1
|
Ducrocq M, Rinaldi A, Halgand B, Veziers J, Guihard P, Boury F, Debuigne A. Bioactive dextran-based scaffolds from emulsion templates co-stabilized by poly(lactic-co-glycolic acid) nanocarriers. Colloids Surf B Biointerfaces 2024; 245:114342. [PMID: 39486376 DOI: 10.1016/j.colsurfb.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Porous polymer scaffolds are widely investigated as temporary implants in regenerative medicine to repair damaged tissues. While biocompatibility, degradability, mechanical properties comparable to the native tissues and controlled porosity are prerequisite for these scaffolds, their loading with pharmaceutical or biological active ingredients such as growth factors, in particular proteins, opens up new perspective for tissue engineering applications. This implies the development of scaffold loading strategies that minimize the risk of protein denaturation and allow to control their release profile. This work reports on a straightforward method for preparing bioactive dextran-based scaffolds from high internal phase emulsion (HIPE) templates containing poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) serving both as co-stabilizers for the emulsion and nanocarriers for drug or therapeutic protein models. Scaffold synthesis are achieved by photocuring of methacrylated dextran located in the external phase of a HIPE stabilized by the NPs in combination or not with a non-ionic surfactant. Fluorescent labelling of the NPs highlights their integration in the scaffold. The introduction of NPs, and even more so when combined with a surfactant, increases the stability and mechanical properties of the scaffolds. Cell viability tests demonstrate the non-toxic nature of these NPs-loaded scaffolds. The study of the release of a model protein from the scaffold, namely lysozyme, shows that its encapsulation in nanoparticles decreases the release rate and provides additional control over the release profile.
Collapse
Affiliation(s)
- Maude Ducrocq
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liège (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, Liège B-4000, Belgium; Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France; Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Arianna Rinaldi
- Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France
| | - Boris Halgand
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Joëlle Veziers
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France
| | - Pierre Guihard
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Nantes 44000, France.
| | - Frank Boury
- Université d'Angers, INSERM, CNRS, CRCI2NA, Angers 49000, France.
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liège (ULiege), Quartier Agora, 13 Allée du Six Août, Sart-Tilman, Liège B-4000, Belgium.
| |
Collapse
|
2
|
McKenzie T, Ayres N. Synthesis and Applications of Elastomeric Polymerized High Internal Phase Emulsions (PolyHIPEs). ACS OMEGA 2023; 8:20178-20195. [PMID: 37323392 PMCID: PMC10268022 DOI: 10.1021/acsomega.3c01265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Polymer foams (PFs) are among the most industrially produced polymeric materials, and they are found in applications including aerospace, packaging, textiles, and biomaterials. PFs are predominantly prepared using gas-blowing techniques, but PFs can also be prepared from templating techniques such as polymerized high internal phase emulsions (polyHIPEs). PolyHIPEs have many experimental design variables which control the physical, mechanical, and chemical properties of the resulting PFs. Both rigid and elastic polyHIPEs can be prepared, but while elastomeric polyHIPEs are less commonly reported than hard polyHIPEs, elastomeric polyHIPEs are instrumental in the realization of new materials in applications including flexible separation membranes, energy storage in soft robotics, and 3D-printed soft tissue engineering scaffolds. Furthermore, there are few limitations to the types of polymers and polymerization methods that have been used to prepare elastic polyHIPEs due to the wide range of polymerization conditions that are compatible with the polyHIPE method. In this review, an overview of the chemistry used to prepare elastic polyHIPEs from early reports to modern polymerization methods is provided, focusing on the applications that flexible polyHIPEs are used in. The review consists of four sections organized around polymer classes used in the preparation of polyHIPEs: (meth)acrylics and (meth)acrylamides, silicones, polyesters and polyurethanes, and naturally occurring polymers. Within each section, the common properties, current challenges, and an outlook is suggested on where elastomeric polyHIPEs can be expected to continue to make broad, positive impacts on materials and technology for the future.
Collapse
Affiliation(s)
| | - Neil Ayres
- N.A.:
email, ; tel, +01 513 556 9280; fax, +01 513 556 9239
| |
Collapse
|
3
|
Muratspahić E, Schöffmann J, Jiang Q, Bismarck A. Poly(acrylamide- co-styrene): A Macrosurfactant for Oil/Water Emulsion Templating toward Robust Macroporous Hydrogels. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Emina Muratspahić
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Doctoral College Advanced Functional Materials, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria
| | - Jana Schöffmann
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Qixiang Jiang
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Alexander Bismarck
- Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
4
|
Li G, Liu Y, Chen Y, Li M, Song J, Li K, Zhang Y, Hu L, Qi X, Wan X, Liu J, He Q, Zhou H. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces. J Neural Eng 2023; 20. [PMID: 36863014 DOI: 10.1088/1741-2552/acc098] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023]
Abstract
Objective.Reliable and user-friendly electrodes can continuously and real-time capture the electroencephalography (EEG) signals, which is essential for real-life brain-computer interfaces (BCIs). This study develops a flexible, durable, and low-contact-impedance polyvinyl alcohol/polyacrylamide double-network hydrogel (PVA/PAM DNH)-based semi-dry electrode for robust EEG recording at hairy scalp.Approach.The PVA/PAM DNHs are developed using a cyclic freeze-thaw strategy and used as a saline reservoir for semi-dry electrodes. The PVA/PAM DNHs steadily deliver trace amounts of saline onto the scalp, enabling low and stable electrode-scalp impedance. The hydrogel also conforms well to the wet scalp, stabilizing the electrode-scalp interface. The feasibility of the real-life BCIs is validated by conducting four classic BCI paradigms on 16 participants.Main results.The results show that the PVA/PAM DNHs with 7.5 wt% PVA achieve a satisfactory trade-off between the saline load-unloading capacity and the compressive strength. The proposed semi-dry electrode exhibits a low contact impedance (18 ± 8.9 kΩ at 10 Hz), a small offset potential (0.46 mV), and negligible potential drift (1.5 ± 0.4μV min-1). The temporal cross-correlation between the semi-dry and wet electrodes is 0.91, and the spectral coherence is higher than 0.90 at frequencies below 45 Hz. Furthermore, no significant differences are present in BCI classification accuracy between these two typical electrodes.Significance.Based on the durability, rapid setup, wear-comfort, and robust signals of the developed hydrogel, PVA/PAM DNH-based semi-dry electrodes are a promising alternative to wet electrodes in real-life BCIs.
Collapse
Affiliation(s)
- Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, People's Republic of China.,Department of Neurology, Zhuzhou People's Hospital, Zhuzhou 412008, People's Republic of China
| | - Ying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, People's Republic of China
| | - Yuwei Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, People's Republic of China
| | - Mingzhe Li
- Wuhan Greentek Pty. Ltd, Wuhan 430074, People's Republic of China
| | - Jian Song
- Department of Neurosurgery, General Hospital of Central Command Theater of PLA, Wuhan 430012, People's Republic of China
| | - Kanghua Li
- Department of Neurology, Zhuzhou People's Hospital, Zhuzhou 412008, People's Republic of China
| | - Youmei Zhang
- Department of Child Psychology, The Third Hospital of Zhuzhou, Zhuzhou 412003, People's Republic of China
| | - Le Hu
- Wuhan Greentek Pty. Ltd, Wuhan 430074, People's Republic of China
| | - Xiaoman Qi
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, People's Republic of China
| | - Xuan Wan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, People's Republic of China
| | - Jun Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, People's Republic of China
| | - Quanguo He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, People's Republic of China
| | - Haihan Zhou
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
5
|
Li B, Qin H, Ma M, Xu X, Zhou M, Hao W, Hu Z. Preparation of novel β-CD/P(AA- co-AM) hydrogels by frontal polymerization. RSC Adv 2023; 13:5667-5673. [PMID: 36816088 PMCID: PMC9929618 DOI: 10.1039/d2ra07649g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
In this paper, betaine (Bet) was used as a hydrogen bond acceptor (HBA), and acrylic acid (AA) and acrylamide (AM) were used as hydrogen bond donors (HBD) and mixed to form a deep eutectic solvent (DES). Different concentrations of β-cyclodextrin (β-CD) were dispersed in the DES, and a novel β-CD/P(AA-co-AM) hydrogel was prepared by frontal polymerization (FP). The characteristic structure and morphology of the hydrogels were analyzed using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM), and the properties of the hydrogels were investigated. The results show that the mechanical properties of the hydrogel were improved by β-CD acting as a second cross-linking agent in the polymerization process, thus increasing the cross-link density of the hydrogel. Because the carboxyl groups contained in the acrylic acid dissociate under alkaline conditions, the composite hydrogel shows excellent pH responsiveness under alkaline conditions. Tetracycline hydrochloride was used as a drug model to test the drug loading and drug release performance of the hydrogels. With the increase of β-CD content, the loading capacity of the hydrogels for tetracycline hydrochloride gradually increased. The data of drug release indicated that the hydrogel has good drug delivery performance and has promising applications in drug delivery systems and other areas.
Collapse
Affiliation(s)
- Bin Li
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Haibo Qin
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Ming Ma
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Xiaojia Xu
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Mengjing Zhou
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Wenrui Hao
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| | - Zhigang Hu
- School of Mechanical Engineering, Wuhan Polytechnic University Wuhan Hubei 430023 China
| |
Collapse
|
6
|
Ejeromedoghene O, Zuo X, Oderinde O, Yao F, Adewuyi S, Fu G. Photochromic Behavior of Inorganic Superporous Hydrogels Fabricated from Different Reacting Systems of Polymeric Deep Eutectic Solvents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Li H, Yin W, Ng CK, Huang R, Du S, Sharma M, Li B, Yuan G, Michalska M, Matta SK, Chen Y, Chandrasekaran N, Russo S, Cameron NR, Funston AM, Jasieniak JJ. Macroporous perovskite nanocrystal composites for ultrasensitive copper ion detection. NANOSCALE 2022; 14:11953-11962. [PMID: 35899800 DOI: 10.1039/d2nr02737b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accumulation of heavy metal ions, including copper ions (Cu2+), presents a serious threat to human health and to the environment. A substantial amount of research has focused on detecting such species in aqueous solutions. However, progress towards ultrasensitive and easy-to-use sensors for non-aqueous solutions is still limited. Here, we focus on the detection of copper species in hexane, realising ultra-sensitive detection through a fluorescence-based approach. To achieve this, a novel macroporous composite material has been developed featuring luminescent CsPbBr3 nanocrystals (NCs) chemically adhered to a polymerized high internal phase emulsion (polyHIPE) substrate through surface thiol groups. Due to this thiol functionality, sub-monolayer NC formation is realised, which also renders outstanding stability of the composite in the ambient environment. Copper detection is achieved through a direct solution based immersion of the CsPbBr3-(SH)polyHIPE composite, which results in concentration-dependent quenching of the NC photoluminescence. This newly developed sensor has a limit of detection (LOD) for copper as low as 1 × 10-16 M, and a wide operating window spanning 10-2 to 10-16 M. Moreover, the composite exhibits excellent selectivity among different transition metals.
Collapse
Affiliation(s)
- Hanchen Li
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Wenping Yin
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Chun Kiu Ng
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxi Huang
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Shengrong Du
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Manoj Sharma
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Bin Li
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Gangcheng Yuan
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Monika Michalska
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Sri Kasi Matta
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- School of Science, RMIT University, Melbourne, 3000, Australia
| | - Yu Chen
- Monash Centre for Electron Microscopy (MCEM), Monash University, Clayton, Victoria, 3800, Australia
| | - Naresh Chandrasekaran
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Salvy Russo
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- School of Science, RMIT University, Melbourne, 3000, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Alison M Funston
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Jacek J Jasieniak
- Australian Research Council Centre of Excellence in Exciton Science, Australia.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
8
|
Lin J, Xia X, Liu Y, Luan Z, Chen Y, Ma K, Geng B, Li H. Fabrication of hierarchical porous
fluoro‐PolyHIPE
materials with ultra‐high specific surface area via hypercrosslinking knitting technique. J Appl Polym Sci 2022. [DOI: 10.1002/app.52914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junzhi Lin
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Xianger Xia
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Yifei Liu
- School of Materials Science and Engineering University of Jinan Jinan China
| | - Zhenchao Luan
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Yezhen Chen
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Kunkai Ma
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Bing Geng
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| | - Hui Li
- School of Chemistry and Chemical Engineering University of Jinan Jinan China
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials University of Jinan Jinan China
| |
Collapse
|
9
|
Kemik ÖF, Yildiz U. Synthesis, characterization and evaluation of novel HIPE hydrogels: Application for treatment of hazardous waste incineration plant effluent. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ömer Ferkan Kemik
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
- İzmit Waste and Waste Treatment, Incineration and Evaluation Incorporated Company (İZAYDAŞ), Kocaeli, Turkey
| | - Ufuk Yildiz
- Department of Chemistry, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
10
|
Emulsion-based, flexible and recyclable aerogel composites for latent heat storage. J Colloid Interface Sci 2022; 627:72-80. [PMID: 35841710 DOI: 10.1016/j.jcis.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Although emulsion-based, phase change material-encapsulated monolithic composites are promising for latent heat storage, their rigidity and non-recyclability imposed by the relatively dense covalent crosslinking hinder the composites from real applications. Herein, we report the fabrication of aerogel composites with flexibility and recyclability from cellulose nanocrystal-stabilized, octadecane-encapsulated Pickering emulsions solidified using physical gelation. The resulting monolithic composites exhibited controllable external shapes, and the introduction of poly(vinyl alcohol) significantly reduced the leakage of the encapsulated octadecane. The aerogel composites showed flexibility at temperature over 30 °C, and robust compressive behavior, without fracture at 70% compressive strain. The composites possessed similar heat storage (melting) temperature and heat release (crystallization) temperature to that of bulk octadecane, high heat capacity (up to 253 J.g-1) and high reusability, without obvious deterioration in heat capacity after 100 heating-cooling cycles. Moreover, the aerogel composites exhibited recyclability, simply by dissolving the composites in hot water to form emulsions and then by freeze drying to form aerogel composites. The flexibility and recyclability, together with robust compression, controllable external shapes, high heat capacity and good reusability, make the aerogel composites to be excellent candidates for latent heat storage.
Collapse
|
11
|
Partow AJ, Meng S, Wong AJ, Savin DA, Tong Z. Recyclable & highly porous organo-aerogel adsorbents from biowaste for organic contaminants' removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154051. [PMID: 35217054 DOI: 10.1016/j.scitotenv.2022.154051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Selective aerogel has become an attractive adsorbent for removing oil and organic contaminants due to its low density and excellent adsorption capacity. However, aerogels usually use non-sustainable or expensive nanomaterials and require complicated fabrication processes. Herein, using low-cost lignin reclaimed from the biorefinery waste stream as the starting material, we fabricated a highly porous, mechanically strong, and stable aerogel via a simple and one-step method under mild conditions. This aerogel exhibits a controllable micropore structure and achieves quick and efficient adsorption for oil (435% g/g), as well as toxic solvents such as THF (365% g/g). The selective and stable adsorbent can be reused multiple times and the oil adsorption capacity after 5 cycles remained at 89%. This highly efficient, mechanically strong, stable, and regenerable aerogel is a potential candidate for multiple applications such as cleaning up organic contaminants, oil remediation, and oil/water separation. Meanwhile, it also employs a "waste-treat-waste" concept by adding extra value to the biorefinery process for high-efficiency circular bioeconomy.
Collapse
Affiliation(s)
- Arianna J Partow
- Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 1741 Museum Road, Gainesville, FL 32611, USA
| | - Shanyu Meng
- Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 1741 Museum Road, Gainesville, FL 32611, USA
| | - Alexander J Wong
- Department of Chemistry, Center for Macromolecular Science and Engineering, 117200, Gainesville, FL 32611-7200, USA
| | - Daniel A Savin
- Department of Chemistry, Center for Macromolecular Science and Engineering, 117200, Gainesville, FL 32611-7200, USA
| | - Zhaohui Tong
- Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 1741 Museum Road, Gainesville, FL 32611, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
12
|
Polysaccharide-based, emulsion-templated, porous poly(urethane urea)s: Composition, catalysis, cell growth. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Shivshetty N, Swift T, Pinnock A, Pownall D, Neil SM, Douglas I, Garg P, Rimmer S. Evaluation of ligand modified poly (N-Isopropyl acrylamide) hydrogel for etiological diagnosis of corneal infection. Exp Eye Res 2021; 214:108881. [PMID: 34871569 PMCID: PMC9012892 DOI: 10.1016/j.exer.2021.108881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Corneal ulcers, a leading cause of blindness in the developing world are treated inappropriately without prior microbiology assessment because of issues related to availability or cost of accessing these services. In this work we aimed to develop a device for identifying the presence of Gram-positive or Gram-negative bacteria or fungi that can be used by someone without the need for a microbiology laboratory. Working with branched poly (N-isopropyl acrylamide) (PNIPAM) tagged with Vancomycin, Polymyxin B, or Amphotericin B to bind Gram-positive bacteria, Gram-negative bacteria and fungi respectively, grafted onto a single hydrogel we demonstrated specific binding of the organisms. The limit of detection of the microbes by these polymers was between 10 and 4 organisms per high power field (100X) for bacteria and fungi binding polymers respectively. Using ex vivo and animal cornea infection models infected with bacteria, fungi or both we than demonstrated that the triple functionalised hydrogel could pick up all 3 organisms after being in place for 30 min. To confirm the presence of bacteria and fungi we used conventional microbiology techniques and fluorescently labelled ligands or dyes. While we need to develop an easy-to-use either a colorimetric or an imaging system to detect the fluorescent signals, this study presents for the first time a simple to use hydrogel system, which can be applied to infected eyes and specifically binds different classes of infecting agents within a short space of time. Ultimately this diagnostic system will not require trained microbiologists for its use and will be used at the point-of-care. Functionalised branched Poly N-isopropyl acrylamide binds corneal ulcer causing microorganisms. The functionalised polymers demonstrated specific binding to gram positive, gram negative and fungi. Grafting three different polymers on a single hydrogel retained this specific binding for microorganisms. Triple functionalised hydrogels were effective in picking up microorganisms in ex-vivo and animal cornea infection models. Application for a duration of 30 min was sufficient to pick up enough organisms for subsequent identification.
Collapse
Affiliation(s)
- Nagaveni Shivshetty
- Kallam Anji Reddy Campus, LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, Telangana, India.
| | - Thomas Swift
- Polymer and Biomaterial Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Abigail Pinnock
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, S3 7HQ, UK
| | - David Pownall
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, S3 7HQ, UK
| | - Sheila Mac Neil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, S3 7HQ, UK
| | - Ian Douglas
- School of Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Prashant Garg
- Kallam Anji Reddy Campus, LV Prasad Eye Institute, Banjara Hills, Hyderabad, 500034, Telangana, India.
| | - Stephen Rimmer
- Polymer and Biomaterial Chemistry Laboratories, School of Chemistry and Biosciences, University of Bradford, Bradford, BD7 1DP, UK
| |
Collapse
|
14
|
Hobiger V, Zahoranova A, Baudis S, Liska R, Krajnc P. Thiol-Ene Cross-linking of Poly(ethylene glycol) within High Internal Phase Emulsions: Degradable Hydrophilic PolyHIPEs for Controlled Drug Release. Macromolecules 2021; 54:10370-10380. [PMID: 34840351 PMCID: PMC8619294 DOI: 10.1021/acs.macromol.1c01240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/18/2021] [Indexed: 12/16/2022]
Abstract
![]()
Macroporous polymer
monoliths prepared from high internal phase
emulsions (HIPEs) can be found in various biomedical applications.
While typically water-in-oil HIPEs are applied for polyHIPE preparation,
they are not suitable for hydrophilic polyHIPE preparation. Herein,
direct oil-in-water emulsions based on water-soluble poly(ethylene
glycol)diacrylate or poly(ethylene glycol)dimethacrylate were developed.
Furthermore, the incorporation of a hydrophilic water-miscible thiol,
ethoxylated trimethylolpropane tris(3-mercaptopropionate) (ETTMP)
was reported for the first time within thiol–ene polyHIPEs.
Due to the transparency of the emulsions, rapid curing via photopolymerization
was feasible. The average pore diameters of the resulting polyHIPEs
ranged between 1.2 and 3.6 μm, and porosity of up to 90% was
achieved. The water uptake of the materials reached up to 1000% by
weight. Drug loading and release were demonstrated, employing salicylic
acid as a model drug. Porous profile and biodegradability add to the
usefulness of the material for biomedical applications.
Collapse
Affiliation(s)
- Viola Hobiger
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000, Slovenia
| | - Anna Zahoranova
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Stefan Baudis
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, Vienna 1060, Austria
| | - Peter Krajnc
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, Maribor 2000, Slovenia
| |
Collapse
|
15
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Kramer S, Cameron NR, Krajnc P. Porous Polymers from High Internal Phase Emulsions as Scaffolds for Biological Applications. Polymers (Basel) 2021; 13:polym13111786. [PMID: 34071683 PMCID: PMC8198890 DOI: 10.3390/polym13111786] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
High internal phase emulsions (HIPEs), with densely packed droplets of internal phase and monomers dispersed in the continuous phase, are now an established medium for porous polymer preparation (polyHIPEs). The ability to influence the pore size and interconnectivity, together with the process scalability and a wide spectrum of possible chemistries are important advantages of polyHIPEs. In this review, the focus on the biomedical applications of polyHIPEs is emphasised, in particular the applications of polyHIPEs as scaffolds/supports for biological cell growth, proliferation and tissue (re)generation. An overview of the polyHIPE preparation methodology is given and possibilities of morphology tuning are outlined. In the continuation, polyHIPEs with different chemistries and their interaction with biological systems are described. A further focus is given to combined techniques and advanced applications.
Collapse
Affiliation(s)
- Stanko Kramer
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Neil R. Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
- Correspondence: (N.R.C.); (P.K.)
| | - Peter Krajnc
- PolyOrgLab, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Correspondence: (N.R.C.); (P.K.)
| |
Collapse
|
17
|
Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from macroporous hydrogels via oil-in-water high internal phase emulsion templates for specific capture of Enterovirus 71. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Emulsion-templated macroporous ammonium based polymers: Synthesis and dye adsorption study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
19
|
Kapilov-Buchman K, Bialystocki T, Niezni D, Perry L, Levenberg S, Silverstein MS. Porous polycaprolactone and polycarbonate poly(urethane urea)s via emulsion templating: structures, properties, cell growth. Polym Chem 2021. [DOI: 10.1039/d1py01106e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macroporous, emulsion-templated, linear poly(urethane urea) elastomers were synthesized from polyols (poly(ε-caprolactone)s or polycarbonates) and a diisocyanate. Growing cells adhered to the walls, spread, and penetrated into the porous structures.
Collapse
Affiliation(s)
- Katya Kapilov-Buchman
- Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Tslil Bialystocki
- Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Danna Niezni
- Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Luba Perry
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| | - Michael S. Silverstein
- Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
20
|
Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020; 25:molecules25245795. [PMID: 33302592 PMCID: PMC7764781 DOI: 10.3390/molecules25245795] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels (HGs), as three-dimensional structures, are widely used in modern medicine, including regenerative medicine. The use of HGs in wound treatment and tissue engineering is a rapidly developing sector of medicine. The unique properties of HGs allow researchers to easily modify them to maximize their potential. Herein, we describe the physicochemical properties of HGs, which determine their subsequent applications in regenerative medicine and tissue engineering. Examples of chemical modifications of HGs and their applications are described based on the latest scientific reports.
Collapse
|
21
|
Inverse Poly-High Internal Phase Emulsions Poly(HIPEs) Materials from Natural and Biocompatible Polysaccharides. MATERIALS 2020; 13:ma13235499. [PMID: 33276681 PMCID: PMC7729674 DOI: 10.3390/ma13235499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 11/28/2022]
Abstract
This paper shows one of the few examples in the literature on the feasibility of novel materials from natural and biocompatible polymers like inulin (INU) or glycol chitosan (GCS) templated by the formation of o/w (inverse) high internal phase emulsion (HIPE). To the best of our knowledge, this is the first example of inverse polyHIPEs obtained from glycol chitosan or inulin. The obtained polyHIPEs were specifically designed for possible wound dressing applications. The HIPE (pre-crosslinking emulsion) was obtained as inverse HIPE, i.e., by forming a cream-like 80:20 v/v o/w emulsion by using the isopropyl myristate in its oil phase, which is obtained from natural sources like palm oil or coconut oil. The surfactant amount was critical in obtaining the inverse HIPE and the pluronic F127 was effective in stabilizing the emulsion comprising up to 80% v/v as internal phase. The obtained inverse HIPEs were crosslinked by UV irradiation for methacrylated INU or by glutaraldehyde-crosslinking for GCS. In both cases, inverse poly-HIPEs were obtained, which were physicochemically characterized. This paper introduces a new concept in using hydrophilic, natural polymers for the formation of inverse poly-HIPEs.
Collapse
|
22
|
Luo J, Huang Z, Liu L, Wang H, Ruan G, Zhao C, Du F. Recent advances in separation applications of polymerized high internal phase emulsions. J Sep Sci 2020; 44:169-187. [PMID: 32845083 DOI: 10.1002/jssc.202000612] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 01/11/2023]
Abstract
Polymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.
Collapse
Affiliation(s)
- Jinhua Luo
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Zhujun Huang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Linqi Liu
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Haiyan Wang
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Chenxi Zhao
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Fuyou Du
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China.,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|
23
|
Aldemir Dikici B, Claeyssens F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front Bioeng Biotechnol 2020; 8:875. [PMID: 32903473 PMCID: PMC7435020 DOI: 10.3389/fbioe.2020.00875] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Gui H, Zhang T, Ji S, Guan G, Guo Q. Nanofibrous, porous monoliths formed from gelating high internal phase emulsions using syndiotactic polystyrene. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Di-block copolymer stabilized methyl methacrylate based polyHIPEs: Influence of hydrophilic and hydrophobic co-monomers on morphology, wettability and thermal properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Thorson TJ, Gurlin RE, Botvinick EL, Mohraz A. Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization. Acta Biomater 2019; 94:173-182. [PMID: 31233892 DOI: 10.1016/j.actbio.2019.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Mitigation of the foreign body response (FBR) and successful tissue integration are essential to ensuring the longevity of implanted devices and biomaterials. The use of porous materials and coatings has been shown to have an impact, as the textured surfaces can mediate macrophage interactions with the implant and influence the FBR, and the pores can provide space for vascularization and tissue integration. In this study, we use a new class of implantable porous biomaterials templated from bicontinuous interfacially jammed emulsion gels (bijels), which offer a fully percolating, non-constricting porous network with a uniform pore diameter on the order of tens of micrometers, and surfaces with consistent curvature. We demonstrate that these unique morphological features, inherent to bijel-templated materials (BTMs), can enhance tissue integration and vascularization, and reduce the FBR. Cylindrical polyethylene glycol diacrylate (PEGDA) BTMs, along with PEGDA particle-templated materials (PTMs), and non-templated materials (NTMs), were implanted into the subcutaneous space of athymic nude mice. After 28 days, implants were retrieved and analyzed via histological techniques. Within BTMs, blood vessels of increased size and depth, changes in collagen deposition, and increased presence of pro-healing macrophages were observed compared to that of PTM and NTM implants. Bijel templating offers a new route to biomaterials that can improve the function and longevity of implantable devices. STATEMENT OF SIGNIFICANCE: All implanted biomaterials are subject to the foreign body response (FBR) which can have a detrimental effect on their efficacy. Altering the surface chemistry can decrease the FBR by limiting the amount of proteins adsorbed to the implant. This effect can be enhanced by including pores in the biomaterial to allow new tissue growth as the implant becomes integrated in the body. Here, we introduce a new class of self-assembled biomaterials comprising a fully penetrating, non-constricting pore phase with hyperbolic (saddle) surfaces for enhanced tissue integration. These unique morphological characteristics result in dense blood vessel formation and favorable tissue response properties demonstrated in a four-week implantation study.
Collapse
|
27
|
Zhang T, Sanguramath RA, Israel S, Silverstein MS. Emulsion Templating: Porous Polymers and Beyond. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02576] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tao Zhang
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | | | - Sima Israel
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Michael S. Silverstein
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
28
|
Azhar U, Huo Z, Yaqub R, Xu A, Zhang S, Geng B. Non-crosslinked fluorinated copolymer particles stabilized Pickering high internal phase emulsion for fabrication of porous polymer monoliths. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Chen J, Azhar U, Wang Y, Liang J, Geng B. Preparation of fluoropolymer materials with different porous morphologies by an emulsion template method using supercritical carbon dioxide as a medium. RSC Adv 2019; 9:11331-11340. [PMID: 35520270 PMCID: PMC9063414 DOI: 10.1039/c9ra00777f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
The choice of a suitable surfactant is key to the formation of a stable water-in-CO2 (W/C) or CO2-in-water (C/W) emulsion. It is even more critical in stabilization of the emulsion containing carbon dioxide (CO2). In this study, the successful preparation of W/C emulsion was achieved by using the amphiphilic block polymer poly(ethylene glycol) methyl ether-b-poly(trifluoroethyl methacrylate) (mPEG45-b-(TFEMA) n ) as a surfactant, in which CO2 was used as a solvent for the fluoromonomer, trifluoroethyl methacrylate (TFEMA). In the case of the W/C emulsion, CO2 and TFEMA were used as the continuous phase and water as the internal phase of the emulsion system. It has been found that in the length of the block polymer mPEG45-b-(TFEMA) n , the fluorine-containing chain end has a significant effect on the morphology of the polymer and the type of emulsion formed. The morphology of the polymer was observed by scanning electron microscopy which confirmed the type of emulsion formed. With the fluorine-containing end segment, the morphology of the polymer changes from a small hollow sphere in a large hollow sphere to a hollow spherical to a porous structure. Correspondingly, it could be concluded that the type of emulsion could go through the process from water-in-CO2-in-water-in-CO2 (W/C/W/C) emulsion to water-in-CO2-in-water (W/C/W) emulsion to water-in-CO2 (W/C) emulsion. Also, suitable co-surfactants were identified in this study. Investigations were also attempted to check the effect of the amount of surfactant, cross-linker and water/CO2 ratio on the type of emulsion formed as well as the morphology of the resultant polymer.
Collapse
Affiliation(s)
- Jian Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials China
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials China
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| | - Yongkang Wang
- Institute of Fluorescent Probes for Biological Imaging, University of Jinan Shandong China
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| | - Jihong Liang
- Institute of Fluorescent Probes for Biological Imaging, University of Jinan Shandong China
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| | - Bing Geng
- Institute of Fluorescent Probes for Biological Imaging, University of Jinan Shandong China
- School of Chemistry and Chemical Engineering, University of Jinan Jinan 250022 China
| |
Collapse
|
30
|
Liu S, Jin M, Chen Y, Teng L, Qi D, Ren L. Air‐In‐Water Emulsion Solely Stabilized by Gelatin Methacryloyl and Templating for Macroporous Nanocomposite Hydrogels. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sa Liu
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Provinceand Innovation Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
| | - Min Jin
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Yunhua Chen
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Provinceand Innovation Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
| | - Lijing Teng
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
| | - Dawei Qi
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
| | - Li Ren
- School of Materials Science and EngineeringSouth China University of Technology Guangzhou 510640 China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
- Key Laboratory of Biomedical Engineering of Guangdong Provinceand Innovation Center for Tissue Restoration and ReconstructionSouth China University of Technology Guangzhou 510006 China
| |
Collapse
|
31
|
Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Duan C, Zou W, Du Z, Li H, Zhang C. Fabrication of micro-mesopores in macroporous poly (formaldehyde-melamine) monoliths via reaction-induced phase separation in high internal phase emulsion template. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Wang Y, Azhar U, He J, Chen H, Zhao J, Pang AM, Geng B. A facile fabrication of porous fluoro-polymer with excellent mechanical properties based on high internal phase emulsion templating using PLA as co-stabilizer. RSC Adv 2019; 9:40513-40522. [PMID: 35542673 PMCID: PMC9076259 DOI: 10.1039/c9ra08226c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/30/2019] [Indexed: 11/24/2022] Open
Abstract
The stability of fluoro-high internal phase emulsion (fluoro-HIPE) systems and fluoro-polyHIPEs’ mechanical strength require further improvement to meet the requirements of future applications. In this study, we used polylactic acid (PLA) as a co-stabilizer to improve the stability of the fluoro-polyHIPE. The effects of concentration and molecular weight of PLA on the pores of the fluoro-polyHIPEs were investigated. The addition of PLA produced a porous material with narrower void size distributions, higher specific surface areas and enhanced mechanical properties compared to the fluoro-polyHIPE material without the additive. The resulting fluoro-polyHIPE showed smaller pore sizes (void diameters ranged from 1–3 μm) and an improved hydrophobic nature (contact angle can reach to 148.6°). The crush strength and Young's modulus values can reach 4.42 and 74.07 MPa, respectively, at a PLA addition of 25 wt% (oil phase composition), representing increases of 246% and 650% over fluoro-polyHIPE without PLA addition. The fluoro-poly-HIPE demonstrated excellent mechanical properties compared to many engineering foams, such as melamine, polystyrene, and even graphite foams. Improvements in the performance of porous fluoropolymer materials will be beneficial for many applications, such as chemical adsorption and separation, etc. Effect of PLA on the stability of fluorinated-HIPE and size tuning of the resultant fluoro-polyHIPE with enhanced mechanical properties.![]()
Collapse
Affiliation(s)
- Yongkang Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jinxuan He
- Science and Technology on Aerospace Chemical Power Laboratory
- Xiangyang
- China
| | - Huiying Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jianzhi Zhao
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Ai-Min Pang
- Science and Technology on Aerospace Chemical Power Laboratory
- Xiangyang
- China
| | - Bing Geng
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
34
|
Azhar U, Zong C, Wan X, Xu A, Yabin Z, Liu J, Zhang S, Geng B. Methyl Methacrylate HIPE Solely Stabilized by Fluorinated Di-block Copolymer for Fabrication of Highly Porous and Interconnected Polymer Monoliths. Chemistry 2018; 24:11619-11626. [PMID: 30003616 DOI: 10.1002/chem.201800787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/03/2018] [Indexed: 01/26/2023]
Abstract
Preparation of stable water-in-oil (W/O) high internal phase emulsion (HIPE) containing methyl methacrylate (MMA) monomer as oil phase is a difficult task due to the significant solubility of MMA in water. Here, for the first time a fluorinated di-block copolymer (FDBC) poly (2-dimethylamino)ethylmethacrylate-b-poly (trifluoroethyl methacrylate) (PDMAEMA-b-PTFEMA) is proposed to stabilize HIPEs of MMA without the use of any co-stabilizer or thickening agent. Fluorinated segments in FDBC anchored well at oil/water interface of HIPE, offering high hydrophobicity to the partially hydrophilic MMA monomer and in turn stabilization to MMA-HIPE. By using fluorinated di-block copolymer as stabilizer, highly stable HIPEs can be obtained. In addition, highly interconnected porous monoliths were obtained after free radical polymerization, which are highly desirable materials in various practical applications including tissue engineering scaffolds, separation science, bio-engineering and so on. The as-prepared MMA-HIPEs possess high thermal stability without phase separation. The textural characteristics of as-prepared composites, such as pore size and distribution, can be easily controlled by simply varying the amount of FDBC and/or dispersed phase fraction. Moreover, the influence of di-block concentration on water uptake (WU) capability of the prepared porous monoliths is explored.
Collapse
Affiliation(s)
- Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Shandong Engineering Research center for Fluorinated Materials, University of Jinan, Jinan, 250022, China
| | - Chuanyong Zong
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Shandong Engineering Research center for Fluorinated Materials, University of Jinan, Jinan, 250022, China
| | - Xiaozheng Wan
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Shandong Engineering Research center for Fluorinated Materials, University of Jinan, Jinan, 250022, China
| | - Anhou Xu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Shandong Engineering Research center for Fluorinated Materials, University of Jinan, Jinan, 250022, China
| | - Zhang Yabin
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Shandong Engineering Research center for Fluorinated Materials, University of Jinan, Jinan, 250022, China
| | - Jitao Liu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Shandong Engineering Research center for Fluorinated Materials, University of Jinan, Jinan, 250022, China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Shandong Engineering Research center for Fluorinated Materials, University of Jinan, Jinan, 250022, China
| | - Bing Geng
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, Shandong Engineering Research center for Fluorinated Materials, University of Jinan, Jinan, 250022, China
| |
Collapse
|
35
|
Zhang T, Silverstein MS. Microphase-Separated Macroporous Polymers from an Emulsion-Templated Reactive Triblock Copolymer. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00213] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tao Zhang
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| | - Michael S. Silverstein
- Department of Materials Science and Engineering, Technion−Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
36
|
Porous hydrogel containing Prussian blue nanoparticles for effective cesium ion adsorption in aqueous media. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.11.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Duan C, Du Z, Zou W, Li H, Zhang C. Construction of Nitrogen-Containing Hierarchical Porous Polymers and Its Application on Carbon Dioxide Capturing. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Cheng Duan
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhongjie Du
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hangquan Li
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
38
|
Abstract
Numerous processing techniques aim to impart interconnected, porous structures within regenerative medicine materials to support cell delivery and direct tissue growth. Many of these techniques lack predictable control of scaffold architecture, and rapid prototyping methods are often limited by time-consuming, layer-by-layer fabrication of micro-features. Bicontinuous interfacially jammed emulsion gels (bijels) offer a robust, self-assembly-based platform for synthesizing a new class of morphologically unique cell delivery biomaterials. Bijels form via kinetic arrest of temperature-driven spinodal decomposition in partially miscible binary liquid systems. These non-equilibrium soft materials are comprised of co-continuous, fully percolating, non-constricting liquid domains separated by a nanoparticle monolayer. Through the selective introduction of biocompatible precursors, hydrogel scaffolds displaying the morphological characteristics of the parent bijel can be formed. We report using bijel templating to generate structurally unique, fibrin-loaded polyethylene glycol hydrogel composites. Demonstration of composite bijel-templated hydrogels (CBiTHs) as a new cell delivery system was carried out in vitro using fluorescence-based tracking of cells delivered to previously acellular fibrin gels. Imaging analysis confirmed repeatable delivery of normal human dermal fibroblasts to acellular fibrin gels.
Collapse
Affiliation(s)
- Todd J. Thorson
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| | - Elliot L. Botvinick
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Ali Mohraz
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, USA
| |
Collapse
|
39
|
Gui H, Zhang T, Guo Q. Closed-cell, emulsion-templated hydrogels for latent heat storage applications. Polym Chem 2018. [DOI: 10.1039/c8py00785c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hydrogel polyHIPEs with closed-cell structures were prepared from o/w Pickering HIPEs, and applied in latent heat storage.
Collapse
Affiliation(s)
- Haoguan Gui
- Polymers Research Group
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Tao Zhang
- Polymers Research Group
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Qipeng Guo
- Polymers Research Group
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| |
Collapse
|
40
|
Wan X, Azhar U, Wang Y, Chen J, Xu A, Zhang S, Geng B. Highly porous and chemical resistive P(TFEMA–DVB) monolith with tunable morphology for rapid oil/water separation. RSC Adv 2018; 8:8355-8364. [PMID: 35542035 PMCID: PMC9078523 DOI: 10.1039/c8ra00501j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 11/27/2022] Open
Abstract
A facile preparation for a series of porous poly(2,2,2-trifluoroethylmethacrylate–divinylbenzene) P(TFEMA–DVB) foams is discussed in this paper. The foams have adjustable morphology utilizing a suitable commercial surfactant, Hypermer B246, as stabilizer, and were compared with traditional organic surfactants or macromolecular block-polymers. Combining the porous properties and advantages of fluorine atoms, this type of fluoropolymer exhibited superb chemical stability and hydrophobicity performances with high porosity. These porous fluoro-monoliths preserved their regular porous structure without any degradation after immersion into strong acidic or basic solution for three days, hence demonstrating an excellent potential to deal with environmental pollution caused by oil spillages in severe environments. The tunable morphology (open and closed pores) and pore sizes were achieved by investigating various parameters like surfactant concentration, amount of external crosslinker, and aqueous phase volume. Droplet sizes of HIPEs were characterized using an optical microscope under different experimental conditions. The influence of pore structure and surface properties of polyHIPE on water contact angle and oil adsorption capacity was also explored. The results indicated that the porous material has an excellent oleophilicity and hydrophobicity, with water contact angles (WCA) up to 146.4°. Additionally, the results presented a noticeable adsorption with a very fast rate towards organic oils from either a water surface or bottom with adsorption saturation achieved in about 120 s. The prepared polyHIPEs showed a good recycling ability; even after 10 adsorption–centrifugation experiments, the adsorption capacity was still more than 85%. A facile preparation for a series of porous poly(2,2,2-trifluoroethylmethacrylate–divinylbenzene) P(TFEMA–DVB) foams is discussed in this paper.![]()
Collapse
Affiliation(s)
- Xiaozheng Wan
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Umair Azhar
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yongkang Wang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Jian Chen
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Anhou Xu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Shuxiang Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Bing Geng
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
41
|
Chen X, Yuan W, Jiang M, Xie X. Surface glycopolymer-modified functional macroporous polyHIPE obtained by ATRP for the removal of boron in water. NEW J CHEM 2018. [DOI: 10.1039/c7nj03737f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macroporous polymeric monoliths PHIPE-PGAMA were obtained from polyHIPE with surface modification of PGAMA and used for boron removal.
Collapse
Affiliation(s)
- Xiangnan Chen
- Department of Dermatology, Tongji Hospital, Shanghai 10th People's Hospital, School of Medicine, School of Materials Science and Engineering, Tongji University
- Shanghai
- P. R. China
| | - Weizhong Yuan
- Department of Dermatology, Tongji Hospital, Shanghai 10th People's Hospital, School of Medicine, School of Materials Science and Engineering, Tongji University
- Shanghai
- P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- Donghua University
| | - Miao Jiang
- Department of Dermatology, Tongji Hospital, Shanghai 10th People's Hospital, School of Medicine, School of Materials Science and Engineering, Tongji University
- Shanghai
- P. R. China
| | - Xiaoyun Xie
- Department of Dermatology, Tongji Hospital, Shanghai 10th People's Hospital, School of Medicine, School of Materials Science and Engineering, Tongji University
- Shanghai
- P. R. China
| |
Collapse
|
42
|
Zhang T, Silverstein MS. Highly porous, emulsion-templated, zwitterionic hydrogels: amplified and accelerated uptakes with enhanced environmental sensitivity. Polym Chem 2018. [DOI: 10.1039/c8py00588e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Highly porous, emulsion-templated, zwitterionic hydrogels exhibited amplified and accelerated uptakes, enhanced environmental sensitivity, anti-polyelectrolyte behavior, and dual-pH sensitive uptakes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Materials Science and Engineering
- Technion – Israel Institute of Technology
- Haifa
- Israel
- College of Textile and Clothing Engineering
| | - Michael S. Silverstein
- Department of Materials Science and Engineering
- Technion – Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|
43
|
Williams DF. * A Paradigm for the Evaluation of Tissue-Engineering Biomaterials and Templates. Tissue Eng Part C Methods 2017; 23:926-937. [PMID: 28762883 DOI: 10.1089/ten.tec.2017.0181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Procedures for the evaluation of tissue-engineering processes, including those used for the testing of the relevant biomaterials, have not been developed in a logical manner. This perspectives paper discusses the limitations of testing regimes and recommends a very different approach. The main emphasis is on the existing methods for assessing the biological safety of these biomaterials, which, it is suggested, are irrelevant for evaluating materials that are intended to facilitate the generation of new tissue. An algorithm is proposed that sets out the pathway from materials design and characterization through to the production of a file that sets out full biocompatibility, functionality, and tissue incorporation data that are suitable for regulatory consideration for first-in-man experiences. Central to this algorithm is the choice of animal models and the real-time monitoring of the implanted construct performance.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine , Winston Salem, North Carolina
| |
Collapse
|
44
|
|
45
|
Khodabandeh A, Arrua RD, Mansour FR, Thickett SC, Hilder EF. PEO-based brush-type amphiphilic macro-RAFT agents and their assembled polyHIPE monolithic structures for applications in separation science. Sci Rep 2017; 7:7847. [PMID: 28798377 PMCID: PMC5552774 DOI: 10.1038/s41598-017-08423-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022] Open
Abstract
Polymerized High Internal Phase Emulsions (PolyHIPEs) were prepared using emulsion-templating, stabilized by an amphiphilic diblock copolymer prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. The diblock copolymer consisted of a hydrophilic poly(ethylene glycol) methyl ether acrylate (PEO MA, average Mn 480) segment and a hydrophobic styrene segment, with a trithiocarbonate end-group. These diblock copolymers were the sole emulsifiers used in stabilizing "inverse" (oil-in-water) high internal phase emulsion templates, which upon polymerization resulted in a polyHIPE exhibiting a highly interconnected monolithic structure. The polyHIPEs were characterized by FTIR spectroscopy, BET surface area measurements, SEM, SEM-EDX, and TGA. These materials were subsequently investigated as stationary phase for high-performance liquid chromatography (HPLC) via in situ polymerization in a capillary format as a 'column housing'. Initial separation assessments in reversed-phase (RP) and hydrophilic interaction liquid chromatographic (HILIC) modes have shown that these polyHIPEs are decorated with different microenvironments amongst the voids or domains of the monolithic structure. Chromatographic results suggested the existence of RP/HILIC mixed mode with promising performance for the separation of small molecules.
Collapse
Affiliation(s)
- Aminreza Khodabandeh
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - R Dario Arrua
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Fotouh R Mansour
- Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Tasmania, Australia
- Department of Pharmaceutical Analytical Chemistry, Tanta University, Tanta, Egypt
| | - Stuart C Thickett
- School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, 7001, Australia
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
46
|
Brusotti G, Calleri E, Milanese C, Catenacci L, Marrubini G, Sorrenti M, Girella A, Massolini G, Tripodo G. Rational design of functionalized polyacrylate-based high internal phase emulsion materials for analytical and biomedical uses. Polym Chem 2016. [DOI: 10.1039/c6py01992g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional polyacrylate-based materials rationally designed by high internal phase emulsion (polyHIPE) are reported.
Collapse
Affiliation(s)
| | - Enrica Calleri
- Department of Drug Sciences
- University of Pavia
- Pavia
- Italy
| | - Chiara Milanese
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | | | | - Alessandro Girella
- C.S.G.I. - Department of Chemistry
- Physical-Chemistry Section
- University of Pavia
- Pavia
- Italy
| | | | | |
Collapse
|