1
|
Walker AR, Sloneker JR, Garno JC. Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. Biointerphases 2024; 19:050801. [PMID: 39269167 DOI: 10.1116/6.0003789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular matrix (ECM) proteins provide anchorage and structural strength to cells and tissues in the body and, thus, are fundamental molecular components for processes of cell proliferation, growth, and function. Atomic force microscopy (AFM) has increasingly become a valuable approach for studying biological molecules such as ECM proteins at the level of individual molecules. Operational modes of AFM can be used to acquire the measurements of the physical, electronic, and mechanical properties of samples, as well as for viewing the intricate details of the surface chemistry of samples. Investigations of the morphology and properties of biomolecules at the nanoscale can be useful for understanding the interactions between ECM proteins and biological molecules such as cells, DNA, and other proteins. Methods for preparing protein samples for AFM studies require only basic steps, such as the immersion of a substrate in a dilute solution or protein, or the deposition of liquid droplets of protein suspensions on a flat, clean surface. Protocols of nanolithography have been used to define the arrangement of proteins for AFM studies. Using AFM, mechanical and force measurements with tips that are coated with ECM proteins can be captured in ambient or aqueous environments. In this review, representative examples of AFM studies are described for molecular-level investigations of the structure, surface assembly, protein-cell interactions, and mechanical properties of ECM proteins (collagen, elastin, fibronectin, and laminin). Methods used for sample preparation as well as characterization with modes of AFM will be discussed.
Collapse
Affiliation(s)
- Ashley R Walker
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| | - Jonathan R Sloneker
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| | - Jayne C Garno
- Chemistry Department, Louisiana State University, 232 Choppin Hall, Baton Rouge, Los Angeles 70803
| |
Collapse
|
2
|
Setiawati A, Jeong S, Brillian AI, Lee SH, Shim JG, Jung KH, Shin K. Fabrication of a Tailored, Hybrid Extracellular Matrix Composite. Macromol Biosci 2022; 22:e2200106. [PMID: 35765216 DOI: 10.1002/mabi.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/24/2022] [Indexed: 11/10/2022]
Abstract
The extracellular matrix (ECM) is a network of connective fibers that supports cells living in their surroundings. Native ECM, generated by the secretory products of each tissue's resident cells, has a unique architecture with different protein composition depending on the tissue. Therefore, it is very difficult to artificially design in vivo architecture in tissue engineering. In this study, we fabricated a hybrid ECM scaffold from the basic structure of fibroblast-derived cellular ECMs by adding major ECM components of fibronectin (FN) and collagen (COL I) externally. It was confirmed that while maintaining the basic structure of the native ECM, major protein components can be regulated. Then, decellularization was performed to prepare hybrid ECM scaffolds with various protein compositions and we demonstrated that a liver-mimicking fibronectin (FN)-rich hybrid ECM promoted successful settling of H4IIE rat hepatoma cells. We believe that our method holds promise for the fabrication of scaffolds that provide a tailored cellular microenvironment for specific organs and serve as novel pathways for the replacement or regeneration of specific organ tissues. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea.,Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea.,Faculty of Pharmacy, Paingan, Maguwoharjo, Depok, Sanata Dharma University, Sleman, Yogyakarta, 55284, Indonesia
| | - Sungwoo Jeong
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Albertus Ivan Brillian
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Sang Ho Lee
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jin-Gon Shim
- Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Life Science, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces, 35-Baekbeom-ro, Sogang University, Mapo-gu, Seoul, 04107, Republic of Korea
| |
Collapse
|
3
|
O'Neill Moore S, Grubb TJ, Kothapalli CR. Insights into the biophysical forces between proteins involved in elastic fiber assembly. J Mater Chem B 2020; 8:9239-9250. [PMID: 32966543 DOI: 10.1039/d0tb01591a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Elastogenesis is a complex process beginning with transcription, translation, and extracellular release of precursor proteins leading to crosslinking, deposition, and assembly of ubiquitous elastic fibers. While the biochemical pathways by which elastic fibers are assembled are known, the biophysical forces mediating the interactions between the constituent proteins are unknown. Using atomic force microscopy, we quantified the adhesive forces among the elastic fiber components, primarily between tropoelastin, elastin binding protein (EBP), fibrillin-1, fibulin-5, and lysyl oxidase-like 2 (LOXL2). The adhesive forces between tropoelastin and other tissue-derived proteins such as insoluble elastin, laminin, and type I collagens were also assessed. The adhesive forces between tropoelastin and laminin were strong (1767 ± 126 pN; p < 10-5vs. all others), followed by forces (≥200 pN) between tropoelastin and human collagen, mature elastin, or tropoelastin. The adhesive forces between tropoelastin and rat collagen, EBP, fibrillin-1, fibulin-5, and LOXL2 coated on fibrillin-1 were in the range of 100-200 pN. The forces between tropoelastin and LOXL2, LOXL2 and fibrillin-1, LOXL2 and fibulin-5, and fibrillin-1 and fibulin-5 were less than 100 pN. Introducing LOXL2 decreased the adhesive forces between the tropoelastin monomers by ∼100 pN. The retraction phase of force-deflection curves was fitted to the worm-like chain model to calculate the rigidity and flexibility of these proteins as they unfolded. The results provided insights into how each constituent's stretching under deformation contributes to structural and mechanical characteristics of these fibers and to elastic fiber assembly.
Collapse
Affiliation(s)
- Sean O'Neill Moore
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| | - Tyler Jacob Grubb
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| | - Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, FH 460, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.
| |
Collapse
|
4
|
Szymanski JM, Zhang K, Feinberg AW. Measuring the Poisson's Ratio of Fibronectin Using Engineered Nanofibers. Sci Rep 2017; 7:13413. [PMID: 29042643 PMCID: PMC5645409 DOI: 10.1038/s41598-017-13866-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/03/2017] [Indexed: 11/22/2022] Open
Abstract
The extracellular matrix (ECM) is a fibrillar protein-based network, the physical and chemical properties of which can influence a multitude of cellular processes. Despite having an important role in cell and tissue signaling, a complete chemo-mechanical characterization of ECM proteins such as fibronectin (FN) is lacking. In this study, we engineered monodisperse FN nanofibers using a surface-initiated assembly technique in order to provide new insight into the elastic behavior of this material over large deformations. FN nanofibers were patterned on surfaces in a pre-stressed state and when released from the surface underwent rapid contraction. We found that the FN nanofibers underwent 3.3-fold and 9-fold changes in length and width, respectively, and that the nanofiber volume was conserved. Volume was also conserved following uniaxial extension of the FN nanofibers of ~2-fold relative to the patterned state. This data suggests that the FN networks we engineered formed an incompressible material with a Poisson’s ratio of ~0.5. While the Poisson’s ratio of cells and other biological materials are widely estimated as 0.5, our experimental results demonstrate that for FN networks this is a reasonable approximation.
Collapse
Affiliation(s)
- John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Kairui Zhang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA. .,Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Szymanski JM, Sevcik EN, Zhang K, Feinberg AW. Stretch-dependent changes in molecular conformation in fibronectin nanofibers. Biomater Sci 2017; 5:1629-1639. [PMID: 28612067 PMCID: PMC5549851 DOI: 10.1039/c7bm00370f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fibronectin (FN) is an extracellular matrix (ECM) glycoprotein that plays an important role in a wide range of biological processes including embryonic development, wound healing, and fibrosis. Recent evidence has demonstrated that FN is mechanosensitive, where the application of force induces conformational changes within the FN molecule to expose otherwise cryptic binding domains. However, it has proven technically challenging to dynamically monitor how the nanostructure of FN fibers changes as a result of force-induced extension, due in part to the inherent complexity of FN networks within tissue and cell-generated extracellular matrix (ECM). This has limited our understanding of FN matrix mechanobiology and the complex bi-directional signaling between cells and the ECM, and de novo FN fiber fabrication strategies have only partially addressed this. Towards addressing this need, we have developed a modified surface-initiated assembly (SIA) technique to engineer FN nanofibers that we can uniaxially stretch to >7-fold extensions and subsequently immobilize them in the stretched state for high resolution atomic force microscopy (AFM) imaging. Using this approach, we analyzed how the nanostructure of FN molecules within the nanofibers changed with stretch. In fully contracted FN nanofibers, we observed large, densely packed, isotropically-oriented nodules. With intermediate extension, uniaxially-aligned fibrillar regions developed and nodules became progressively smaller. At high extension, the nanostructure consisted of highly aligned fibrils with small nodules in a beads-on-a-string arrangement. In summary, we have established a methodology to uniaxially stretch FN fibers and monitor changes in nanostructure using AFM. Our results provide new insight into how FN fiber extension can affect the morphology of the constituent FN molecules.
Collapse
Affiliation(s)
- John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Emily N Sevcik
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Kairui Zhang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA. and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Palchesko RN, Funderburgh JL, Feinberg AW. Engineered Basement Membranes for Regenerating the Corneal Endothelium. Adv Healthc Mater 2016; 5:2942-2950. [PMID: 27723276 PMCID: PMC5354171 DOI: 10.1002/adhm.201600488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/29/2016] [Indexed: 12/13/2022]
Abstract
Basement membranes are protein-rich extracellular matrices (ECM) that are essential for epithelial and endothelial tissue structure and function. Aging and disease cause changes in the physical properties and ECM composition of basement membranes, which has spurred research to develop methods to repair and/or regenerate these tissues. An area of critical clinical need is the cornea, where failure of the endothelium leads to stromal edema and vision loss. Here, an engineered basement membrane (EBM) is developed that consists of a dense layer of collagen IV and/or laminin ≈5-10 nm thick, created using surface-initiated assembly, conformally attached to a collagen I film. These EBMs are used to engineer a corneal endothelium (CE) that mimics the structure of Descemet's membrane with a thin stromal layer, toward use as a graft for lamellar keratoplasty. Results show that bovine and human CE cells form confluent monolayers on the EBM, express ZO-1 at the cell-cell borders, and achieve a density of ≈1600 cells mm-2 for 28 and 14 d, respectively. These results demonstrate that the technique is capable of fabricating EBMs with structural and compositional properties that mimic native basement membranes and that EBM may be a suitable carrier for engineering transplant quality CE grafts.
Collapse
Affiliation(s)
- Rachelle N Palchesko
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Louis J. Fox Center for Vision Restoration, Pittsburgh PA 15213, USA
| | - James L Funderburgh
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh PA, 15213, USA
- Louis J. Fox Center for Vision Restoration, Pittsburgh PA 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Louis J. Fox Center for Vision Restoration, Pittsburgh PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh PA 15213, USA
| |
Collapse
|