1
|
Martínez-Pérez-Cejuela H, Calabretta MM, Michelini E. Chemiluminescence "Add-and-Measure" Sensing Paper Based on the Prussian Blue/Metal-Organic Framework MIL-101 Nanozyme for Rapid Hydrogen Peroxide Detection. Anal Chem 2024; 96:16561-16569. [PMID: 39373876 DOI: 10.1021/acs.analchem.4c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In this work, a chemiluminescent sensing paper has been developed using a peroxidase biomimetic metal-organic framework as a versatile host platform. For the first time, we have explored the use of in situ growth of Prussian Blue nanoparticles (PB-NPs) onto the MIL-101(Fe) structure for the assembly of a ready-to-use sensing paper. In situ growth of PB-NPs has been performed on the surface of the MIL-101(n) family. This novel composite, named PB-NPs@MIL-101(Fe), has been successfully used to develop a sensing paper for one-step detection of H2O2 in real samples (commercial disinfectant solutions and tap water samples). The as-prepared material was fully characterized, including X-ray analysis, Fourier transform infrared, scanning and transmission electron microscopies, nitrogen isotherms, and elemental analysis. After the characterization, the analytical performance of the PB-NPs@MIL-101(Fe) sensing paper was evaluated. The low-cost sensor (0.15 euro per unit) was able to detect down to 8.2 μM (corresponding to 8.2 × 10-11 mol) H2O2 using only 10 μL of sample with satisfactory reproducibility (relative standard deviation 17%).
Collapse
Affiliation(s)
| | - Maria Maddalena Calabretta
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
| | - Elisa Michelini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via P. Gobetti 85, 40129 Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Xu S, Zhou T, Wang J, Guo G, Chen Z, Li H, Yang Z, Gao Y. Determination of deoxynivalenol (DON) by a label-free electrochemical immunosensor based on NiFe PBA nanozymes. Food Chem 2024; 463:141436. [PMID: 39340910 DOI: 10.1016/j.foodchem.2024.141436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
Deoxynivalenol (DON) contamination in food products significantly threatens human health, necessitating a reliable and sensitive detection method. This study aims to develop a simple, low-cost, and effective electrochemical immunoassay method for detecting DON based on the nickel‑iron bimetallic Prussian blue analog (NiFe PBA). The NiFe PBA nanozymes with high peroxidase-like activity were synthesized using an environmentally friendly chemical precipitation method. In the presence of hydrogen peroxide (H2O2), the current change of thionine oxidation initiated by NiFe PBA nanozymes can be exploited to diagnose DON. Under optimal conditions, the proposed method achieved quantitative detection of DON in the range of 10-107 pg mL-1 with a detection limit of 4.5 pg mL-1 (S/N = 3), demonstrating excellent selectivity, reproducibility, and stability. In addition, the DON immunosensor provides satisfactory results for the detection in real samples, demonstrating the feasibility of the proposed sensor in detecting of DON in such products.
Collapse
Affiliation(s)
- Suhui Xu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Tianhao Zhou
- College of Agricultural and Environmental Sciences, University of California, California 95616, United States
| | - Jiamin Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Ge Guo
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhiyan Chen
- School of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Huaxiang Li
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
3
|
Sun Q, Yu W, Gong M, Ma J, Liu G, Mei T, Luo X. Xanthine oxidase immobilized cellulose membrane-based colorimetric biosensor for screening and detecting the bioactivity of xanthine oxidase inhibitors. Int J Biol Macromol 2024; 275:133450. [PMID: 38944077 DOI: 10.1016/j.ijbiomac.2024.133450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Xanthine oxidase (XO) is a typical target for hyperuricemia and gout, for which there are only three commercial xanthine oxidase inhibitors (XOIs): febuxostat, topiroxostat and allopurinol. However, these inhibitors have problems such as low bioactivity and several side effects. Therefore, the development of novel XOIs with high bioactivity for the treatment of hyperuricemia and gout is urgently needed. In this work we constructed a XO immobilized cellulose membrane colorimetric biosensor (XNCM) by the TEMPO oxidation, amide bond coupling and nitro blue tetrazolium chloride (NBT) loading method. As expected, the XNCM was able to detect xanthine, with high selectivity and sensitivity by colorimetric method with a distinctive color change from yellow to purple, which can be easily observed by the naked-eye in just 8 min without any complex instrumentation. In addition, the XNCM sensor performed screening of 21 different compounds and have been successfully pre-screened out XOIs with biological activity. Most importantly, the XNCM was able to quantitatively detect the IC50 values of two commercial inhibitors (febuxostat and allopurinol). All the results confirmed that the XNCM is a simple and effective tool which can be used for the accelerated screening of XOIs and has the potential to uncover additional XOIs.
Collapse
Affiliation(s)
- Qi Sun
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Wenlong Yu
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Mixue Gong
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jingfang Ma
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Genyan Liu
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Tao Mei
- Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xiaogang Luo
- School of Chemistry and Environmental Engineering, Hubei key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-based Environmental and Energy Materials in Petroleum, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
4
|
Liu J, Ha W, Alibekovna EK, Ma R, Shi YP. Ruptured organosilica nanocapsules immobilized acetylcholinesterase coupled with MnO 2 nanozyme for screening inhibitors from Inula macrophylla. NANOSCALE 2023; 15:17464-17472. [PMID: 37860933 DOI: 10.1039/d3nr04025a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Abnormal expression of acetylcholinesterase (AChE) causes Alzheimer's disease (AD). Inhibiting AChE is a common strategy for reducing the degradation of neurotransmitter acetylcholine, in order to treat early-stage AD. Therefore, it is crucial to screen and explore AChE inhibitors which are safer and cause fewer side effects. Our research is focused on establishing a platform of ruptured organosilica nanocapsules (RONs) immobilized AChE coupled with an MnO2-OPD colorimetric assay, which could monitor AChE activity and screen AChE inhibitors. The fabricated RONs immobilized AChE possessed excellent pH and thermal stability. Huperzine A was introduced into the established platform to evaluate the inhibition kinetics of the immobilized AChE, which promoted its application in the screening of AChE inhibitors. The satisfactory results of enzyme inhibition kinetics proved the feasibility and applicability of the established method. Thus, the proposed platform was applied to screen AChE inhibitors from 14 compounds isolated from Inula macrophylla, and β-cyclocostunolide (compound 4) demonstrated the best AChE inhibitory activity among these compounds. This work confirms the existence of chemical components that inhibit AChE activity in Inula macrophylla, and provides a new idea for the application of immobilized enzyme-nanozyme in the field of enzyme inhibitor screening.
Collapse
Affiliation(s)
- Jia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Eshbakova Komila Alibekovna
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| |
Collapse
|
5
|
Guo G, Xu SH, Du YT, Jiang TM, Song JL, Yang ZQ, Gao YJ. Potassium cobalt hexacyanoferrate as a peroxidase mimic for electrochemical immunosensing of Lactobacillus rhamnosus GG. Talanta 2023; 264:124746. [PMID: 37285699 DOI: 10.1016/j.talanta.2023.124746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
In this paper, the potassium cobalt hexacyanoferrate (II), K2CoFe(CN)6, with peroxidase-like activity was used for the fabrication of a novel label-free Lactobacillus rhamnosus GG (LGG) electrochemical immunosensor. The K2CoFe(CN)6 nanocubes were made by a simple hydrothermal method and followed by low-temperature calcination. In addition to structural characterization, the peroxidase-mimicking catalytic property of the material was confirmed by a chromogenic reaction. It is known that H2O2 can oxidize electroactive thionine molecules under the catalysis of horseradish peroxidase (HRP). In this nanozyme-based electrochemical immunoassay, due to the steric hindrance, the formation of immune-complex of LGG and LGG antibody on the modified GCE inhibits the catalytic activity of the peroxidase mimics of K2CoFe(CN)6 and thus reduced the current signal. Therefore, the developed electrochemical immunosensor achieved quantitative detection of LGG. Under optimal conditions, the linear range of the sensor was obtained from 101 to 106 CFU mL-1 with a minimum detection limit (LOD) of 12 CFU mL-1. Furthermore, the immunosensor was successfully applied in the quantitative detection of LGG in dairy product samples with recoveries ranging from 93.2% to 106.8%. This protocol presents a novel immunoassay method, which provides an alternative implementation pathway for the quantitative detection of microorganisms.
Collapse
Affiliation(s)
- Ge Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Su-Hui Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yi-Tian Du
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Tie-Min Jiang
- South Asia Branch of National Engineering Research Center of Dairy Health for Maternal and Child Health, Guilin University of Technology, Guilin 541004, China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, Guilin Medical University, Guilin, Guangxi, 541004, China; Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, 541004, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Ya-Jun Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
6
|
Mohan Arjun A, Shabana N, Ankitha M, Abdul Rasheed P. Electrochemical deposition of Prussian blue on Nb2CT MXene modified carbon cloth for the non-enzymatic electrochemical detection of hydrogen peroxide. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Lin J, Zhuang Y, Chen J, Han Z, Chen J. TiO 2-In-MIL-101(Cr) with Visible Light-Induced Peroxidase Activity for Colorimetric Detection of Blood Glucose. ACS OMEGA 2022; 7:45527-45534. [PMID: 36530260 PMCID: PMC9753185 DOI: 10.1021/acsomega.2c06176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this work, metal-organic framework MIL-101(Cr) with regular morphology, stable structure, and good dispersion was prepared by the hydrothermal method. MIL-101(Cr) has two different sizes of pores, but after TiO2 nanoparticles (NPs) were in situ prepared, the two pores disappear. The result demonstrates that TiO2 NPs were located in the pores of MIL-101(Cr). TiO2-decorated MIL-101(Cr) forms an inside type II heterojunction and the band gap energy is narrowed, which can promote electron-hole separation and enhance the light absorption. Therefore, the heterojunction shows a high visible light-induced peroxidase-like activity. Kinetic studies exhibit that the K m value of TiO2-in-MIL-101(Cr) to TMB is 0.17 mM, and the affinity of TiO2-in-MIL-101(Cr) is higher than that of natural horseradish peroxidase (HRP). Then, a "turn-on" colorimetric assay based on TiO2-in-MIL-101(Cr) was constructed for the detection of blood glucose. The detection range is 1-100 μM (R 2 = 0.9950) with a limit of detection (LOD) of 1.17 μM. Compared with the clinical method, the constructed colorimetric method has accurate and reliable results for the clinical detection. The anti-interference experiment confirms that the method has high selectivity to glucose.
Collapse
Affiliation(s)
- Jianwei Lin
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Yafeng Zhuang
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Jing Chen
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Zhizhong Han
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Jinghua Chen
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| |
Collapse
|
8
|
Sahoo P, Kundu S, Roy S, Sharma SK, Ghosh J, Mishra S, Mukherjee A, Ghosh CK. Fundamental understanding of the size and surface modification effects on r 1, the relaxivity of Prussian blue nanocube@ m-SiO 2: a novel targeted chemo-photodynamic theranostic agent to treat colon cancer. RSC Adv 2022; 12:24555-24570. [PMID: 36128364 PMCID: PMC9425834 DOI: 10.1039/d2ra03995h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
A targeted multimodal strategy on a single nanoplatform is attractive in the field of nanotheranostics for the complete ablation of cancer. Herein, we have designed mesoporous silica (m-SiO2)-coated Prussian blue nanocubes (PBNCs), functionalized with hyaluronic acid (HA) to construct a multifunctional PBNC@m-SiO2@HA nanoplatform that exhibited good biocompatibility, excellent photodynamic activity, and in vitro T 1-weighted magnetic resonance imaging ability (r 1 ∼ 3.91 mM-1 s-1). After loading doxorubicin into the as-prepared PBNC@m-SiO2@HA, the developed PBNC@m-SiO2@HA@DOX displayed excellent pH-responsive drug release characteristics. Upon irradiation with 808 nm (1.0 W cm-2) laser light, PBNC@m-SiO2@HA@DOX exhibited synergistic photodynamic and chemotherapeutic efficacy (∼78% in 20 minutes) for human colorectal carcinoma (HCT 116) cell line compared to solo photodynamic or chemotherapy. Herein, the chemo-photodynamic therapeutic process was found to follow the apoptotic pathway via ROS-mediated mitochondrion-dependent DNA damage with a very low cellular uptake of PBNC@m-SiO2@HA@DOX for the human embryonic kidney (HEK 293) cell line, illustrating its safety. Hence, it may be stated that the developed nanoplatform can be a potential theranostic agent for future applications. Most interestingly, we have noted variation in r 1 at each step of the functionalization along with size variation that has been the first time modelled on the basis of the Solomon-Bloembergen-Morgan theory considering changes in the defect crystal structure, correlation time, water diffusion rate, etc., due to varied interactions between PBNC and water molecules.
Collapse
Affiliation(s)
- Panchanan Sahoo
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
- Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute Giridih Jharkhand India
| | - Sudip Kundu
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| | - Shubham Roy
- Department of Physics, Jadavpur University Kolkata-700032 India
| | - S K Sharma
- Eko X-Ray & Imaging Institute 54, Jawaharlal Nehru Road Kolkata-700071 India
| | - Jiten Ghosh
- XRD and SEM Units, Materials Characterization and Instrumentation Division, CSIR-Central Glass and Ceramic Research Institute India
| | - Snehasis Mishra
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| | - Abhishek Mukherjee
- Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute Giridih Jharkhand India
| | - Chandan Kumar Ghosh
- School of Materials Science and Nanotechnology, Jadavpur University Kolkata-700032 India
| |
Collapse
|
9
|
Komkova MA, Karyakin AA. Prussian blue: from advanced electrocatalyst to nanozymes defeating natural enzyme. Mikrochim Acta 2022; 189:290. [PMID: 35879483 DOI: 10.1007/s00604-022-05363-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 01/08/2023]
Abstract
The pathway from the advanced electrocatalyst to nanozymes defeating natural enzyme is reviewed. Prussian blue, being the most advantageous electrocatalyst for hydrogen peroxide reduction, is obviously the best candidate for mimicking peroxidase activity. Indeed, catalytically synthesized Prussian blue nanoparticles are characterized by the catalytic rate constants, which are significantly (up to 4 orders of magnitude) higher than for enzyme peroxidase. Displaying in addition the enzymatic specificity in terms of an absence of oxidase-like activity, catalytically synthesized Prussian blue nanoparticles can be referred to as nanozymes. The latter provide the most versatile method for surface covering with the electrocatalyst, allowing to modify non-traditional materials like boron-doped diamond. For stabilization, Prussian blue core can be covered with nickel hexacyanoferrate shell; the resulting core-shell nanozymes still defeat natural enzyme in terms of activity. Discovering the catalytic pathway of nanozymes "artificial peroxidase" action, we have found the novel advantage of nanozymes over the corresponding biological catalysts: their dramatically (100 times) improved bimolecular rate constants.
Collapse
Affiliation(s)
- Maria A Komkova
- Chemistry Faculty of M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Arkady A Karyakin
- Chemistry Faculty of M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
10
|
Chen Z, Lu S, Zhang Z, Huang X, Zhao H, Wei J, Li F, Yuan K, Su L, Xiong Y. Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection. Mikrochim Acta 2022; 189:275. [PMID: 35829782 DOI: 10.1007/s00604-022-05379-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Gold nanoparticles (AuNPs) and their composites have been applied in surface-enhanced Raman scattering (SERS) detection methods, owing to their stable and excellent surface plasmon resonance. Unfortunately, methods for synthesizing AuNPs often require harsh conditions and complicated external steps. Additionally, removing residual surfactants or unreacted reductants is critical for improving the sensitivity of SERS detection, especially when employing AuNPs-assembled multidimensional substrates. In this study, we propose a simple and green method for AuNPs synthesis via photoreduction, which does not require external surfactant additives or stabilizers. All the processes were completed within 20 min. Along this way, only methanol was employed as the electron acceptor. Based on this photoreduction synthesis strategy, AuNPs can be directly and circularly assembled in situ in multidimensional substrates for SERS detection. The removal of residual methanol was easy because of its low boiling point. This strategy was employed for the preparation of three different dimensional SERS substrates: filter paper@AuNPs, g-C3N4@AuNPs, and MIL-101(Cr)@AuNPs. The limit of detection of filter paper@AuNPs for thiabendazole SERS detection was 1.0 × 10-7 mol/L, while the limits of detection of g-C3N4@AuNPs and MIL-101(Cr)@AuNPs for malachite green SERS detection were both 5.0 × 10-11 mol/L. This strategy presents potential in AuNP doping materials and SERS detection.
Collapse
Affiliation(s)
- Zhengyi Chen
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China.
| | - Shengyong Lu
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
| | - Zhi Zhang
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
| | - Xuemei Huang
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Hao Zhao
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Jiaxin Wei
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Fengling Li
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Kunting Yuan
- Capital Construction Department, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Linjing Su
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China.
| | - Yuhao Xiong
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China.
| |
Collapse
|
11
|
Zhang Y, Kudriashov D, Pershina L, Offenhäusser A, Mourzina Y. Intrinsic Multienzyme-like Activities of the Nanoparticles of Mn and Fe Cyano-Bridged Assemblies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2095. [PMID: 35745431 PMCID: PMC9227851 DOI: 10.3390/nano12122095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023]
Abstract
This study investigates the intrinsic multienzyme-like properties of the non-stabilized nanocrystalline nanoparticles of manganese-doped Prussian blue (Mn-PB) nanozymes and Prussian blue (PB) nanozymes in chemical and electrocatalytic transformations of reactive oxygen species. The effect of manganese doping on the structural, biomimetic, and electrocatalytic properties of cyano-bridged assemblies is also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Yulia Mourzina
- Institute of Biological Information Processing (IBI-3-Bioelectronics), Forschungszentrum Jülich, 52425 Jülich, Germany; (Y.Z.); (D.K.); (L.P.); (A.O.)
| |
Collapse
|
12
|
Xu N, Hu A, Pu X, Wang J, Liao X, Huang Z, Yin G. Cu-Chelated polydopamine nanoparticles as a photothermal medium and "immunogenic cell death" inducer for combined tumor therapy. J Mater Chem B 2022; 10:3104-3118. [PMID: 35348176 DOI: 10.1039/d2tb00025c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemodynamic therapy (CDT) and photothermal therapy (PTT) have been powerful technologies for tumor ablation. However, how to realize efficient CDT and PTT synergetic tumor ablation through a safe and intelligent system, remains a topic of great research value. Herein, a novel Cu-chelated polydopamine nano-system (Cu-PDA) with surface PEGylation and folate (FA) targeting modification (Cu-PDA-FA) was presented as a photothermal agent (PTA), Fenton-like reaction initiator and "immunogenic cell death" inducer to mediate PTT/CDT synergistical tumor therapy and antitumor immune activation. Primarily, the prepared Cu-PDA NPs possessed elevated photothermal conversion efficiency (46.84%) under the near-infrared (NIR) irradiation, bringing about hyperthermic death of tumor cells. Secondly, Cu-PDA catalyzed the generation of toxic hydroxyl radicals (˙OH) in response to the specific tumor microenvironment (TME) with the depletion of GSH, killing tumor cells with high specificity. Interestingly, the increase in local tumor temperature caused by PTT availed the production of ˙OH, and then the produced toxic ˙OH further led the tumor cells to be more sensitive to heat via impeding the expression of heat shock protein, so the synergistically enhanced PTT/CDT in tumor therapy could be achieved. Most importantly, the synergistical PTT/CDT could cause tumor cell death in an immunogenic way to generate in situ tumor vaccine-like functions, which were able to trigger a systemic antitumor immune response, preventing recurrence and metastasis without any other adjuvant supplementation. Overall, these Cu-PDA NPs will provide inspiration for the construction of a versatile nanoplatform for tumor therapy.
Collapse
Affiliation(s)
- Na Xu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ao Hu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
13
|
Xu N, Hu A, Pu X, Li J, Wang X, Wang J, Huang Z, Liao X, Yin G. Fe(III)-Chelated Polydopamine Nanoparticles for Synergistic Tumor Therapies of Enhanced Photothermal Ablation and Antitumor Immune Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15894-15910. [PMID: 35357136 DOI: 10.1021/acsami.1c24066] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Both the low energy density of near-infrared (NIR) photothermal conversion during treatment and the recurrence and metastasis after local treatment have been the main obstacles and conundrums in polydopamine-mediated tumor photothermal therapy (PTT). Herein, On the basis of the enhancement of NIR absorption by ligand to metal charge transfer (LMCT) in transition-metal complexes and the activation of antitumor immunity by an appropriate concentration of Fe(III) ions, Fe(III)-chelated PDA nanoparticles (Fe-PDA NPs) with high loading and responsive release of iron ions were synthesized through a prechelation-polymerization method. First, Fe(III) chelated with the catechol groups in DA to form a mono-dopa-Fe(III) chelate, and then the polymerization of dopamine was initiated under alkaline conditions. The results revealed that the mono-dopa-Fe(III) chelate was still the main form of the Fe ion existing in Fe-PDA and was able to greatly enhance the light absorption behaviors of PDA in NIR, resulting a superior photothermal conversion ability (η = 55.5%). Moreover, the existence of Fe(III) also gave Fe-PDA a T1-weighted MRI contrast-enhancement performance (r1 = 7.668 mM-1 s-1) and it would enable the accurate ablation of primary tumors in vivo with Fe-PDA under NIR irradiation by means of the guidance of MRI and thermal imaging. Furthermore, Fe-PDA exhibited better H2O2-responsive biodegradability in comparison to PDA and easily released Fe ions in tumors, which could effectively promote the tumor-associated macrophage (TAM) repolarization to the M1 mode. TAM repolarization combined with the immunogenic cell death (ICD) induced by PTT could effectively enhance the efficacy of immunotherapy, preventing tumor recurrence and metastasis. The design of Fe-PDA nanoparticles should provide more inspiration for structural and functional improvements of melanin-based materials in tumor suppression.
Collapse
Affiliation(s)
- Na Xu
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Ao Hu
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Jiangfeng Li
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Xingming Wang
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No .24 South Section 1, Yihuan Road Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
14
|
María-Hormigos R, Molinero-Fernández Á, López MÁ, Jurado-Sánchez B, Escarpa A. Prussian Blue/Chitosan Micromotors with Intrinsic Enzyme-like Activity for (bio)-Sensing Assays. Anal Chem 2022; 94:5575-5582. [PMID: 35362949 PMCID: PMC9008696 DOI: 10.1021/acs.analchem.1c05173] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prussian Blue (PB)/chitosan enzyme mimetic tubular micromotors are used here for on-the-fly (bio)-sensing assays. The micromotors are easily prepared by direct deposition of chitosan into the pores of a membrane template and in situ PB synthesis during hydrogel deposition. Under judicious pH control, PB micromotors display enzyme mimetic capabilities with three key functions on board: the autonomous oxygen bubble propulsion (with PB acting as a catalase mimic for hydrogen peroxide decomposition), 3,3',5,5'-tetramethylbenzidine (TMB) oxidation (with PB acting as a peroxidase mimic for analyte detection), and as a magnetic material (to simplify the (bio)-sensing steps). In connection with chitosan capabilities, these unique enzyme mimetic micromotors are further functionalized with acetylthiocholinesterase enzyme (ATChE) to be explored in fast inhibition assays (20 min) for the colorimetric determination of the nerve agent neostigmine, with excellent analytical performance in terms of quantification limit (0.30 μM) and concentration linear range (up to 500 μM), without compromising efficient micromotor propulsion. The new concept illustrated holds considerable potential for a myriad of (bio)-sensing applications, including forensics, where this conceptual approach remains to be explored. Micromotor-based tests to be used in crime scenes are also envisioned due to the reliable neostigmine determination in unpretreated samples.
Collapse
Affiliation(s)
- Roberto María-Hormigos
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Águeda Molinero-Fernández
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.,Chemical Research Institute ″Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Beatriz Jurado-Sánchez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.,Chemical Research Institute ″Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Alcala de Henares E-28871, Madrid, Spain.,Chemical Research Institute ″Andrés M. del Río", University of Alcala, Alcala de Henares E-28871, Madrid, Spain
| |
Collapse
|
15
|
SOD mimics: From the tool box of the chemists to cellular studies. Curr Opin Chem Biol 2022; 67:102109. [DOI: 10.1016/j.cbpa.2021.102109] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/15/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
|
16
|
Huang X, Zhang S, Tang Y, Zhang X, Bai Y, Pang H. Advances in metal–organic framework-based nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214216] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Ma L, Zhu J, Wu C, Li D, Tang X, Zhang Y, An C. Three-dimensional MoS 2 nanoflowers supported Prussian blue and Au nanoparticles: A peroxidase-mimicking catalyst for the colorimetric detection of hydrogen peroxide and glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119886. [PMID: 33991816 DOI: 10.1016/j.saa.2021.119886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Well-dispersed Prussian blue (PB) and Au nanoparticles (Au NPs) loaded three dimensional MoS2 nanoflowers (PB-Au@MoS2 NFs) was synthesized by a simple and economical method. The structure, morphology and composition of the hybrid were characterized by XRD, SEM and EDS. Similar to the reported literature, MoS2 nanoflowers showed peroxidase-like activity in catalyzing the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). This peroxidase-mimicking activity could be enhanced with the introduction of PB and Au NPs. Herein, PB-Au@MoS2 NFs could be used to establish a new platform for the determination of H2O2 and glucose by the chromogenic reaction. Wide linear ranges with 0-15 μM and 0-120 μM for H2O2 and glucose detection were finally obtained. The detection limits were as low as 0.25 μM and 3 μM (with signal to noise ratio of 3), respectively. The established platform was also used successfully for the determination of glucose in human serum and fruit juice samples with excellent sensitivity and stability.
Collapse
Affiliation(s)
- Lian Ma
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Jiao Zhu
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Chao Wu
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Duo Li
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Xuehui Tang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yue Zhang
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Changhua An
- Life and Health Research Institute, Tianjin Key Laboratory of Organic Solar Cells and photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
18
|
Fu D, Zhang Q, Chen P, Zheng X, Hao J, Mo P, Liu H, Liu G, Lv W. Efficient removal of bisphenol pollutants on imine-based covalent organic frameworks: adsorption behavior and mechanism. RSC Adv 2021; 11:18308-18320. [PMID: 35480924 PMCID: PMC9033470 DOI: 10.1039/d1ra02342j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
The extensive use of bisphenol analogues in industry has aggravated the contamination of the water environment, and how to effectively remove them has become a research hotspot. This study presents two imine-based covalent organic frameworks with different pore sizes (COFs) [TAPB (1,3,5-tris(4-aminophenyl)benzene)-Dva (2,5-divinylterephthaldehyde)-PDA (terephthalaldehyde) (COF-1), and TAPB (1,3,5-tris(4-aminophenyl)benzene)-Dva (2,5-divinylterephthaldehyde)-BPDA (biphenyl dialdehyde) (COF-2)], which have achieved the efficient adsorption of bisphenol S (BPS) and bisphenol A (BPA). The maximum adsorption capacity of COF-2 for BPS and BPA obtained from Langmuir isotherms were calculated as 200.00 mg g−1 and 149.25 mg g−1. Both hydrogen bonding and π–π interactions might have been responsible for the adsorption of BPS and BPA on the COFs, where the high adsorption capacity of COFs was due to their unique pore dimensions and structures. Different types of pharmaceutical adsorption studies indicated that COF-2 exhibited a higher adsorption performance for different types of pharmaceuticals than COF-1, and the adsorption capacity was ranked as follows: bisphenol pharmaceuticals > anti-inflammatory pharmaceuticals > sulfa pharmaceuticals. These results confirmed that COFs with larger pore sizes were more conducive to the adsorption of pollutants with smaller molecular dimensions. Moreover, COF-1 and COF-2 possessed excellent pH stability and recyclability, which suggested strong potential applications for these novel adsorbents in the remediation of organic pollutants in natural waterways and aqueous ecosystems. Two imine-based covalent organic frameworks with different pore sizes were synthesized, and can be used as adsorbents for the removal of bisphenol pollutants, showing high affinity toward bisphenol S and bisphenol A.![]()
Collapse
Affiliation(s)
- Daijun Fu
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 China +86-13538982812 +86-20-39322547
| | - Qianxin Zhang
- School of Environmental, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University Bejing 100084 China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 China +86-13538982812 +86-20-39322547
| | - Xiaoshan Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 China +86-13538982812 +86-20-39322547
| | - Jun Hao
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 China +86-13538982812 +86-20-39322547
| | - Peiying Mo
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 China +86-13538982812 +86-20-39322547
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University Xinxiang 453007 China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 China +86-13538982812 +86-20-39322547
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology Guangzhou 510006 China +86-13538982812 +86-20-39322547
| |
Collapse
|
19
|
|
20
|
Alsharabasy AM, Pandit A, Farràs P. Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymer-Based Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003883. [PMID: 33217074 DOI: 10.1002/adma.202003883] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The fabrication of biomimetic catalysts as substituents for enzymes is of critical interest in the field due to the problems associated with the extraction, purification, and storage of enzymes in sensing applications. Of these mimetics, hemin/coordination polymer-based nanocomposites, mainly hemin/metal-organic frameworks (MOF), have been developed for various biosensing applications because of the unique properties of each component, while trying to mimic the normal biological functions of heme within the protein milieu of enzymes. This critical review first discusses the different catalytic functions of heme in the body in the form of enzyme/protein structures. The properties of hemin dimerization are then elucidated with the supposed models of hemin oxidation. After that, the progress in the fabrication of hemin/MOF nanocomposites for the sensing of diverse biological molecules is discussed. Finally, the challenges in developing this type of composites are examined as well as possible proposals for future directions to enhance the sensing performance in this field further.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
- School of Chemistry, Ryan Institute, National University of Ireland Galway, Galway, H91CF50, Ireland
| |
Collapse
|
21
|
Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Metal-Organic-Framework-Engineered Enzyme-Mimetic Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003065. [PMID: 33124725 DOI: 10.1002/adma.202003065] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/26/2020] [Indexed: 02/05/2023]
Abstract
Nanomaterial-based enzyme-mimetic catalysts (Enz-Cats) have received considerable attention because of their optimized and enhanced catalytic performances and selectivities in diverse physiological environments compared with natural enzymes. Recently, owing to their molecular/atomic-level catalytic centers, high porosity, large surface area, high loading capacity, and homogeneous structure, metal-organic frameworks (MOFs) have emerged as one of the most promising materials in engineering Enz-Cats. Here, the recent advances in the design of MOF-engineered Enz-Cats, including their preparation methods, composite constructions, structural characterizations, and biomedical applications, are highlighted and commented upon. In particular, the performance, selectivities, essential mechanisms, and potential structure-property relations of these MOF-engineered Enz-Cats in accelerating catalytic reactions are discussed. Some potential biomedical applications of these MOF-engineered Enz-Cats are also breifly proposed. These applications include, for example, tumor therapies, bacterial disinfection, tissue regeneration, and biosensors. Finally, the future opportunities and challenges in emerging research frontiers are thoroughly discussed. Thereby, potential pathways and perspectives for designing future state-of-the-art Enz-Cats in biomedical sciences are offered.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Fuben Jiang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xin Fan
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Liyun Wang
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, Berlin, 10623, Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Chong Cheng
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Li Qiu
- Department of Ultrasound, West China Hospital, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
Komkova MA, Zarochintsev AA, Karyakina EE, Karyakin AA. Electrochemical and sensing properties of Prussian Blue based nanozymes “artificial peroxidase”. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Shi C, Li Y, Gu N. Iron-Based Nanozymes in Disease Diagnosis and Treatment. Chembiochem 2020; 21:2722-2732. [PMID: 32315111 DOI: 10.1002/cbic.202000094] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/21/2020] [Indexed: 12/15/2022]
Abstract
Iron-based nanozymes are currently one of the few clinical inorganic nanoparticles for disease diagnosis and treatment. Overcoming the shortcomings of natural enzymes, such as easy inactivation and low yield, combined with their special nanometer properties and magnetic functions, iron-based nanozymes have broad prospects in biomedicine. This minireview summarizes their preparation, biological activity, catalytic mechanism, and applications in diagnosis and treatment of diseases. Finally, challenges to their future development and the trends of iron-based nanozymes are discussed. The purpose of this minireview is to better understand and reasonably speculate on the rational design of iron-based nanozymes as an increasingly important new paradigm for diagnostics.
Collapse
Affiliation(s)
- Chu Shi
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Yan Li
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics Jiangsu Key Laboratory for Biomaterials and Devices School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
24
|
Chauhan S, Sahoo S, Satpati AK, Sharma C, Sahoo PK. Prussian Blue Nanocubes‐SnO
2
Quantum Dots‐Reduced Graphene Oxide Ternary Nanocomposite: An Efficient Non‐noble‐metal Electrocatalyst for Non‐enzymatic Detection of H
2
O
2. ELECTROANAL 2020. [DOI: 10.1002/elan.202000041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Seema Chauhan
- Department of Paper TechnologyIndian Institute of Technology Roorkee, Saharanpur Campus Saharanpur 247001 India
| | - Srikant Sahoo
- Analytical Chemistry DivisionBhabha Atomic Research Centre, Trombay Mumbai 400085 India
| | - Ashis Kumar Satpati
- Analytical Chemistry DivisionBhabha Atomic Research Centre, Trombay Mumbai 400085 India
| | - Chhaya Sharma
- Department of Paper TechnologyIndian Institute of Technology Roorkee, Saharanpur Campus Saharanpur 247001 India
| | - Prasanta Kumar Sahoo
- Department of Mechanical Engineering, Siksha ‘O' AnusandhanDeemed to be University Bhubaneswar 751030 India
| |
Collapse
|
25
|
Cho E, Lee JJ, Lee BS, Lee KW, Yeom B, Lee TS. Cesium ion-exchange resin using sodium dodecylbenzenesulfonate for binding to Prussian blue. CHEMOSPHERE 2020; 244:125589. [PMID: 32050353 DOI: 10.1016/j.chemosphere.2019.125589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Radioactive Cs ions are extremely harmful to the human body, causing cancers and other diseases. Treatments were performed on radioactive Cs present in wastewater after use in industrial or medical fields. Prussian blue (PB) has been widely used for the removal of Cs ions from water but its colloidal structure hinders reuse, making it problematic for practical use. To solve this problem, we used a commercial macroporous polymer resin as a PB matrix. To provide an efficient anchor for PB, the surface of the polymer resin was decorated with sodium dodecylbenzenesulfonate to produce a negatively charged surface. The successful chemical binding between the polymer resin and PB prevented leakage of the latter during adsorption and crosslinked structure of the matrix provided regeneration of the adsorbent. The adsorbent maintained its removal efficiency after five repeats of the regeneration process. The PB-based, Cs ion-exchange resin showed excellent selectivity toward Cs ions and good reusability, maintaining its high adsorption capacity.
Collapse
Affiliation(s)
- Eunbee Cho
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Jeong Jun Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Byung-Sik Lee
- Nuclear Engineering Department, Dankook University, Cheonan, Chungnam, 31116, South Korea
| | - Kune-Woo Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials and Textile System Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
26
|
Vokhmyanina DV, Andreeva KD, Komkova MA, Karyakina EE, Karyakin AA. ‘Artificial peroxidase’ nanozyme – enzyme based lactate biosensor. Talanta 2020; 208:120393. [DOI: 10.1016/j.talanta.2019.120393] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
27
|
Zhou R, Wang P, Guo Y, Dai X, Xiao S, Fang Z, Speight R, Thompson EW, Cullen PJ, Ostrikov KK. Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation. NANOSCALE 2019; 11:19497-19505. [PMID: 31553036 DOI: 10.1039/c9nr04951g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress in cells caused by the accumulation of reactive oxygen species (ROS) is a common cause of cell function degeneration, cell death and various diseases. Efficient, robust and inexpensive nanoparticles (nanoenzymes) capable of scavenging/detoxifying ROS even in harsh environments are attracting strong interest. Prussian blue analogues (PBAs), a prominent group of metalorganic nanoparticles (NPs) with the same cyanometalate structure as the traditional and commonly used Prussian blue (PB), have long been envisaged to mimic enzyme activities for ROS scavenging. However, their biological toxicity, especially potential effects on living beings during practical application, has not yet been fully investigated. Here we reveal the enzyme-like activity of FeCo-PBA NPs, and for the first time investigate the effects of FeCo-PBA on cell viability and growth. We elucidate the effect of the nanoenzyme on the ethanol-production efficacy of a typical model organism, the engineered industrial strain Saccharomyces cerevisiae. We further demonstrate that FeCo-PBA NPs have almost no cytotoxicity on the cells over a broad dosage range (0-100 μg mL-1), while clearly boosting the yeast fermentation efficiency by mitigating oxidative stress. Atmospheric pressure cold plasma (APCP) pretreatment is used as a multifunctional environmental stress produced by the plasma reactive species. While the plasma enhances the cellular uptake of NPs, FeCo-PBA NPs protect the cells from the oxidative stress induced by both the plasma and the fermentation processes. This synergistic effect leads to higher secondary metabolite yields and energy production. Collectively, this study confirms the positive effects of PBA nanoparticles in living cells through ROS scavenging, thus potentially opening new ways to control the cellular machinery in future nano-biotechnology and nano-biomedical applications.
Collapse
Affiliation(s)
- Renwu Zhou
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia. and Translational Research Institute, Brisbane, QLD 4102, Australia and School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Peiyu Wang
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia. and Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Yanru Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, 214122, China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhi Fang
- College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 210009, China.
| | - Robert Speight
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia.
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia. and Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Kostya Ken Ostrikov
- Institute of Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane QLD 4000, Australia. and Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
28
|
Ma H, He Y, Liu H, Xu L, Li J, Huang M, Wei Y. Anchoring of Prussian blue nanoparticles on polydopamine nanospheres as an efficient peroxidase mimetic for colorimetric sensing. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 2019; 137:178-198. [DOI: 10.1016/j.bios.2019.04.061] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|
30
|
Cai S, Qian J, Yang S, Kuang L, Hua D. Acetylcysteine-decorated Prussian blue nanoparticles for strong photothermal sterilization and focal infection treatment. Colloids Surf B Biointerfaces 2019; 181:31-38. [PMID: 31121379 DOI: 10.1016/j.colsurfb.2019.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 11/29/2022]
Abstract
The major challenge in bacterial infection in clinical settings is the development of antimicrobial materials in the treatment of drug-resistant bacteria. Herein, we report a new strategy for efficient near-infrared radiation (NIR) photothermal sterilization and focal infection treatment by acetylcysteine-modified Prussian blue nanoparticles (AC-PB). Specifically, AC-PB is fabricated as a multifunctional therapeutic agent via a co-precipitation approach, where PB acts as an effective photothermal agent and AC could prevent the formation of bacteria cluster in biofilms and the bacterial adhesion on tissues to reduce the secretion of mucus and improve the efficacy. AC-PB shows strong synergistic photothermal sterilization ability in a concentration-dependent manner by using 980 nm NIR laser. 50 μg/mL of AC-PB can eliminate up to 74% of Gram-positive Staphylococcus aureus and up to 75% of Gram-negative Escherichia coli, while irradiation of 980 nm is minimally cytotoxic to mammalian cells. The NIR radiation can be efficiently converted into local heat by subcutaneous injection of AC-PB to kill bacteria effectively in vivo to treat a focal infection. The antibacterial mechanism suggests that AC can destroy bacteria-based biofilms, while the photothermal effect driven by NIR may break the lipids on cellular membrane. Thus, this work may provide a promising strategy for highly effective eradication of bacteria in clinics.
Collapse
Affiliation(s)
- Suya Cai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Jun Qian
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Sen Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China.
| | - Liangju Kuang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| |
Collapse
|
31
|
Gold nanoparticle-loaded hollow Prussian Blue nanoparticles with peroxidase-like activity for colorimetric determination of L-lactic acid. Mikrochim Acta 2019; 186:121. [DOI: 10.1007/s00604-018-3214-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
|
32
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
33
|
Sun C, Huang Z, Liu L, Li M, Zheng H. Umbelliferone as a Small Molecular Peroxidase Mimic towards Sensitive Detection of H 2O 2 and Glucose. ANAL SCI 2018; 34:933-938. [PMID: 30101888 DOI: 10.2116/analsci.18p023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, umbelliferone, a kind of coumarin derivative, was proved to exhibit peroxidase-like activity that could catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide to generate a blue-colored oxide (oxTMB). The catalytic mechanism is similar to that of native enzymes (e.g. horseradish peroxidase, HRP) and nanozymes, which follow the Michaelis-Menten kinetics behavior. Meanwhile, the 7-hydroxyl group of umbelliferone plays a significant role in the peroxidase-like activity. Compared with enzymes and nanozymes, this small molecular mimic enzyme possesses the advantages of low cost, simple molecular structures, small molecular weight and high stability against harsh conditions. Based on the favorable peroxidase mimetic activity of umbelliferone, a convenient, practical and sensitive H2O2 and glucose detection method was successfully established. This work not only opens some new inspirations into seeking for novel molecular enzyme mimetics with excellent catalytic activities, but also provides promising assays for clinical diagnosis.
Collapse
Affiliation(s)
- Chaoqun Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University
| | - Zili Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University
| | - Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University
| | - Menglu Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University
| |
Collapse
|
34
|
Wu X, Fan L, Qiu Y, Wang M, Cheng J, Guan B, Guo Z, Zhang N, Sun K. Ion-Selective Prussian-Blue-Modified Celgard Separator for High-Performance Lithium-Sulfur Battery. CHEMSUSCHEM 2018; 11:3345-3351. [PMID: 29944212 DOI: 10.1002/cssc.201800871] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Application of Li-S batteries has been restricted because of their major problem, that is, shuttling of soluble polysulfides between electrodes, which results in serious capacity fading. For the development of high-performance Li-S batteries, we first time utilize a simple growth method to introduce a Prussian blue (PB)-modified Celgard separator as an ion-selective membrane. The unique structure of PB could effectively suppress the shuttle of polysulfides but scarcely affect the transfer ability of lithium ions, which is beneficial to achieve high sulfur conversion efficiency and capacity retention. The Li-S battery with PB-modified Celgard separator has an average capacity decay of only 0.03 % per cycle at 1 C after 1000 cycles.
Collapse
Affiliation(s)
- Xian Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Lishuang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Yue Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Maoxu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Junhan Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Bin Guan
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Zhikun Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Naiqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, PR China
| | - Kening Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, PR China
- Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, PR China
| |
Collapse
|
35
|
Huang YQ, Fu S, Wang YS, Xue JH, Xiao XL, Chen SH, Zhou B. Protamine-gold nanoclusters as peroxidase mimics and the selective enhancement of their activity by mercury ions for highly sensitive colorimetric assay of Hg(II). Anal Bioanal Chem 2018; 410:7385-7394. [PMID: 30215122 DOI: 10.1007/s00216-018-1344-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/01/2022]
Abstract
We certify that protamine-gold nanoclusters (PRT-AuNCs) synthesized by one-pot method exhibit peroxidase-like activity. The catalytic activity of PRT-AuNCs followed typical Michaelis-Menten kinetics and exhibited higher affinity to 3,3',5,5'-tetramethylbenzidine (TMB) as the substrate compared to that of natural horseradish peroxidase. Meanwhile, we found that Hg(II) could dramatically and selectively enhance the peroxidase-like activity of PRT-AuNCs, and the enhanced mechanism by Hg(II) was demonstrated to be generation of the cationic Au species and the partly oxidized Au species (Auδ+) by Hg2+-Au0/Au+ interaction. Based on this finding, quantitative determinations of Hg(II) via visual observation and absorption spectra were achieved. The proposed strategy displays high selectivity that arises from the strong aurophilic interaction of mercury towards gold. Moreover, the developed method is highly sensitive with a wide linear range and low detection limit of 1.16 nM. This strategy is not only helpful to develop effective nanomaterials-based artificial enzyme mimics but also irradiative to discover new applications of artificial mimic enzymes in bio-detection, medical diagnostics, and biotechnology. Graphical abstract Protamine-gold nanoclusters (PRT-AuNCs) synthesized by one-pot method exhibit peroxidase-like activity. Hg(II) can stimulate the peroxidase-like activity of PRT-AuNCs selectively, enhancing their ability to catalyze the chromogenic reaction of TMB by H2O2.
Collapse
Affiliation(s)
- Yan-Qin Huang
- College of Public Health, University of South China, West Changsheng Road 28#, Hengyang, 421001, Hunan, China
| | - Sha Fu
- College of Public Health, University of South China, West Changsheng Road 28#, Hengyang, 421001, Hunan, China
| | - Yong-Sheng Wang
- College of Public Health, University of South China, West Changsheng Road 28#, Hengyang, 421001, Hunan, China.
| | - Jin-Hua Xue
- College of Public Health, University of South China, West Changsheng Road 28#, Hengyang, 421001, Hunan, China
| | - Xi-Lin Xiao
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, Hunan, China
| | - Si-Han Chen
- College of Public Health, University of South China, West Changsheng Road 28#, Hengyang, 421001, Hunan, China
| | - Bin Zhou
- College of Public Health, University of South China, West Changsheng Road 28#, Hengyang, 421001, Hunan, China
| |
Collapse
|
36
|
Sun C, Zhang X, Tang M, Liu L, Shi Y, Gao C, Liao B, Zheng H. New optical method for the determination of β-galactosidase and α-fetoprotein based on oxidase-like activity of fluorescein. Talanta 2018; 194:164-170. [PMID: 30609517 DOI: 10.1016/j.talanta.2018.08.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 01/01/2023]
Abstract
Fluorescein has been found as an efficient visible-light-induced oxidase mimic and its catalytic performance is group-dependent. Herein, a facile colorimetric strategy for β-galactosidase (β-gal) was developed using fluorescein di β-D-galactopyranoside (FDG) as a probe based on the analyte induced change in oxidase mimicking activity of fluorescein derivatives. FDG doesn't possess any visible-light-induced oxidase activity and can generate fluorescein and fluorescein mono β-D-galactopyranoside (FMG) in the presence of β-gal. The in situ generated fluorescein and FMG possess high oxidase-like activities under visible-light illumination and could catalyze the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) upon short irradiation by light-emitting diode (LED) lamp. Thus, the β-gal activity can be selectively detected in linear range from 0.10 to 12.9 μg mL-1 with a limit of detection (LOD) of 0.04 μg mL-1. We further integrated with the visual detection of α-fetoprotein antigen (AFP) based on the corresponding colorimetric signal induced by β-gal-linked colorimetric immunoassay, a LOD of 0.08 ng mL-1 could be achieved. Significantly, our proposed assay provides a facile sensing platform based on the change in enzyme mimicking activity induced by analytes. In addition, this optical method works without complex synthesis procedure and efficiently avoids participation of unstable H2O2 as an oxidant. Therefore, the present work not only shows the excellent assay performance in β-gal and tumor biomarker detection, but also opens up a new avenue for its application in practical optical sensing.
Collapse
Affiliation(s)
- Chaoqun Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, PR China
| | - Xia Zhang
- Department of Laboratory Medicine, the Ninth People's Hospital of Chongqing, Chongqing 400700, PR China
| | - Menghuan Tang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, PR China
| | - Li Liu
- College of Chemistry and Environment Science, Qujing Normal University, Qujing 655011, PR China
| | - Ying Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, PR China
| | - Chunhong Gao
- School of Physical Science and Technology, MOE Key Laboratory on Luminescence and Real Time Analysis, Southwest University, Beibei, Chongqing 400715, PR China
| | - Bing Liao
- Department of Laboratory Medicine, the Ninth People's Hospital of Chongqing, Chongqing 400700, PR China.
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
37
|
Komkova MA, Karyakina EE, Karyakin AA. Catalytically Synthesized Prussian Blue Nanoparticles Defeating Natural Enzyme Peroxidase. J Am Chem Soc 2018; 140:11302-11307. [PMID: 30118222 DOI: 10.1021/jacs.8b05223] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We synthesized Prussian Blue (PB) nanoparticles through catalytic reaction involving hydrogen peroxide (H2O2) activation. The resulting nanoparticles display the size-dependent catalytic rate constants in H2O2 reduction, which are significantly improved compared to natural enzyme peroxidase: for PB nanoparticles 200 nm in diameter, the turnover number is 300 times higher; for 570 nm diameter nanoparticles, it is 4 orders of magnitude higher. Comparing to the known peroxidase-like nanozymes, the advantages of the reported PB nanoparticles are their true enzymatic properties: (1) enzymatic specificity (an absence of oxidase-like activity) and (2) an ability to operate in physiological solutions. The ultrahigh activity and enzymatic specificity of the catalytically synthesized PB nanoparticles together with high stability and low cost, obviously peculiar to noble metal free inorganic materials, would allow the substitution of natural and recombinant peroxidases in biotechnology and analytical sciences.
Collapse
Affiliation(s)
- Maria A Komkova
- Chemistry faculty of M.V. Lomonosov Moscow State University , 119991 , Moscow , Russia
| | - Elena E Karyakina
- Chemistry faculty of M.V. Lomonosov Moscow State University , 119991 , Moscow , Russia
| | - Arkady A Karyakin
- Chemistry faculty of M.V. Lomonosov Moscow State University , 119991 , Moscow , Russia
| |
Collapse
|
38
|
Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosens Bioelectron 2018; 110:8-15. [PMID: 29574249 DOI: 10.1016/j.bios.2018.03.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 11/23/2022]
Abstract
Enzyme-mimicking catalytic nanoparticles, more commonly known as NanoZymes, have been at the forefront for the development of new sensing platforms for the detection of a range of molecules. Although solution-based NanoZymes have shown promise in glucose detection, the ability to immobilize NanoZymes on highly absorbent surfaces, particularly on free-standing substrates that can be feasibly exposed and removed from the reaction medium, can offer significant benefits for a range of biosensing and catalysis applications. This work, for the first time, shows the ability of Ag nanoparticles embedded within the 3D matrix of a cotton fabric to act as a free-standing peroxidase-mimic NanoZyme for the rapid detection of glucose in complex biological fluids such as urine. The use of cotton fabric as a template not only allows high number of catalytically active sites to participate in the enzyme-mimic catalytic reaction, the absorbent property of the cotton fibres also helps in rapid absorption of biological molecules such as glucose during the sensing event. This, in turn, brings the target molecule of interest in close proximity of the NanoZyme catalyst enabling accurate detection of glucose in urine. Additionally, the ability to extract the free-standing cotton fabric-supported NanoZyme following the reaction overcomes the issue of potential interference from colloidal nanoparticles during the assay. Based on these unique characteristics, nanostructured silver fabrics offer remarkable promise for the detection of glucose and other biomolecules in complex biological and environmental fluids.
Collapse
|
40
|
Zhu YX, Jia HR, Pan GY, Ulrich NW, Chen Z, Wu FG. Development of a Light-Controlled Nanoplatform for Direct Nuclear Delivery of Molecular and Nanoscale Materials. J Am Chem Soc 2018; 140:4062-4070. [DOI: 10.1021/jacs.7b13672] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Guang-Yu Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Nathan W. Ulrich
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
41
|
Zhao G, Wu H, Feng R, Wang D, Xu P, Jiang P, Yang K, Wang H, Guo Z, Chen Q. Novel Metal Polyphenol Framework for MR Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3295-3304. [PMID: 29300453 DOI: 10.1021/acsami.7b16222] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phothermal therapy has received increasing attention in recent years as a potentially effective way to treat cancer. In pursuit of a more biocompatible photothermal agent, we utilize biosafe materials including ellagic acid (EA), polyvinylpyrrolidone (PVP), and iron element as building blocks, and we successfully fabricate a homogeneous nanosized Fe-EA framework for the first time by a facile method. As expected, the novel nanoagent exhibits no obvious cytotoxicity and good hemocompatibility in vitro and in vivo. The microenvironment responsiveness to both pH and hydrogen peroxide makes the NPs biodegradable in tumor tissues, and the framework should be easily cleared by the body. Photothermal potentials of the nanoparticles are demonstrated with relevant features of strong NIR light absorption, moderately effective photothermal conversion efficiency, and good photothermal stability. The in vivo photothermal therapy also achieved effective tumor ablation with no apparent toxicity. On the other hand, it also exhibits T2 MR imaging ability originated from ferric ions. Our work highlights the promise of the Fe-EA framework for imaging-guided photothermal therapy.
Collapse
Affiliation(s)
- Gaozheng Zhao
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China , Hefei, 230026, China
| | - Huihui Wu
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China , Hefei, 230027, China
| | - Ruilu Feng
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China , Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China , Hefei, 230026, China
| | - Pengping Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China , Hefei, 230026, China
| | - Peng Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China , Hefei, 230026, China
| | - Kang Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China , Hefei, 230026, China
| | - Haibao Wang
- Radiology Department of the First Affiliated Hospital of Anhui Medical University , Hefei, 230022, China
| | - Zhen Guo
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, School of Life Sciences, University of Science and Technology of China , Hefei, 230027, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China , Hefei, 230026, China
| |
Collapse
|
42
|
Li H, Liu H, Zhang J, Cheng Y, Zhang C, Fei X, Xian Y. Platinum Nanoparticle Encapsulated Metal-Organic Frameworks for Colorimetric Measurement and Facile Removal of Mercury(II). ACS APPLIED MATERIALS & INTERFACES 2017; 9:40716-40725. [PMID: 29087174 DOI: 10.1021/acsami.7b13695] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pt nanoparticle (Pt NP)@UiO-66-NH2 composites were synthesized and encompassed the benefits of permanent porosity, high thermal and chemical stability of metal-organic frameworks (MOFs), together with the functional behavior of isolated Pt NPs. The PVP-stabilized Pt NPs with the average diameter of 2.48 nm were well dispersed and confined within the framework of UiO-66-NH2. Pt NPs possess highly peroxidase-like activities and make the composites oxidize 3,3',5,5'-tetramethylbenzidine in the presence of H2O2. Moreover, the specific interaction between Hg2+ and Pt NPs leads to the effective suppression of the peroxidase-like activity of Pt NP@UiO-66-NH2, which endows excellent selectivity for Hg2+ measurement over the interfering metal ions. Based on the colorimetric sensing system, Hg2+ is linearly measured over the range from 0 to 10 nM with a detection limit of 0.35 nM. Moreover, the as-obtained Pt NP@UiO-66-NH2 nanocomposites exhibit high capacity and good selectivity for Hg2+ adsorption, which is successfully applied to treat Hg2+ in water with removal efficiency over 99%. With these findings, Pt NP@UiO-66-NH2 composites can be used to develop a simple and rapid colorimetric sensing system and are utilized as nanoadsorbents for facile removal of Hg2+. This work not only expands the scientific researches on MOFs but also provides practical application in environmental, biological, and relative fields.
Collapse
Affiliation(s)
- Huaping Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, China
| | - Huifang Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, China
| | - Jidong Zhang
- Shanghai Entry-Exit Inspection and Quarantine Bureau , Shanghai 200135, China
| | - Yuxiao Cheng
- Shanghai Entry-Exit Inspection and Quarantine Bureau , Shanghai 200135, China
| | - Cuiling Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, China
| | - Xinyu Fei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University , Shanghai 200241, China
| |
Collapse
|
43
|
Xiong Y, Qin Y, Su L, Ye F. Bioinspired Synthesis of Cu2+
-Modified Covalent Triazine Framework: A New Highly Efficient and Promising Peroxidase Mimic. Chemistry 2017; 23:11037-11045. [PMID: 28516466 DOI: 10.1002/chem.201701513] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yuhao Xiong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science, Guangxi Normal University; Guilin 541004 P. R. China
- Institute of Food science and Engineering Technology; Hezhou University; Hezhou 542899 P. R. China
| | - Yuemei Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science, Guangxi Normal University; Guilin 541004 P. R. China
| | - Linjing Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science, Guangxi Normal University; Guilin 541004 P. R. China
- Institute of Food science and Engineering Technology; Hezhou University; Hezhou 542899 P. R. China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources; College of Chemistry and Pharmaceutical Science, Guangxi Normal University; Guilin 541004 P. R. China
| |
Collapse
|
44
|
Ren B, Jones LA, Oppedisano DK, Kandjani AE, Chen M, Antolasic F, Ippolito SJ, Bhargava SK. The Preparation of a AuCN/Prussian Blue Nanocube Composite through Galvanic Replacement Enhances Stability for Electrocatalysis. ChemistrySelect 2017. [DOI: 10.1002/slct.201700908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Baiyu Ren
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Lathe A. Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Daniel K. Oppedisano
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Ahmad Esmaielzadeh Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Miao Chen
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
- CSIRO Mineral Resources; Clayton, VIC 3169 Australia
| | - Frank Antolasic
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Samuel J. Ippolito
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
- School of Engineering; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| | - Suresh K. Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC); School of Science; RMIT University, GPO Box 2476; Melbourne, VIC 3001 Australia
| |
Collapse
|
45
|
Dalapati R, Sakthivel B, Ghosalya MK, Dhakshinamoorthy A, Biswas S. A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm 2017. [DOI: 10.1039/c7ce01053b] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A cerium-based MOF exhibits oxidase-like activity for colorimetric sensing of biothiols and aerobic oxidation of thiols.
Collapse
Affiliation(s)
- Rana Dalapati
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | | | | | | | - Shyam Biswas
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| |
Collapse
|
46
|
Yang H, Xiao J, Su L, Feng T, Lv Q, Zhang X. Oxidase-mimicking activity of the nitrogen-doped Fe3C@C composites. Chem Commun (Camb) 2017; 53:3882-3885. [DOI: 10.1039/c7cc00610a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nitrogen-doped Fe3C@C composites could behave as oxidase-mimics to catalyze the reaction between TMB and molecular oxygen to produce quinonediimine and H2O.
Collapse
Affiliation(s)
- Hankun Yang
- Beijing Key Laboratory of Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Jingyu Xiao
- Beijing Key Laboratory of Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Lei Su
- Beijing Key Laboratory of Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| | - Ting Feng
- School of metallurgical and ecological engineering
- University of Science and Technology Beijing
- Beijing 100083
- China
| | - Qingye Lv
- Department of Chemical and Petroleum Engineering
- University of Calgary
- Calgary
- Canada
| | - Xueji Zhang
- Beijing Key Laboratory of Bioengineering and Sensing Technology
- Research Center for Bioengineering and Sensing Technology
- School of Chemistry and Biological Engineering
- University of Science and Technology Beijing
- Beijing 100083
| |
Collapse
|
47
|
Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N, Zhang Y. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers. J Am Chem Soc 2016; 138:5860-5. [PMID: 26918394 DOI: 10.1021/jacs.5b12070] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The generation of reactive oxygen species (ROS) is an important mechanism of nanomaterial toxicity. We found that Prussian blue nanoparticles (PBNPs) can effectively scavenge ROS via multienzyme-like activity including peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) activity. Instead of producing hydroxyl radicals (•OH) through the Fenton reaction, PBNPs were shown to be POD mimetics that can inhibit •OH generation. We theorized for the first time that the multienzyme-like activities of PBNPs were likely caused by the abundant redox potentials of their different forms, making them efficient electron transporters. To study the ROS scavenging ability of PBNPs, a series of in vitro ROS-generating models was established using chemicals, UV irradiation, oxidized low-density lipoprotein, high glucose contents, and oxygen glucose deprivation and reperfusion. To demonstrate the ROS scavenging ability of PBNPs, an in vivo inflammation model was established using lipoproteins in Institute for Cancer Research (ICR) mice. The results indicated that PBNPs hold great potential for inhibiting or relieving injury induced by ROS in these pathological processes.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University , Nanjing 210096, P. R. China
| | - Sunling Hu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University , Nanjing 210096, P. R. China
| | - Jun-Jie Yin
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration , College Park, Maryland 20740, United States
| | - Weiwei He
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration , College Park, Maryland 20740, United States
| | - Wei Lu
- Department of Neurobiology, Nanjing Medical University & Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University , Nanjing 210096, P. R. China
| | - Ming Ma
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University , Nanjing 210096, P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University , Nanjing 210096, P. R. China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University , Nanjing 210096, P. R. China
| |
Collapse
|