R. China
| | - Fangwei Zhang
- Department of Electronic Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University 200240 Shanghai P.R. China
| | - Fei Liu
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 200237 Shanghai P.R. China
| | - Hui Liu
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 200237 Shanghai P.R. China
| | - Jingyan Zhang
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of New Drug Design School of Pharmacy East China University of Science and Technology 200237 Shanghai P.R. China
| | - Shouwu Guo
- Department of Electronic Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University 200240 Shanghai P.R. China
| |
Collapse
|
39
|
Cheng C, Li S, Thomas A, Kotov NA, Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem Rev 2017; 117:1826-1914. [PMID: 28075573 DOI: 10.1021/acs.chemrev.6b00520] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Functional graphene nanomaterials (FGNs) are fast emerging materials with extremely unique physical and chemical properties and physiological ability to interfere and/or interact with bioorganisms; as a result, FGNs present manifold possibilities for diverse biological applications. Beyond their use in drug/gene delivery, phototherapy, and bioimaging, recent studies have revealed that FGNs can significantly promote interfacial biointeractions, in particular, with proteins, mammalian cells/stem cells, and microbials. FGNs can adsorb and concentrate nutrition factors including proteins from physiological media. This accelerates the formation of extracellular matrix, which eventually promotes cell colonization by providing a more beneficial microenvironment for cell adhesion and growth. Furthermore, FGNs can also interact with cocultured cells by physical or chemical stimulation, which significantly mediate their cellular signaling and biological performance. In this review, we elucidate FGNs-bioorganism interactions and summarize recent advancements on designing FGN-based two-dimensional and three-dimensional architectures as multifunctional biological platforms. We have also discussed the representative biological applications regarding these FGN-based bioactive architectures. Furthermore, the future perspectives and emerging challenges will also be highlighted. Due to the lack of comprehensive reviews in this emerging field, this review may catch great interest and inspire many new opportunities across a broad range of disciplines.
Collapse
Affiliation(s)
- Chong Cheng
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| | - Shuang Li
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Arne Thomas
- Department of Chemistry, Functional Materials, Technische Universität Berlin , Hardenbergstraße 40, 10623 Berlin, Germany
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
40
|
Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection. Biosens Bioelectron 2017; 87:991-997. [DOI: 10.1016/j.bios.2016.09.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/08/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023]
|
41
|
Tuteja SK, Chen R, Kukkar M, Song CK, Mutreja R, Singh S, Paul AK, Lee H, Kim KH, Deep A, Suri CR. A label-free electrochemical immunosensor for the detection of cardiac marker using graphene quantum dots (GQDs). Biosens Bioelectron 2016; 86:548-556. [DOI: 10.1016/j.bios.2016.07.052] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
42
|
Bhardwaj N, Bhardwaj S, Mehta J, Kim KH, Deep A. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. Biosens Bioelectron 2016; 86:799-804. [DOI: 10.1016/j.bios.2016.07.063] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022]
|
43
|
Liu Y, Zhou S, Fan L, Fan H. Synthesis of red fluorescent graphene quantum dot-europium complex composites as a viable bioimaging platform. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1909-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|