1
|
Zou Y, Xu H, Wu X, Liu X, Zhao J. Enhancing Radiotherapy Sensitivity in Prostate Cancer with Lentinan-Functionalized Selenium Nanoparticles: Mechanistic Insights and Therapeutic Potential. Pharmaceutics 2024; 16:1230. [PMID: 39339266 PMCID: PMC11434965 DOI: 10.3390/pharmaceutics16091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Radiation therapy is a cornerstone of prostate cancer (PCa) treatment. However, its limited tumor sensitivity and severe side effects restrict its clinical utility. Lentinan-functionalized selenium nanoparticles (LET-SeNPs) have shown promise in enhancing radiotherapy sensitivity and exhibiting antitumor activity. In this study, we investigated the radiotherapy sensitization mechanism of LET-SeNPs in PCa. Our results demonstrate that the combination of LET-SeNPs and X-ray therapy (4 Gy) significantly inhibited the growth and colony formation of PCa cells by inducing apoptosis, surpassing the effects of individual treatments. This combined approach modulated DNA damage through the p53, MAPK (mitogen-activated protein kinase), and AKT pathways. Furthermore, LET-SeNPs increased PC3 cell sensitivity to X-ray-induced apoptosis by downregulating TrxR (Thioredoxin reductase) expression and inducing reactive oxygen species (ROS) overproduction, thereby activating mitochondria-mediated apoptosis signaling pathways. Additionally, LET-SeNPs regulated PARP (poly (ADP-ribose) polymerase) to prevent DNA damage repair. In vivo studies confirmed that the combination treatment inhibited PCa growth by synergistically activating the p53 pathway to induce cell apoptosis. These findings highlight LET-SeNPs' potential as a radiotherapy sensitizer and suggest that combining LET-SeNPs with X-ray therapy could be a promising strategy for clinical application, leveraging selenium-modified nanoparticles' antitumor effects.
Collapse
Affiliation(s)
- Yani Zou
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
- Tumor Radiotherapy Center, Fuyang People's Hospital, Fuyang 236012, China
| | - Helin Xu
- Department of Emergency Surgery, Fuyang People's Hospital, Fuyang 236012, China
| | - Xiu Wu
- Department of Clinical Pathology, Linyi Maternal and Child Healthcare Hospital, Linyi 276016, China
| | - Xuesong Liu
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- Department of Oncology of the First Affiliated Hospital, Jinan University, Guangzhou 510660, China
- Research Center of Cancer Diagnosis and Therapy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Zou B, Xiong Z, Yu Y, Shi S, Li X, Chen T. Rapid Selenoprotein Activation by Selenium Nanoparticles to Suppresses Osteoclastogenesis and Pathological Bone Loss. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401620. [PMID: 38621414 DOI: 10.1002/adma.202401620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Osteoclast hyperactivation stands as a significant pathological factor contributing to the emergence of bone disorders driven by heightened oxidative stress levels. The modulation of the redox balance to scavenge reactive oxygen species emerges as a viable approach to addressing this concern. Selenoproteins, characterized by selenocysteine (SeCys2) as the active center, are crucial for selenium-based antioxidative stress therapy for inflammatory diseases. This study reveals that surface-active elemental selenium (Se) nanoparticles, particularly lentinan-Se (LNT-Se), exhibit enhanced cellular accumulation and accelerated metabolism to SeCys2, the primary active Se form in biological systems. Consequently, LNT-Se demonstrates significant inhibition of osteoclastogenesis. Furthermore, in vivo studies underscore the superior therapeutic efficacy of LNT-Se over SeCys2, potentially attributable to the enhanced stability and safety profile of LNT-Se. Specifically, LNT-Se effectively modulates the expression of the selenoprotein GPx1, thereby exerting regulatory control over osteoclastogenesis inhibition, and the prevention of osteolysis. In summary, these results suggest that the prompt activation of selenoproteins by Se nanoparticles serves to suppress osteoclastogenesis and pathological bone loss by upregulating GPx1. Moreover, the utilization of bioactive Se species presents a promising avenue for effectively managing bone disorders.
Collapse
Affiliation(s)
- Binhua Zou
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zushuang Xiong
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yanzi Yu
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Sujiang Shi
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Laboratory of Viral Pathogenesis & Infection Prevention and Control of Ministry of Education, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Tang J, Yang Y, Yin HY, Ma B, Zhu M, Yang ZS, Peng XX, Jia F, Zhao Y, Wang F, Chen T, Zhang JL. A Platinum-Aluminum Bimetallic Salen Complex for Pro-senescence Cancer Therapy. Chembiochem 2024; 25:e202400105. [PMID: 38639074 DOI: 10.1002/cbic.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Juan Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Key Laboratory of Medicinal Molecule Science and pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yahui Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Hao-Yan Yin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bin Ma
- Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zi-Shu Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xin-Xin Peng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, P. R. China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
4
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Xu Y, Lai H, Pan S, Pan L, Liu T, Yang Z, Chen T, Zhu X. Selenium promotes immunogenic radiotherapy against cervical cancer metastasis through evoking P53 activation. Biomaterials 2024; 305:122452. [PMID: 38154440 DOI: 10.1016/j.biomaterials.2023.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Radiotherapy is still the recommended treatment for cervical cancer. However, radioresistance and radiation-induced side effects remain one of the biggest clinical problems. Selenium (Se) has been confirmed to exhibit radiation-enhancing effects for cancer treatment. However, Se species dominate the biological activities and which form of Se possesses better radiosensitizing properties and radiation safety remains elusive. Here, different Se species (the valence state of Se ranged from - 2, 0, +4 to + 6) synergy screen was carried out to identify the potential radiosensitizing effects and radiation safety of Se against cervical cancer. We found that the therapeutic effects varied with the changes in the Se valence state. Sodium selenite (+4) displayed strong cancer-killing effects but also possessed severe cytotoxicity. Sodium selenate (+6) neither enhanced the killing effects of X-ray nor possessed anticancer activity by its alone treatment. Although nano-selenium (0), especially Let-SeNPs, has better radiosensitizing activity, the - 2 organic Se, such as selenadiazole derivative SeD (-2) exhibited more potent anticancer effects and possessed a higher safe index. Overall, the selected Se drugs were able to synergize with X-ray to inhibit cell growth, clone formation, and cell migration by triggering G2/M phase arrest and apoptosis, and SeD (-2) was found to exhibit more potent enhancing capacity. Further mechanism studies showed that SeD mediated p53 pathway activation by inducing DNA damage through promoting ROS production. Additionally, SeD combined with X-ray therapy can induce an anti-tumor immune response in vivo. More importantly, SeD combined with X-ray significantly inhibited the liver metastasis of tumor cells and alleviated the side effects caused by radiation therapy in tumor-bearing mice. Taken together, this study demonstrates the radiosensitization and radiation safety effects of different Se species, which may shed light on the application of such Se-containing drugs serving as side effects-reducing agents for cervical cancer radiation treatment.
Collapse
Affiliation(s)
- Yanchao Xu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liuliu Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Ting Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Ziyi Yang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
6
|
Liu X, Lai J, Su J, Zhang K, Li J, Li C, Ning Z, Wang C, Zhu B, Li Y, Zhao M. Selenadiazole Inhibited Adenovirus-Induced Apoptosis through the Oxidative-Damage-Mediated Bcl-2/Stat 3/NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1474. [PMID: 37895944 PMCID: PMC10610542 DOI: 10.3390/ph16101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Human adenovirus type 7 (HAdV7) infection causes severe pneumonia, yet there are still no breakthroughs in treatment options for adenovirus, and the road to antiviral drug development faces major challenges. We attempted to find new drugs and we stumbled upon one: selenadiazole. Selenadiazole has been shown to have significant anti-tumor effects due to its unique chemical structure and drug activity. However, its effectiveness against viruses has not been evaluated yet. In our study, selenadiazole also showed superior antiviral activity. In vitro experiments, selenadiazole was able to inhibit adenovirus-mediated mitochondrial-oxidative-damage-related apoptosis, and in in vivo experiments, selenadiazole was able to inhibit apoptosis by modulating the apoptotic signaling pathway Bcl-2/Stat3/NF-κB, etc., and was able to largely attenuate adenovirus-infection-induced pneumonia and lung injury in mice. This study aims to describe a new antiviral treatment option from the perspective of anti-adenovirus-mediated oxidative stress and its associated apoptosis and to provide theoretical guidance for the treatment of clinical adenovirus infection to a certain extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (X.L.); (J.L.); (J.S.); (J.L.); (C.L.); (Z.N.); (C.W.); (B.Z.)
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (X.L.); (J.L.); (J.S.); (J.L.); (C.L.); (Z.N.); (C.W.); (B.Z.)
| |
Collapse
|
7
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Yang Y, Jiang Y, Xie B, Shi S, Pi F, Chen M, Sang C, Xu L, Chen T. Selenadiazole derivative-loaded metal azolate frameworks facilitate NK cell immunotherapy by sensitizing tumor cells and shaping immuno-suppressive microenvironments. Biomater Sci 2023; 11:1517-1529. [PMID: 36606484 DOI: 10.1039/d2bm01752k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The low sensitivity of tumor cells and immunosuppressive microenvironments lead to unsatisfactory efficacy of natural killer (NK) cell immunotherapy. In this work, we developed a safe and effective combination treatment strategy by integrating a selenadiazole derivative (PSeD)-loaded metal azolate framework (PSeD@MAF-4(R)) with NK cells derived from cancer patients against a xenograft human breast tumor model. Intriguingly, it was found that only PSeD@MAF-4(R) pretreatment on tumor cells exhibited synergistic effects with NK cells in inhibiting tumor cell growth by up-regulating NKG2D and its ligands to maximize the interactions between NK and MCF-7 cells. Moreover, PSeD@MAF-4(R) pretreatment could significantly enhance the degranulation of NK cells and regulate their secretions of pro- or anti-inflammatory cytokines (e.g. IL-6, IL-10, and TGF-β). Furthermore, PSeD@MAF-4(R) could significantly enhance the penetration capability of NK cells into tumor spheroids. The combination treatment mainly induced G1 phase arrest and activated multiple caspase-mediated apoptosis of tumor cells. In vivo evidence showed that PSeD@MAF-4(R) combined with NK cells could highly efficiently combat breast tumor progression via inducing and activating innate immune cell (DC and NK cell) infiltrations within tumor tissues while shaping the suppressive tumor microenvironment by down-regulating the expression of TGF-β. This developed strategy may provide important information for developing NK cell-based combination cancer immunotherapy with high efficacy and good safety profiles.
Collapse
Affiliation(s)
- Yahui Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Yalin Jiang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Bin Xie
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Sujiang Shi
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Fen Pi
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Mingkai Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Chengcheng Sang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Ligeng Xu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Nie S, He X, Sun Z, Zhang Y, Liu T, Chen T, Zhao J. Selenium speciation-dependent cancer radiosensitization by induction of G2/M cell cycle arrest and apoptosis. Front Bioeng Biotechnol 2023; 11:1168827. [PMID: 37034255 PMCID: PMC10073679 DOI: 10.3389/fbioe.2023.1168827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Radiation therapy has Q6long been a routine and effective treatment for non-small cell lung cancer (NSCLC), but the radioresistance and side effects have limited its application. In recent years, the superiority showed by trace element selenium in tumor radiotherapy sensitization has received wide attention. However, different forms of selenium compounds exhibit different chemical properties and their mechanisms of action on tumors may be different. Methods: Human non-small cell lung cancer SPC-A1 cells were studied. Drug toxicity was detected by MTT assay. The selenium content absorbed in vitro at different time points was detected by ICP-MS. Colony formation were conducted to observe the radiosensitization effect of different selenium compounds on SPC-A1 cells, and to compare the proliferation ability of SPC-A1 cells treated by radiation alone and radiation combined with different selenium compounds. Cell migration was detected by cell scratch assay. The changes of cell cycle and apoptosis were detected by flow cytometry. DCFH-DA fluorescent probe was used to detect the effects of different selenium compounds combined with X-ray on ROS production. Results: In this study, these four representative selenium compounds all have a certain ability to enhance the ability of radiotherapy to inhibit tumor cell proliferation and migration, and the mechanism may be related to blocking cell cycle in G2/M phase, activating the caspase cascade and reducing intracellular ROS levels to induce tumor cell apoptosis. Among them, -2-valent organic selenium has the most obvious effect, mainly inhibits cell migration, and induces early apoptosis by activating a large number of caspase-3, and arrest the cell cycle in S phase and G2/M phase. 0-valent selenium nanoparticles mainly arrest the cell cycle in G2/M phase. +4-valent inorganic selenium exerts its antitumor effects primarily by inhibiting tumor cell migration and inducing early apoptosis of tumor cells. Discussion: In this paper, the antitumor effects of four different forms of selenium compounds combined with X-rays on SPC-A1 cells were investigated, and their inhibitory effects on the proliferation and migration of cancer cells and their mechanisms were examined. We found that the radiosensitizing effect of selenium on NSCLC was closely related to its selenium form through the study of the sensitizing effect of different kinds of selenium compounds on radiotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianfu Zhao
- *Correspondence: Tianfeng Chen, ; Jianfu Zhao,
| |
Collapse
|
10
|
A family of amphiphilic dioxidovanadium(V) hydrazone complexes as potent carbonic anhydrase inhibitors along with anti-diabetic and cytotoxic activities. Biometals 2022; 35:499-517. [PMID: 35355153 DOI: 10.1007/s10534-022-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
A family of dioxidovanadium(V) complexes (1-4) of the type [Na(H2O)x]+[VVO2(HL1-4)]- (x = 4, 4.5 and 7) where HL2- represents the dianionic form of 2-hydroxybenzoylhydrazone of 2-hydroxyacetophenone (H2L1, complex 1), 2-hydroxy-5-methylacetophenone (H2L2, complex 2), 2-hydroxy-5-methoxyacetophenone (H2L3, complex 3) and 2-hydroxy-5-chloroacetophenone (H2L4, complex 4), have been synthesized and characterized by analytical and spectral methods. These complexes exhibited the potential abilities to suppress the erythrocytes carbonic anhydrase enzymatic activity in type 1 and type 2 diabetic patients (in vitro), promising antidiabetic activity against T2 diabetic mice (in vivo). They also exhibited significant cytotoxic activity against cervical cancer (SiHa) cells (in vitro) as the IC50 value of complexes 1, 2 and 4 is substantially lower than the value found for cisplatin while that of 3 is comparable and follow the order: 4 < 1 < 2 < 3 and can kill the cells by apoptosis via the generation of reactive oxygen species (ROS). The complexes are soluble both in water and octanol media and also non-toxic at working concentrations. The antidiabetic activity of these four complexes follows the order: 4 > 2 > 1 > 3 while both the carbonic anhydrase and cytotoxic activity follow the order: 4 > 1 > 2 > 3 suggesting that complex 4, containing electron withdrawing Cl atom is the most reactive while 3 with electron donating OCH3 group is the least reactive species. The molecular docking study on hCA-I and hCA-II demonstrates that complexes interact via hydrogen bonding as well as different types of π-stacking.
Collapse
|
11
|
Patwardhan RS, Sharma D, Sandur SK. Thioredoxin reductase: An emerging pharmacologic target for radiosensitization of cancer. Transl Oncol 2022; 17:101341. [PMID: 35078017 PMCID: PMC8790659 DOI: 10.1016/j.tranon.2022.101341] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Novel agents are required to increase the radiosensitivity of cancer and improve the outcome of radiotherapy. Thioredoxin (Trx) and thioredoxin reductase (TrxR) reduce the oxidized cysteine thiols in several proteins, which regulate cellular redox, survival, proliferation, DNA synthesis, transcription factor activity and apoptosis. TrxR is essential for maintaining a conducive redox state for tumor growth, survival and resistance to therapy. Therefore, it is an appealing pharmacological target for the radiosensitization of tumors. Ionizing radiation (IR) is known to cause cytotoxicity through ROS, oxidative stress and DNA damage. Inhibition of thioredoxin system augments IR induced oxidative stress and potentiates cytotoxic effects. However, TrxR also regulates several critical cellular processes in normal cells. Here, we highlight the pre-clinical research and pharmacological studies to surmise possible utility of different TrxR inhibitors for radiosensitization. This review provides a succinct perspective on the role of TrxR inhibitors during the radiotherapy of cancer.
Collapse
Affiliation(s)
- Raghavendra S Patwardhan
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Deepak Sharma
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| | - Santosh K Sandur
- Radiation Biology and Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
12
|
Oubella A, Fawzi M, Bimoussa A, N’Ait Ousidi A, Auhmani A, Riahi A, Robert A, El Firdoussi L, Morjani H, Ait Itto MY. Convenient route to benzo[1,2,3]selenadiazole–isoxazole hybrids and evaluation of their in vitro cytotoxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02083-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Kalsoom U, Alazmi M, Farrukh HSUB, Chung KHK, Alshammari N, Kakinen A, Chotana GA, Javed I, Davis TP, Saleem RSZ. Structure Dependent Differential Modulation of Aβ Fibrillization by Selenadiazole-Based Inhibitors. ACS Chem Neurosci 2021; 12:3806-3817. [PMID: 34595924 DOI: 10.1021/acschemneuro.1c00478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Misfolding and fibrillar aggregation of Aβ is a characteristic hallmark of Alzheimer's disease and primarily participates in neurodegenerative pathologies. There has been no breakthrough made in the therapeutic regime of Alzheimer's disease while the pharmacological interventions against Aβ are designed to sequester and clear Aβ burden from the neurological tissues. Based on the physiological relevance of Aβ, therapeutic approaches are required to inhibit and stabilize Aβ fibrillization, instead of cleaning it from the neurological system. In this context, we have designed a selenadiazole-based library of compounds against the fibrillization paradigm of Aβ. Compounds that completely inhibited the Aβ fibrillization appeared to stabilize Aβ at the monomeric stage as indicated by ThT assay, CD spectrophotometry, and TEM imaging. Partial inhibitors elongated the nucleation phase and allowed limited fibrillization of Aβ into smaller fragments with slightly higher β-sheets contents, while noninhibitors did not interfere in Aβ aggregation and resulted in mature fibrils with fibrillization kinetics similar to Aβ control. Molecular docking revealed the different binding positions of the compounds for three classes. Complete inhibitors alleviated Aβ toxicity to SH-SY5Y neuroblastoma cells and permeated across the blood-brain barrier in zebrafish larvae. The amino acid residues from Aβ peptide that interacted with the compounds from all three classes were overlapping and majorly lying in the amyloidogenic regions. However, compounds that stabilize Aβ monomers displayed higher association constants (Ka) and lower dissociation constants (Kd) in comparison to partial and noninhibitors, as corroborated by ITC. These results support further structure activity-based preclinical development of these selenadiazole compounds for potential anti-Alzheimer's therapy.
Collapse
Affiliation(s)
- Umme Kalsoom
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Meshari Alazmi
- Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha’il, P.O. Box 2440, Ha’il 81411, Saudi Arabia
| | - Hafiz Syed Usama Bin Farrukh
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nawaf Alshammari
- Department of Biology, College of Sciences, University of Ha’il, P.O. Box 2440, Ha’il 81411, Saudi Arabia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| |
Collapse
|
14
|
Huang S, Sheng X, Bian M, Yang Z, Lu Y, Liu W. Synthesis and in vitro anticancer activities of selenium N-heterocyclic carbene compounds. Chem Biol Drug Des 2021; 98:435-444. [PMID: 34051050 DOI: 10.1111/cbdd.13900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/23/2021] [Indexed: 12/24/2022]
Abstract
Fourteen novel selenium N-heterocyclic carbene (Se-NHC) compounds derived from 4,5-diarylimidazole were designed, synthesized, and evaluated as antiproliferative agents. Most of them were more effective toward A2780 ovarian cancer cells than HepG2 hepatocellular carcinoma cells. Among them, the most active compound 2b was about fourfold more active than the positive control ebselen against A2780 cells. In addition, this compound displayed twofold higher cytotoxicity to A2780 cells than to IOSE80 normal ovarian epithelial cells. Further studies revealed that 2b could induce reactive oxygen species production, damage mitochondrial membrane potential, block the cells in the G0/G1 phase, and finally promote A2780 cell apoptosis.
Collapse
Affiliation(s)
- Sheng Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Sheng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
16
|
Huang W, Chen Z, Hou L, Feng P, Li Y, Chen T. Adjusting the lipid-water distribution coefficient of iridium(III) complexes to enhance the cellular penetration and treatment efficacy to antagonize cisplatin resistance in cervical cancer. Dalton Trans 2020; 49:11556-11564. [PMID: 32716436 DOI: 10.1039/d0dt02064h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effective design of metal complexes to manipulate their lipid-water distribution coefficient is an appealing strategy for improving their cellular penetration and treatment efficacy. Here, we conveniently synthesized three iridium (Ir) complexes with red fluorescence via the simple non-conjugate modification of the side arm of the ligand. Bio-evaluation revealed that upon adding non-conjugate selenium (Se) arene derivatives, the lipid-water distribution coefficient of Ir-Se was found to be suitable, not only decreasing the toxic side effects of complexes to normal cells, but also effectively improving their anticancer activity via enhancing their penetration into tumor cells. Moreover, mechanistic investigations demonstrated that Ir-Se entered R-HeLa cells through endocytosis, and triggered apoptosis via the down-regulation of the mitochondrial membrane potential and excessive production of singlet oxygen, thereby possessing a highly effective cytotoxicity to antagonize cisplatin resistance. Therefore, we developed a convenient strategy to derive functional metal complexes and revealed that the introduction of Se on the side arm of the ligand provided the complexes with the capacity to reverse multidrug resistance.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Zhen Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Yiqun Li
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Rahman FU, Tzeli D, Petsalakis ID, Theodorakopoulos G, Ballester P, Rebek J, Yu Y. Chalcogen Bonding and Hydrophobic Effects Force Molecules into Small Spaces. J Am Chem Soc 2020; 142:5876-5883. [PMID: 32125842 DOI: 10.1021/jacs.0c01290] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Supramolecular capsules are desirable containers for the study of molecular behavior in small spaces and offer applications in transport, catalysis, and material science. We report here the use of chalcogen bonding to form container assemblies that are stable in water. Cavitands 1-3 functionalized with 2,1,3-benzoselenadiazole walls were synthesized in good yield from resorcin[4]arenes. The solid-state single-crystal X-ray structure of 3 showed a dimeric assembly cemented together through multiple Se···N chalcogen bonds. Binding of hydrophobic and amphiphilic guests in D2O was investigated by 1H NMR methods and revealed host-guest assemblies of 1:1, 2:1, and 2:2 stoichiometries. Small guests such as n-hexane or cyclohexane assembled as 2:2 capsular complexes, larger guests like cyclohexane carboxylic acid or cyclodecane formed 1:1 cavitand complexes, and longer linear guests like n-dodecane, cyclohexane carboxylic acid anhydride, and amides created 2:1 capsular complexes. The 2:1 complex of the capsule with cyclohexane carboxylic acid anhydride was stable over 2 weeks, showing that the seam of chalcogen bonds is "waterproof". Selective uptake of cyclohexane over benzene and methyl cyclohexane over toluene was observed in aqueous solution with the capsule. Hydrophobic forces and hydrogen-bonding attractions between guest molecules such as 3-methylbutanoic acid stabilized the assemblies in the presence of the competing effects of water. The high polarizability and modest electronegativity of Se provide a capsule lining complementary to guest C-H bonds. The 2,1,3-benzoselenadiazole walls impart an unusually high magnetic anisotropy to the capsule environment, which is supported by density functional theory calculations.
Collapse
Affiliation(s)
- Faiz-Ur Rahman
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Demeter Tzeli
- Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.,Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 157 71, Greece
| | - Ioannis D Petsalakis
- Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Giannoula Theodorakopoulos
- Theoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Julius Rebek
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.,Skaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| |
Collapse
|
18
|
Denkova AG, Liu H, Men Y, Eelkema R. Enhanced Cancer Therapy by Combining Radiation and Chemical Effects Mediated by Nanocarriers. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Antonia G. Denkova
- Department of Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Huanhuan Liu
- Department of Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Yongjun Men
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Rienk Eelkema
- Department of Chemical EngineeringDelft University of Technology van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
19
|
Krüger R, Iepsen B, Larroza AME, Fronza MG, Silveira CH, Bevilacqua AC, Köhler MH, Piquini PC, Lenardão EJ, Savegnago L, Iglesias BA, Alves D. Symmetrical and Unsymmetrical 4,7-Bis-arylvinyl-benzo-2,1,3-chalcogenodiazoles: Synthesis, Photophysical and Electrochemical Properties and Biomolecular Interaction Studies. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roberta Krüger
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Bruna Iepsen
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Allya M. E. Larroza
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Mariana G. Fronza
- Programa de Pós-Graduação em Biotecnologia (PPGB); Universidade Federal de Pelotas UFPel; Pelotas RS Brazil
| | - Carolina H. Silveira
- Departament of Chemistry; Laboratório de Bioinorgânica e Materiais Porfirínicos; Universidade Federal de Santa Maria, UFSM; 97105-900 Santa Maria - RS Brazil
| | - Andressa C. Bevilacqua
- Departamento de Física; Universidade Federal de Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Mateus H. Köhler
- Departamento de Física; Universidade Federal de Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Paulo C. Piquini
- Departamento de Física; Universidade Federal de Santa Maria; 97105-900 Santa Maria RS Brazil
| | - Eder J. Lenardão
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Lucielli Savegnago
- Programa de Pós-Graduação em Biotecnologia (PPGB); Universidade Federal de Pelotas UFPel; Pelotas RS Brazil
| | - Bernardo A. Iglesias
- Departament of Chemistry; Laboratório de Bioinorgânica e Materiais Porfirínicos; Universidade Federal de Santa Maria, UFSM; 97105-900 Santa Maria - RS Brazil
| | - Diego Alves
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| |
Collapse
|
20
|
Ruberte AC, Sanmartin C, Aydillo C, Sharma AK, Plano D. Development and Therapeutic Potential of Selenazo Compounds. J Med Chem 2019; 63:1473-1489. [PMID: 31638805 DOI: 10.1021/acs.jmedchem.9b01152] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incorporation of selenium (Se) atom into small molecules can substantially enhance their antioxidant, anti-inflammatory, antimutagenic, antitumoral or chemopreventive, antiviral, antibacterial, antifungal, antiparasitic, and neuroprotective effects. Specifically, selenazo compounds have received great attention owing to their chemical properties, pharmaceutical applications, and low toxicity. In this Perspective, we compile extensive literature evidence with the description and discussion of the most recent advances in different selenazo and selenadiazo motifs as potential pharmacological candidates. We also provide some perspectives on the challenges and future directions in the advancement of these selenazo compounds, each of which could generate drug candidates for various diseases.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carmen Sanmartin
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Facultad de Farmacia y Nutrición , Universidad de Navarra , Irunlarrea 1 , E-31008 Pamplona , Spain.,Department of Pharmacology, Penn State Cancer Institute, CH72 , Penn State College of Medicine , 500 University Drive , Hershey , Pennsylvania 17033 , United States
| |
Collapse
|
21
|
Radiosensitive core/satellite ternary heteronanostructure for multimodal imaging-guided synergistic cancer radiotherapy. Biomaterials 2019; 226:119545. [PMID: 31648136 DOI: 10.1016/j.biomaterials.2019.119545] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/06/2023]
Abstract
Developing safe, effective and targeting radiosensitizers with clear action mechanisms to achieve synergistic localized cancer treatment is an important strategy for radiotherapy. Herein, we design and synthesize a ternary heteronanostructure radiosensitizer (SeAuFe-EpC) with core/satellite morphology by a simple method to realize multimodal imaging-guided cancer radiotherapy. The mechanistic studies reveal that Se incorporation could drastically improve the electrical conductivity and lower the energy barrier between the three components, resulting in more electrons transfer between Se-Au interface and migration over the heterogeneous junction of Au-Fe3O4 NPs interface. This synergistic interaction enhanced the energy transfer and facilitated more excited excitons generated by SeAuFe-EpC NPs, thus promoting the transformation of 3O2 to 1O2via resonance energy transfer, finally resulting in irreversible cancer cell apoptosis. Additionally, based on the X-ray attenuation ability and high NIR absorption of AuNPs and the superparamagnetism of Fe3O4, in vivo computer tomography, photoacoustic and magnetic resonance tri-modal imaging have been employed to visualize the tracking and targeting ability of the NPs. As expected, the NPs specifically accumulated in orthotopic breast tumor area and achieved synergistic anticancer efficacy, but showed no toxic side effects on main organs. Collectively, this study sheds light on the potential roles of core/satellite heteronanostructure in imaging-guided cancer radiotherapy.
Collapse
|
22
|
Kong X, Liu Y, Huang X, Huang S, Gao F, Rong P, Zhang S, Zhang K, Zeng W. Cancer Therapy Based on Smart Drug Delivery with Advanced Nanoparticles. Anticancer Agents Med Chem 2019; 19:720-730. [PMID: 30747081 DOI: 10.2174/1871520619666190212124944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 11/22/2022]
Abstract
Background:
Cancer, as one of the most dangerous disease, causes millions of deaths every year. The
main reason is the absence of an effective and thorough treatment. Drug delivery systems have significantly
reduced the side-effect of chemotherapy. Combined with nanotechnology, smart drug delivery systems including
many different nanoparticles can reduce the side-effect of chemotherapy better than traditional drug delivery
systems.
Methods:
In this article, we will describe in detail the different kinds of nanoparticles and their mechanisms
emphasizing the triggering factors in drug delivery. Besides, the application of smart drug delivery systems in
imaging will be introduced.
Results:
Combined with nanotechnology, smart drug delivery systems including many different nanoparticles
can reduce the side-effect of chemotherapy better than traditional drug delivery systems.
Conclusion:
Despite considerable progress in nanoparticle research over the past decade, such as smart drug
delivery systems for the treatment of cancer, molecular imaging probes and the like. The range of nanoparticles
used in multifunction systems for imaging and drug delivery continues to grow and we expect this dilatation to
continue. But to make nanoparticles truly a series of clinical products to complement and replace current tools,
constant exploration efforts and time are required. Overall, the future looks really bright.
Collapse
Affiliation(s)
- Xiangqi Kong
- Xiangya School of Pharmaceutical Sciences, Changsha, 410013, China
| | - Yi Liu
- Xiangya School of Pharmaceutical Sciences, Changsha, 410013, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Changsha, 410013, China
| | - Shuai Huang
- Xiangya School of Pharmaceutical Sciences, Changsha, 410013, China
| | - Feng Gao
- The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pengfei Rong
- The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shengwang Zhang
- The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Kexiang Zhang
- The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Changsha, 410013, China
| |
Collapse
|
23
|
Ruthenium(II) salicylate complexes inducing ROS-mediated apoptosis by targeting thioredoxin reductase. J Inorg Biochem 2019; 193:112-123. [DOI: 10.1016/j.jinorgbio.2019.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
24
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
25
|
Cui J, Pang L, Wei M, Gan C, Liu D, Yuan H, Huang Y. Synthesis and antiproliferative activity of 17-[1',2',3']-selenadiazolylpregnenolone compounds. Steroids 2018; 140:151-158. [PMID: 30296550 DOI: 10.1016/j.steroids.2018.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Using pregnenolone as a starting material, some 3-substituted 17-[1',2',3']-selenadiazolylpregnenolone derivatives were synthesized, and their structures were characterized by IR, NMR and HRMS. The in vitro antitumor activity of the compounds was assayed against PC-3、SKOV3、T47D、MCF-7 and HEK293T cell lines. The results show that some compounds display selective antiproliferative activity against PC-3 and SKOV3 cells lines and are almost inactive to normal kidney epithelial cells (HEK293T). The IC50 value are much better than that of abiraterone (positive control).
Collapse
Affiliation(s)
- Jianguo Cui
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, PR China; College of Petroleum and Chemical Engineering, Qizhou University, Qizhou, PR China
| | - Liping Pang
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Meizhen Wei
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Chunfang Gan
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Dandan Liu
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Haiyan Yuan
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Yanmin Huang
- College of Chemistry and Material Science, Guangxi Teachers Education University, Nanning 530001, PR China.
| |
Collapse
|
26
|
Balaguez RA, Krüger R, Iepsen B, Schumacher RF, Oliboni RS, Barcellos T, Junqueira HC, Baptista MS, Iglesias BA, Alves D. Bisarylselanylbenzo-2,1,3-selenadiazoles: Synthesis, Photophysical, Electrochemical and Singlet-Oxygen-Generation Properties. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Renata A. Balaguez
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Roberta Krüger
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Bruna Iepsen
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Ricardo F. Schumacher
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Robson S. Oliboni
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic Products; Universidade de Caxias do Sul; Caxias do Sul RS Brazil
| | - Helena C. Junqueira
- Departament of Biochemistry; Institute of Chemistry; University of São Paulo USP; São Paulo Brazil
| | - Maurício S. Baptista
- Departament of Biochemistry; Institute of Chemistry; University of São Paulo USP; São Paulo Brazil
| | - Bernardo A. Iglesias
- Departament of Chemistry; Laboratório de Bioinorgânica e Materiais Porfirínicos; Universidade Federal de Santa Maria; UFSM; 97105-900 Santa Maria - RS Brazil
| | - Diego Alves
- LASOL-CCQFA; Universidade Federal de Pelotas UFPel; P.O. Box 354 - 96010-900 Pelotas RS Brazil
| |
Collapse
|
27
|
Patra D, Paul S, Majumder I, Sepay N, Bera S, Kundu R, Drew MGB, Ghosh T. Exploring the effect of substituent in the hydrazone ligand of a family of μ-oxidodivanadium(v) hydrazone complexes on structure, DNA binding and anticancer activity. Dalton Trans 2018; 46:16276-16293. [PMID: 29138774 DOI: 10.1039/c7dt03585c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The reaction of 2-hydroxybenzoylhydrazine (H2bh) separately with equimolar amounts of [VIVO(aa)2] and [VIVO(ba)2] in CHCl3 afforded the complexes [VO3(HL1)2] (1) and [VO3(HL2)2] (2) respectively in good to excellent yield ((HL1)2- and (HL2)2- represent respectively the dianionic form of 2-hydroxybenzoylhydrazones of acetylacetone (H3L1) and benzoylacetone (H3L2) (general abbreviation H3L)). From X-ray structure analysis, the VV-O-VV angle was found to be ∼115° and 180° in 1 and 2 respectively. Upon one-electron reduction selectively at one V centre at an appropriate potential, each of 1 and 2 generated mixed-valence [(HL)VVO-(μ-O)-OVIV(HL)]- species 1A and 2A respectively, which showed valence delocalization at room temperature and localization at 77 K, and the VIV-O-VV bond angles were calculated to be 177.5° and 180° respectively. The intercalative mode of binding of the two complexes 1 and 2 with CT DNA has been suggested by UV-visible spectroscopy (Kb = 7.31 × 105 M-1 and 8.71 × 105 M-1 respectively for 1 and 2), fluorescence spectroscopy (Ksv = 6.85 × 105 M-1 and 8.53 × 105 M-1 respectively for 1 and 2) and circular dichroism spectroscopy. Such intercalative mode of binding of these two complexes with CT DNA and HPV DNA has also been confirmed by molecular docking study. Both complexes 1 and 2 exhibited promising anti-cancer activity against SiHa cervical cancer cells with IC50 values of 28 ± 0.5 μM and 25 ± 0.5 μM respectively for 24 h which is significantly better than that of widely used cisplatin (with IC50 value of 63.5 μM). Nuclear staining experiments reveal that these complexes kill the SiHa cells through apoptotic mode. It is interesting to note that these two complexes are non-toxic to normal T293 cell line. Complex 2 showed higher DNA binding ability with CT DNA and HPV DNA as well as better anti-cancer properties towards SiHa cervical cancer cells in comparison to complex 1, a fact which can be explained by considering the lower energy of LUMO (which favours electron transition from DNA to the metal complex) and also the higher surface area of complex 2 in comparison to complex 1 due to the presence of one extra electron-withdrawing phenyl group in the former.
Collapse
Affiliation(s)
- Debashis Patra
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ruberte AC, Plano D, Encío I, Aydillo C, Sharma AK, Sanmartín C. Novel selenadiazole derivatives as selective antitumor and radical scavenging agents. Eur J Med Chem 2018; 157:14-27. [PMID: 30071406 DOI: 10.1016/j.ejmech.2018.07.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/09/2023]
Abstract
Twenty-seven novel benzo[c][1,2,5]selenadiazole-5-carboxylic acid (BSCA) derivatives were designed and synthesized. Anti-proliferative activity of these structures was tested in vitro against a panel of five human cancer cell lines, including prostate (PC-3), colon (HT-29), leukemia (CCRF-CEM), lung (HTB-54) and breast (MCF-7). Four compounds (5, 6, 7 and 19) showed potent inhibitory activity with GI50 values below 10 μM in at least one of the cancer cell lines. The selectivity of these compounds was further examined in two non-malignant cell lines derived from breast (184B5) and lung (BEAS-2B). Compound 7 exhibited promising anti-proliferative activity (GI50 = 3.7 μM) in MCF-7 cells, together with high selectivity index (SI > 27.1). The induction of cell death by compound 7 was independent of the apoptotic process and it did not affect cell cycle progression either. Likewise, radical scavenging properties of the new selenadiazole derivatives were confirmed by testing their ability to scavenge DPPH radicals. Four compounds (1, 2, 8 and 9) showed potent radical scavenging activity, compound 9 being the most effective. Overall, while compound 7 was identified as the most cell growth inhibitory agent and selectively toxic to cancer cells, compound 9 proved to be the most potent antioxidant among the selenadiazole derivatives synthesized. This series of compounds can serve as an excellent scaffold to achieve new and potent antioxidant compounds useful for several diseases, i.e. cancer, neurodegenerative, heart diseases and leishmaniasis, considering the high radical scavenging activity and low toxicity showed by most of the compounds.
Collapse
Affiliation(s)
- Ana Carolina Ruberte
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain; Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ignacio Encío
- Department of Health Sciences, Public University of Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Carlos Aydillo
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain.
| |
Collapse
|
29
|
Zhu S, Gu Z, Zhao Y. Harnessing Tumor Microenvironment for Nanoparticle-Mediated Radiotherapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Chinese Academy of Sciences; Beijing 100190 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
30
|
Zeng D, Deng S, Sang C, Zhao J, Chen T. Rational Design of Cancer-Targeted Selenadiazole Derivative as Efficient Radiosensitizer for Precise Cancer Therapy. Bioconjug Chem 2018; 29:2039-2049. [PMID: 29771500 DOI: 10.1021/acs.bioconjchem.8b00247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Delong Zeng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shulin Deng
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Chengcheng Sang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Jianfu Zhao
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
31
|
Lai H, Fu X, Sang C, Hou L, Feng P, Li X, Chen T. Selenadiazole Derivatives Inhibit Angiogenesis-Mediated Human Breast Tumor Growth by Suppressing the VEGFR2-Mediated ERK and AKT Signaling Pathways. Chem Asian J 2018; 13:1447-1457. [DOI: 10.1002/asia.201800110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Haoqiang Lai
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiaoyan Fu
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Chengcheng Sang
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Liyuan Hou
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Pengju Feng
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition; Jinan University; Guangzhou 510632 China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 China
| |
Collapse
|
32
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
33
|
Zhao J, Zeng D, Liu Y, Luo Y, Ji S, Li X, Chen T. Selenadiazole derivatives antagonize hyperglycemia-induced drug resistance in breast cancer cells by activation of AMPK pathways. Metallomics 2018; 9:535-545. [PMID: 28374040 DOI: 10.1039/c7mt00001d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperglycemia is an important factor for chemoresistance of breast cancer patients with diabetes. In the present study, a novel selenadiazole derivative has been evaluated and found to be able to antagonize the doxorubicin (DOX) resistance of MCF-7 cells under simulated diabetes conditions. Hyperglycemia promotes the proliferation, invasion and migration of MCF-7 cells through activation of ERK and AKT pathways, which could be inhibited by the synthetic selenadiazole derivative. The antitumor effects of the selenadiazole derivative were attributed to its ability to activate AMPK pathways. Furthermore, the high lipophilicity (log P = 1.9) of the synthetic selenadiazole derivative facilitated its uptake by cancer cells and subsequently potentiated the cellular uptake of DOX, leading to a strong enhancment of the antiproliferative activity of DOX on MCF-7 cells by induction of apoptosis. The apoptosis was initiated by the ROS overproduction induced by the cooperation of the selenadiazole derivative and DOX. The excessive ROS then caused damage to DNA, which upregulated the expression of proapoptosis Bcl-2 family proteins and led to fragmentation of mitochondria, which finally caused apoptosis of the cancer cells. Taken together, this study provides a rational strategy for using selenadiazole derivatives to overcome hyperglycemia-induced drug resistance in breast cancer by activation of AMPK-mediated pathways.
Collapse
Affiliation(s)
- Jianfu Zhao
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Song Z, Liu T, Chen T. Overcoming blood–brain barrier by HER2-targeted nanosystem to suppress glioblastoma cell migration, invasion and tumor growth. J Mater Chem B 2018; 6:568-579. [PMID: 32254485 DOI: 10.1039/c7tb02677c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we synthesize an HER2 antibody-conjugated selenium nanoparticle platform can efficiently deliver both therapeutic agents and diagnostic agents (superparamagnetic iron oxide nanoparticles) across the BBB into the tumor tissues and enhances their effects on brain tumor treatment and MR imaging.
Collapse
Affiliation(s)
- Zhenhuan Song
- The First Affiliated Hospital, and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Ting Liu
- The First Affiliated Hospital, and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
35
|
Patra D, Paul S, Sepay N, Kundu R, Ghosh T. Structure-activity relationship on DNA binding and anticancer activities of a family of mixed-ligand oxidovanadium(V) hydrazone complexes. J Biomol Struct Dyn 2017; 36:4143-4155. [DOI: 10.1080/07391102.2017.1409652] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Debashis Patra
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Subhabrata Paul
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Tapas Ghosh
- Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| |
Collapse
|
36
|
Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci 2017; 39:24-48. [PMID: 29224916 DOI: 10.1016/j.tips.2017.11.003] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
Radiotherapy (RT) is a mainstay treatment for many types of cancer, although it is still a large challenge to enhance radiation damage to tumor tissue and reduce side effects to healthy tissue. Radiosensitizers are promising agents that enhance injury to tumor tissue by accelerating DNA damage and producing free radicals. Several strategies have been exploited to develop highly effective and low-toxicity radiosensitizers. In this review, we highlight recent progress on radiosensitizers, including small molecules, macromolecules, and nanomaterials. First, small molecules are reviewed based on free radicals, pseudosubstrates, and other mechanisms. Second, nanomaterials, such as nanometallic materials, especially gold-based materials that have flexible surface engineering and favorable kinetic properties, have emerged as promising radiosensitizers. Finally, emerging macromolecules have shown significant advantages in RT because these molecules can be combined with biological therapy as well as drug delivery. Further research on the mechanisms of radioresistance and multidisciplinary approaches will accelerate the development of radiosensitizers.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Number 238, Baidi Road, Tianjin 300192, China; These authors have contributed equally
| | - Xiaoyu Mu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; These authors have contributed equally
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
37
|
Chan L, He L, Zhou B, Guan S, Bo M, Yang Y, Liu Y, Liu X, Zhang Y, Xie Q, Chen T. Cancer-Targeted Selenium Nanoparticles Sensitize Cancer Cells to Continuous γ Radiation to Achieve Synergetic Chemo-Radiotherapy. Chem Asian J 2017; 12:3053-3060. [PMID: 28892302 DOI: 10.1002/asia.201701227] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/09/2017] [Indexed: 12/23/2022]
Abstract
Cancer radiotherapy with 125 I seeds demonstrates higher long-term efficacy and fewer side effects than traditional X-ray radiotherapy owing to its low-dose and continuous radiation but is still limited by radioresistance in clinical applications. Therefore, the design and synthesis of sensitizers that could enhance the sensitivity of cancer cells to 125 I seeds is of great importance for future radiotherapy. Selenium nanoparticles (SeNPs) have been found to exhibit high potential in cancer chemotherapy and as drug carriers. In this study, we found that, based on the Auger-electron effect and Compton effect of Se atoms, cancer-targeted SeNPs in combination with 125 I seeds achieve synergetic effects to inhibit cancer-cell growth and colony formation through the induction of cell apoptosis and cell cycle arrest. Detailed studies on the action mechanisms reveal that the combined treatments effectively activate intracellular reactive oxygen species (ROS) overproduction to regulate p53-mediated DNA damage apoptotic signaling pathways and mitogen-activated protein kinase (MAPK) phosphorylation and to prevent the self-repair of cancer cells simultaneously. Taken together, the combination of SeNPs with 125 I seeds could be further exploited as a safe and effective strategy for next-generation cancer chemo-radiotherapy in clinical applications.
Collapse
Affiliation(s)
- Leung Chan
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Binwei Zhou
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Shouhai Guan
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Mingjun Bo
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yahui Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Liu
- Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou, 510507, China
| | - Xiao Liu
- Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou, 510507, China
| | - Yanyang Zhang
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qiang Xie
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
38
|
Yang Y, Xie Q, Zhao Z, He L, Chan L, Liu Y, Chen Y, Bai M, Pan T, Qu Y, Ling L, Chen T. Functionalized Selenium Nanosystem as Radiation Sensitizer of 125I Seeds for Precise Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25857-25869. [PMID: 28718286 DOI: 10.1021/acsami.7b07167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although radiotherapy has been extensively applied in cancer treatment, external beam radiation therapy is still unable to avoid damage to adjacent normal tissues in the process of delivering a sufficient radiation dose to the tumor sites of patients. To overcome this limitation, chemoradiotherapy, as a combination of chemotherapy and radiotherapy of a radioactive seed, has been proposed to decrease the damage to tumor-surrounding tissues and enhance the radiosensitivity of solid tumors. In this study, we designed and synthesized folic acid-conjugated selenium nanoparticles (FA@SeNPs) as a cancer-targeting agent that could be synergistically enhanced by radioactive 125I seeds to realize anticancer efficacy and inhibited colony formation ability. Interestingly, when compared with X-ray irradiation, 125I seeds demonstrate a larger synergistic effect with the FA@SeNPs, drastically increasing reactive oxygen species overproduction to trigger apoptosis and influencing the cell cycle distribution in human breast cancer cells, inducing DNA damage and activating the mitogen-activated protein kinase and p53 signaling pathways. Moreover, this combination treatment demonstrates better in vivo antitumor activity and lower systemic toxicity. Therefore, this study demonstrates a new strategy for using functionalized SeNPs as a radiation sensitizer for 125I seeds for cancer therapy.
Collapse
Affiliation(s)
- Yahui Yang
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Qiang Xie
- The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou 510630, China
| | - Zhennan Zhao
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Lizhen He
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Leung Chan
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| | - Yingxiang Liu
- 421 Hospital of Chinese People's Liberation Army , Guangzhou 510318, China
| | - Yongle Chen
- 421 Hospital of Chinese People's Liberation Army , Guangzhou 510318, China
| | - Mingjun Bai
- The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou 510630, China
| | - Tao Pan
- The Third Affiliated Hospital, Sun Yat-sen University , Guangzhou 510630, China
| | - Yanni Qu
- 421 Hospital of Chinese People's Liberation Army , Guangzhou 510318, China
| | - Long Ling
- 421 Hospital of Chinese People's Liberation Army , Guangzhou 510318, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University , Guangzhou 510632, China
| |
Collapse
|
39
|
Chang Y, He L, Li Z, Zeng L, Song Z, Li P, Chan L, You Y, Yu XF, Chu PK, Chen T. Designing Core-Shell Gold and Selenium Nanocomposites for Cancer Radiochemotherapy. ACS NANO 2017; 11:4848-4858. [PMID: 28460158 DOI: 10.1021/acsnano.7b01346] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Radiotherapy is an important regime for treating malignant tumors. There is interest in the development of radiosensitizers to increase the local treatment efficacy under a relatively low and safe radiation dose. In this study, we designed Au@Se-R/A nanocomposites (Au@Se-R/A NCs) as nano-radiosensitizer to realize synergistic radiochemotherapy based on the radiotherapy sensitization property of Au nanorods (NRs) and antitumor activity of Se NPs. In vitro studies show that the combined treatment of A375 melanoma cells in culture with NCs and X-ray induces cell apoptosis through alteration in expression of p53 and DNA-damaging genes and triggers intracellular ROS overproduction, leading to greatly enhanced anticancer efficacy. Further studies using clinically used radiotherapy equipment demonstrate that the combined treatment of NCs and X-ray significantly inhibits the tumor growth in vivo and shows negligible acute toxicity to the major organs. Taken together, this study provides a strategy for clinical translation application of nanomedicne in cancer radiochemotherapy.
Collapse
Affiliation(s)
- Yanzhou Chang
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Lizhen He
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Zhibin Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Lilan Zeng
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Zhenhuan Song
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Leung Chan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Yuanyuan You
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| | - Xue-Feng Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055, P.R. China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong , Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University , Guangzhou 510632, P.R. China
| |
Collapse
|
40
|
Du Y, Li H, Chen B, Lai H, Li X, Chen T. Selenadiazole derivatives antagonize glucocorticoid-induced osteoblasts cells apoptosis by blocking ROS-mediated signaling, a new anti-osteoporosis strategy. RSC Adv 2017. [DOI: 10.1039/c7ra01306j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we demonstrate that synthetic selenadiazole derivatives could protect osteoblasts cells against Dex-induced cell apoptosisviaattenuating oxidative stress and downstream signalling pathways.
Collapse
Affiliation(s)
- Yanxin Du
- Orthopedics Department
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou 510120
- China
| | - Hong Li
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Bolai Chen
- Orthopedics Department
- Guangdong Provincial Hospital of Traditional Chinese Medicine
- Guangzhou 510120
- China
| | - Haoqiang Lai
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
41
|
Yang T, Liang Y, Hou J, Dou Y, Zhang W. Metabolizable lanthanum-coordination nanoparticles as efficient radiosensitizers for solid tumor therapy. J Mater Chem B 2017; 5:5137-5144. [DOI: 10.1039/c7tb01054k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metabolizable lanthanum-coordination nanoparticles have been rationally designed and used as novel nano-sized radiosensitizers for solid tumor therapy.
Collapse
Affiliation(s)
- Tianbo Yang
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Yuan Liang
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Jiazi Hou
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Yanli Dou
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| | - Wanxi Zhang
- College of Materials Science and Engineering
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
42
|
Deng S, Zeng D, Luo Y, Zhao J, Li X, Zhao Z, Chen T. Enhancement of cell uptake and antitumor activity of selenadiazole derivatives through interaction and delivery by serum albumin. RSC Adv 2017. [DOI: 10.1039/c6ra28801d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of selenadiazole derivatives has been synthesized and exhibit potent anticancer efficacy through interaction and delivery by serum albumin.
Collapse
Affiliation(s)
- Shulin Deng
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Delong Zeng
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Yi Luo
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Jianfu Zhao
- The First Affiliated Hospital of Jinan University
- Guangzhou
- China
| | - Xiaoling Li
- Institute of Food Safety and Nutrition
- Jinan University
- Guangzhou
- China
| | - Zhennan Zhao
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
43
|
Peng P, Lv J, Cai C, Lin S, Zhuo E, Wang S. Cinobufagin, a bufadienolide, activates ROS-mediated pathways to trigger human lung cancer cell apoptosis in vivo. RSC Adv 2017. [DOI: 10.1039/c7ra01085k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lung cancer, as the most common malignancy worldwide, is one of the most threatening diseases for human beings.
Collapse
Affiliation(s)
- Panli Peng
- Department of Oncology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| | - Junhong Lv
- Thoracic Surgeons Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Changqing Cai
- Oncology No. 2 Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Shaohuan Lin
- Thoracic Surgeons Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Enqing Zhuo
- Oncology No. 2 Department
- Guangdong Second Provincial General Hospital
- Guangzhou 510317
- China
| | - Senming Wang
- Department of Oncology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou
- China
| |
Collapse
|
44
|
Xie L, Luo Z, Zhao Z, Chen T. Anticancer and Antiangiogenic Iron(II) Complexes That Target Thioredoxin Reductase to Trigger Cancer Cell Apoptosis. J Med Chem 2016; 60:202-214. [DOI: 10.1021/acs.jmedchem.6b00917] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lina Xie
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zuandi Luo
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhennan Zhao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
45
|
Liang Y, Zhou Y, Deng S, Chen T. Microwave-Assisted Syntheses of Benzimidazole-Containing Selenadiazole Derivatives That Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cells by Activation of the ROS/AKT Pathway. ChemMedChem 2016; 11:2339-2346. [DOI: 10.1002/cmdc.201600261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/03/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Yuanwei Liang
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Yangliang Zhou
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Shulin Deng
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| |
Collapse
|
46
|
Yang Y, Deng S, Zeng Q, Hu W, Chen T. Highly stable selenadiazole derivatives induce bladder cancer cell apoptosis and inhibit cell migration and invasion through the activation of ROS-mediated signaling pathways. Dalton Trans 2016; 45:18465-18475. [PMID: 27711726 DOI: 10.1039/c6dt02045c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein highly stable selenadiazole derivatives were synthesized and found to be able to induce bladder cancer cell apoptosis and inhibit cell migration and invasion through the activation of ROS-mediated pathways.
Collapse
Affiliation(s)
- Yahui Yang
- Department of Chemistry
- Jinan University Guangzhou 510632
- China
| | - Shulin Deng
- Department of Chemistry
- Jinan University Guangzhou 510632
- China
| | - Qinsong Zeng
- Department of Urology
- General Hospital of Guangzhou Military Command of PLA
- Guangzhou 510010
- China
| | - Weilie Hu
- Department of Urology
- General Hospital of Guangzhou Military Command of PLA
- Guangzhou 510010
- China
| | - Tianfeng Chen
- Department of Chemistry
- Jinan University Guangzhou 510632
- China
| |
Collapse
|