1
|
Deshpande P, De D, Badhe Y, Tallur S, Paul D, Rai B. An in silico design method of a peptide bioreceptor for cortisol using molecular modelling techniques. Sci Rep 2024; 14:22325. [PMID: 39333310 PMCID: PMC11436820 DOI: 10.1038/s41598-024-73044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Cortisol is established as a reliable biomarker for stress prompting intensified research in developing wearable sensors to detect it via eccrine sweat. Since cortisol is present in sweat in trace quantities, typically 8-140 ng/mL, developing such biosensors necessitates the design of bioreceptors with appropriate sensitivity and selectivity. In this work, we present a systematic biomimetic methodology and a semi-automated high-throughput screening tool which enables rapid selection of bioreceptors as compared to ab initio design of peptides via computational peptidology. Candidate proteins from databases are selected via molecular docking and ranked according to their binding affinities by conducting automated AutoDock Vina scoring simulations. These candidate proteins are then validated via full atomistic steered molecular dynamics computations including umbrella sampling to estimate the potential of mean force using GROMACS version 2022.6. These explicit molecular dynamic calculations are carried out in an eccrine sweat environment taking into consideration the protein dynamics and solvent effects. Subsequently, we present a candidate baseline peptide bioreceptor selected as a contiguous sequence of amino acids from the selected protein binding pocket favourably interacting with the target ligand (i.e., cortisol) from the active binding site of the proteins and maintaining its tertiary structure. A unique cysteine residue introduced at the N-terminus allows orientation-specific surface immobilization of the peptide onto the gold electrodes and to ensure exposure of the binding site. Comparative binding affinity simulations of this peptide with the target ligand along with commonly interfering species e.g., progesterone, testosterone and glucose are also presented to demonstrate the validity of this proposed peptide as a candidate baseline bioreceptor for future cortisol biosensor development.
Collapse
Affiliation(s)
- Parijat Deshpande
- TCS Research, Tata Research Development & Design Centre (TRDDC), Pune, 411028, India.
- Centre for Research in Nanotechnology & Science (CRNTS), IIT Bombay, Mumbai, 400076, India.
| | - Debankita De
- TCS Research, Tata Research Development & Design Centre (TRDDC), Pune, 411028, India
| | - Yogesh Badhe
- TCS Research, Tata Research Development & Design Centre (TRDDC), Pune, 411028, India
| | - Siddharth Tallur
- Department of Electrical Engineering, IIT Bombay, Mumbai, 400076, India
| | - Debjani Paul
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, 400076, India
| | - Beena Rai
- TCS Research, Tata Research Development & Design Centre (TRDDC), Pune, 411028, India
| |
Collapse
|
2
|
Santonocito R, Cavallaro A, Puglisi R, Pappalardo A, Tuccitto N, Petroselli M, Trusso Sfrazzetto G. Smartphone-Based Sensing of Cortisol by Functionalized Rhodamine Probes. Chemistry 2024; 30:e202401201. [PMID: 38600692 DOI: 10.1002/chem.202401201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels should be extremely important to control the stress levels, and for this reason, it shows important medical applications. The common analytical methods (HPLC, GC-MS) cannot be used in real life, due to the bulky size of the instruments and the necessity of specialized personnel. Molecular probes solve these problems due to their fast and easy use. The synthesis of new fluorescent rhodamine probes, able to interact by non-covalent interactions with cortisol, the recognition properties in solution as well as in solid state by Strip Test, using a smartphone as detector, are here reported. DFT calculations and FT-IR measurements suggest the formation of supramolecular complexes through hydrogen bonds as main non-covalent interaction. The present study represents one of the first sensor, based on synthetical chemical receptors, able to detect cortisol in a linear range from 1 mM to 1 pM, based on non-covalent molecular recognition and paves the way to the realization of practical point-of-care device for the monitoring of cortisol in real live.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Nunzio Tuccitto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- Laboratory for Molecular Surfaces and Nanotechnology - CSGI, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), Av. PaÏsos Catalans 16, Tarragona, 43007, Spain
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
3
|
Arcadio F, Soares S, Nedoma J, Aguiar D, Pereira AC, Zeni L, Cennamo N, Marques C. POF-based biosensors for cortisol detection in seawater as a tool for aquaculture systems. Sci Rep 2024; 14:13117. [PMID: 38849511 PMCID: PMC11161578 DOI: 10.1038/s41598-024-63870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
A surface plasmon resonance (SPR) phenomenon implemented via D-shaped polymer optical fiber (POF) is exploited to realize cortisol biosensors. In this work, two immonosensors are designed and developed for the qualitative as well as quantitative measurement of cortisol in artificial and real samples. The performances of the POF-based biosensors in cortisol recognition are achieved using different functionalization protocols to make the same antibody receptor layer over the SPR surface via cysteamine and lipoic acid, achieving a limit of detection (LOD) of 0.8 pg/mL and 0.2 pg/mL, respectively. More specifically, the use of cysteamine or lipoic acid changes the distance between the receptor layer and the SPR surface, improving the sensitivity at low concentrations of about one order of magnitude in the configuration based on lipoic acid. The LODs of both cortisol biosensors are achieved well competitively with other sensor systems but without the need for amplification or sample treatments. In order to obtain the selectivity tests, cholesterol and testosterone were used as interfering substances. Moreover, tests in simulated seawater were performed for the same cortisol concentration range achieved in buffer solution to assess the immunosensor response to the complex matrix. Finally, the developed cortisol biosensor was used in a real seawater sample to estimate the cortisol concentration value. The gold standard method has confirmed the estimated cortisol concentration value in real seawater samples. Liquid-liquid extraction was implemented to maximize the response of cortisol in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis.
Collapse
Grants
- PRIN2022 - 2022JRKETK European Commission
- CZ.10.03.01/00/22_003/0000048 European Commission
- PRIN2022 - 2022JRKETK European Commission
- PRIN2022 - 2022JRKETK European Commission
- CZ.10.03.01/00/22_003/0000048 European Commission
- PTDC/EEI-EEE/0415/2021, LA/P/0006/2020, UIDB/50011/2020, UIDP/50011/2020, LA/P/0037/2020, UIDB/50025/2020, UIDP/50025/2020 Fundação para a Ciência e a Tecnologia
- PTDC/EEI-EEE/0415/2021, LA/P/0006/2020, UIDB/50011/2020, UIDP/50011/2020, LA/P/0037/2020, UIDB/50025/2020, UIDP/50025/2020 Fundação para a Ciência e a Tecnologia
- PTDC/EEI-EEE/0415/2021, LA/P/0006/2020, UIDB/50011/2020, UIDP/50011/2020, LA/P/0037/2020, UIDB/50025/2020, UIDP/50025/2020 Fundação para a Ciência e a Tecnologia
- PTDC/EEI-EEE/0415/2021, LA/P/0006/2020, UIDB/50011/2020, UIDP/50011/2020, LA/P/0037/2020, UIDB/50025/2020, UIDP/50025/2020 Fundação para a Ciência e a Tecnologia
Collapse
Affiliation(s)
- Francesco Arcadio
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| | - Simone Soares
- CICECO -Aveiro Institute of Materials & Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
- I3N & Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Jan Nedoma
- Department of Telecommunications, VSB - Technical University of Ostrava, Ostrava, 70800, Czech Republic
| | - Dayana Aguiar
- ISOPlexis, Centre for Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Ana Cristina Pereira
- ISOPlexis, Centre for Sustainable Agriculture and Food Technology, University of Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, Pólo II-Rua Sílvio Lima, 3030-790, Coimbra, Portugal
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy.
| | - Carlos Marques
- CICECO -Aveiro Institute of Materials & Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
- Department of Physics, VSB - Technical University of Ostrava, Ostrava, 70800, Czech Republic.
| |
Collapse
|
4
|
Santonocito R, Puglisi R, Cavallaro A, Pappalardo A, Trusso Sfrazzetto G. Cortisol sensing by optical sensors. Analyst 2024; 149:989-1001. [PMID: 38226461 DOI: 10.1039/d3an01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
During a stress condition, the human body synthesizes catecholamine neurotransmitters and specific hormones (called "stress hormones"), the most important of which is cortisol. The monitoring of cortisol levels is extremely important for controlling the stress levels. For this reason, it has important medical applications. Common analytical methods (HPLC, GC-MS) cannot be used in real life due to the bulkiness of the instruments and the necessity of specialized operators. Molecular probes solve this problem. This review aims to provide a description of recent developments in this field, focusing on the analytical aspects and the possibility to obtain real practical devices from these molecular probes.
Collapse
Affiliation(s)
- Rossella Santonocito
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Roberta Puglisi
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Alessia Cavallaro
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | - Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Trusso Sfrazzetto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- INSTM Udr of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
5
|
Ok J, Park S, Jung YH, Kim TI. Wearable and Implantable Cortisol-Sensing Electronics for Stress Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211595. [PMID: 36917076 DOI: 10.1002/adma.202211595] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cortisol is a steroid hormone that is released from the body in response to stress. Although a moderate level of cortisol secretion can help the body maintain homeostasis, excessive secretion can cause various diseases, such as depression and anxiety. Conventional methods for cortisol measurement undergo procedures that limit continuous monitoring, typically collecting samples of bodily fluids, followed by separate analysis in a laboratory setting that takes several hours. Thus, recent studies demonstrate wearable, miniaturized sensors integrated with electronic modules that enable wireless real-time analysis. Here, the primary focus is on wearable and implantable electronic devices that continuously measure cortisol concentration. Diverse types of cortisol-sensing techniques, such as antibody-, DNA-aptamer-, and molecularly imprinted polymer-based sensors, as well as wearable and implantable devices that aim to continuously monitor cortisol in a minimally invasive fashion are discussed. In addition to the cortisol monitors that directly measure stress levels, other schemes that indirectly measure stress, such as electrophysiological signals and sweat are also summarized. Finally, the challenges and future directions in stress monitoring and management electronics are reviewed.
Collapse
Affiliation(s)
- Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sumin Park
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yei Hwan Jung
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
6
|
Yulianti ES, Rahman SF, Whulanza Y. Molecularly Imprinted Polymer-Based Sensor for Electrochemical Detection of Cortisol. BIOSENSORS 2022; 12:1090. [PMID: 36551057 PMCID: PMC9776045 DOI: 10.3390/bios12121090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
As a steroid hormone, cortisol has a close relationship with the stress response, and therefore, can be used as a biomarker for early detection of stress. An electrochemical immunosensor is one of the most widely used methods to detect cortisol, with antibodies as its bioreceptor. Apart from conventional laboratory-based methods, the trend for cortisol detection has seemed to be exploiting antibodies and aptamers. Both can provide satisfactory performance with high selectivity and sensitivity, but they still face issues with their short shelf life. Molecularly imprinted polymers (MIPs) have been widely used to detect macro- and micro-molecules by forming artificial antibodies as bioreceptors. MIPs are an alternative to natural antibodies, which despite demonstrating high selectivity and a low degree of cross-reactivity, often also show a high sensitivity to the environment, leading to their denaturation. MIPs can be prepared with convenient and relatively affordable fabrication processes. They also have high durability in ambient conditions, a long shelf life, and the ability to detect cortisol molecules at a concentration as low as 2 ag/mL. By collecting data from the past five years, this review summarizes the antibody and aptamer-based amperometric sensors as well as the latest developments exploiting MIPs rather than antibodies. Lastly, factors that can improve MIPs performance and are expected to be developed in the future are also explained.
Collapse
Affiliation(s)
- Elly Septia Yulianti
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| | - Siti Fauziyah Rahman
- Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| | - Yudan Whulanza
- Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, West Java, Indonesia
| |
Collapse
|
7
|
Halicka K, Meloni F, Czok M, Spychalska K, Baluta S, Malecha K, Pilo MI, Cabaj J. New Trends in Fluorescent Nanomaterials-Based Bio/Chemical Sensors for Neurohormones Detection-A Review. ACS OMEGA 2022; 7:33749-33768. [PMID: 36188279 PMCID: PMC9520559 DOI: 10.1021/acsomega.2c04134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
The study of neurotransmitters and stress hormones allows the determination of indicators of the current stress load in the body. These species also create a proper strategy of stress protection. Nowadays, stress is a general factor that affects the population, and it may cause a wide range of serious disorders. Abnormalities in the level of neurohormones, caused by chronic psychological stress, can occur in, for instance, corporate employees, health care workers, shift workers, policemen, or firefighters. Here we present a new nanomaterials-based sensors technology development for the determination of neurohormones. We focus on fluorescent sensors/biosensors that utilize nanomaterials, such as quantum dots or carbon nanomaterials. Nanomaterials, owing to their diversity in size and shape, have been attracting increasing attention in sensing or bioimaging. They possess unique properties, such as fluorescent, electronic, or photoluminescent features. In this Review, we summarize new trends in adopting nanomaterials for applications in fluorescent sensors for neurohormone monitoring.
Collapse
Affiliation(s)
- Kinga Halicka
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Francesca Meloni
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Mateusz Czok
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Kamila Spychalska
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Sylwia Baluta
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Karol Malecha
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Maria I. Pilo
- Department
of Chemistry and Pharmacy, University of
Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Joanna Cabaj
- Faculty
of Chemistry and Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
8
|
Deshpande P, Ravikumar B, Tallur S, Paul D, Rai B. Eccrine Sweat Molecular Model for Development of de novo Biosensors. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:914-917. [PMID: 36085967 DOI: 10.1109/embc48229.2022.9871988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we present a validated, novel, in silico molecular dynamics (MD) model of eccrine sweat with approx. 35k atoms developed using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) program. CHARMMS36m force field for constituent atoms and SPC/E water model are used to develop this model. The model outputs transport properties such as self-diffusivity computed using mean squared displacement and bulk viscosity computed via Green-Kubo correlations, which are compared with existing literature values and experimental studies and presented. This validated model is intended to serve as a tool to develop eccrine sweat based biosensors.
Collapse
|
9
|
Huang W, Guo C, Zhai J, Xie X. Fluorescence Anisotropy as a Self-Referencing Readout for Ion-Selective Sensing and Imaging Using Homo-FRET between Chromoionophores. Anal Chem 2022; 94:9793-9800. [PMID: 35772106 DOI: 10.1021/acs.analchem.2c01532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence anisotropy has been widely used in developing biosensors and immunoassays, by virtue of the self-reference and environment-sensitive properties. However, fluorescence anisotropic chemical sensors on inorganic ions are limited by the total anisotropy change. To this end, we demonstrate here fluorescence anisotropic ion-selective optodes based on the homo-FRET (Förster resonance energy transfer) of the crowded chromoionophores. The conventional fluorescence on-off mode is transformed into the anisotropic mode. Variation of the target ion concentration changes the inter-chromoionophore distance in the organic sensing phase, leading to different extents of homo-FRET and steady-state anisotropy. A theoretical model is developed by coupling homo-FRET and anisotropy. Anisotropic detections of pH, K+, and Na+ are demonstrated as examples based on the different ionophores for H+, K+, and Na+, respectively. Further, fluorescence imaging of the nano-optodes, plasticized poly(vinyl chloride) sensing films, and live cells are demonstrated using a homemade fluorescence anisotropic imaging platform. The results form the basis of an ion-selective analytical method operating in the fluorescence anisotropic mode, which could potentially be applied to other fluorescence on-off probes based on homo-FRET.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chao Guo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingying Zhai
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Kempe H, Kempe M. Ouzo polymerization: A bottom-up green synthesis of polymer nanoparticles by free-radical polymerization of monomers spontaneously nucleated by the Ouzo effect; Application to molecular imprinting. J Colloid Interface Sci 2022; 616:560-570. [DOI: 10.1016/j.jcis.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
|
11
|
Duan D, Lu H, Li L, Ding Y, Ma G. A molecularly imprinted electrochemical sensors based on bamboo-like carbon nanotubes loaded with nickel nanoclusters for highly selective detection of cortisol. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Mukherjee T, Regar R, Soppina V, Kanvah S. Stress-responsive rhodamine bioconjugates for membrane-potential-independent mitochondrial live-cell imaging and tracking. Org Biomol Chem 2021; 19:10090-10096. [PMID: 34610076 DOI: 10.1039/d1ob01741a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The 'powerhouses' of cell, mitochondria have seen an upsurge of interest in investigations pertaining to the imaging and mapping of physiological processes. By utilizing sterol-modified rhodamine, we have performed the live-cell imaging of mitochondria without dependence on a membrane potential. The sterol probes are highly biocompatible, and they can track the mitochondrial live-cell dynamics in a background-free manner with improved brightness and impressive contrast. This is the first attempt to study the stress response using a direct fluorescence readout with bio-conjugates of rhodamine inside mitochondria. The results pave the way for developing different sterol markers for understanding cellular responses and function.
Collapse
Affiliation(s)
- Tarushyam Mukherjee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Ramprasad Regar
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| | - Sriram Kanvah
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India.
| |
Collapse
|
13
|
Daniels E, Mustafa YL, Herdes C, Leese HS. Optimization of Cortisol-Selective Molecularly Imprinted Polymers Enabled by Molecular Dynamics Simulations. ACS APPLIED BIO MATERIALS 2021; 4:7243-7253. [PMID: 35006955 DOI: 10.1021/acsabm.1c00774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Today, we heavily rely on technology and increasingly utilize it to monitor our own health. The identification of sensitive, accurate biosensors that are capable of real-time cortisol analysis is one important potential feature for these technologies to aid us in the maintenance of our physical and mental wellbeing. Detection and quantification of cortisol, a well-known stress biomarker present in sweat, offers a noninvasive and potentially real-time method for monitoring anxiety. Molecularly imprinted polymers are attractive candidates for cortisol recognition elements in such devices as they can selectively rebind a targeted template molecule. However, mechanisms of imprinting and subsequent rebinding depend on the choice and composition of the prepolymerization mixture where the molecular interactions between the template, functional monomer, cross-linker, and solvent molecules are not fully understood. Here, we report the synthesis and evaluation of a molecularly imprinted polymer selective for cortisol detection. Molecular dynamics simulations were used to investigate the interactions between all components in the prepolymerization mixture of the as-synthesized molecularly imprinted polymer. Varying the component ratio of the prepolymerization mixture indicates that the number of cross-linker molecules relative to the template impacts the quality of imprinting. It was determined that a component ratio of 1:6:30 of cortisol, methacrylic acid, and ethylene glycol dimethacrylate, respectively, yields the optimal theoretical complexation of cortisol for the polymeric systems investigated. Experimental synthesis and rebinding results demonstrate an imprinting factor of up to 6.45. The trends in cortisol affinity predicted by molecular dynamics simulations of the prepolymerization mixture were also corroborated through experimental analysis of those modeled molecularly imprinted compositions, demonstrating the predictive capabilities of these simulations.
Collapse
Affiliation(s)
- Emma Daniels
- Centre for Sustainable Circular Technologies, Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Yasemin L Mustafa
- Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.,Centre for Biosensors, Bioelectronics and Biodevices, University of Bath, Bath BA2 7AY, U.K
| | - Carmelo Herdes
- Centre for Advanced Separations Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Hannah S Leese
- Centre for Sustainable Circular Technologies, Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K.,Centre for Advanced Separations Engineering, University of Bath, Bath BA2 7AY, U.K.,Centre for Biosensors, Bioelectronics and Biodevices, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
14
|
Cheubong C, Takano E, Kitayama Y, Sunayama H, Minamoto K, Takeuchi R, Furutani S, Takeuchi T. Molecularly imprinted polymer nanogel-based fluorescence sensing of pork contamination in halal meat extracts. Biosens Bioelectron 2021; 172:112775. [DOI: 10.1016/j.bios.2020.112775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
|
15
|
Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7132. [PMID: 33322750 PMCID: PMC7764623 DOI: 10.3390/s20247132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
16
|
Wang T, Korposh S, James S, Lee SW. Long-period grating fiber-optic sensors exploiting molecularly imprinted TiO 2 nanothin films with photocatalytic self-cleaning ability. Mikrochim Acta 2020; 187:663. [PMID: 33201381 DOI: 10.1007/s00604-020-04603-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022]
Abstract
Highly sensitive and selective long-period grating (LPG) fiber-optic sensors modified with molecularly imprinted TiO2 nanothin films were fabricated. The films were deposited onto the surface of the optical fiber via liquid-phase deposition (LPD), using tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) as a template. Three LPG resonance bands were monitored during film deposition, which was of duration 4.5 h. Prior to template removal, heat treatment at 60 °C under high-humidity conditions led to an increase in refractive index of the TiO2 film, evidenced by changes in the central wavelengths of the attenuation bands. After template removal using HCl solution (0.01 M), the TMPyP-imprinted film-modified LPG sensor showed higher sensitivity to the template molecule than to structurally related guest molecules. This was measured at the 1st and 2nd resonance bands, with wavelengths ranging from 690 to 738 nm and 815 to 905 nm, respectively. No selective binding of the template was observed with a non-imprinted TiO2 film prepared in the same manner. Furthermore, the heat-treated imprinted films exhibited a substantial enhancement of photocatalytic activity for template irradiation. In particular, the self-cleaning property of the imprinted film-modified LPG sensor under ultraviolet irradiation led to highly efficient and selective binding to the template. The mechanism of the interaction between the template and the TiO2 matrix was investigated by UV-vis and Fourier-transform infrared (FTIR) spectroscopies. Additionally, morphological studies using scanning electron microscopy (SEM) were conducted. Graphical abstract.
Collapse
Affiliation(s)
- Tao Wang
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan
| | - Sergiy Korposh
- Optics and Photonics Group, Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephen James
- Engineering Photonics, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedford, MK43 0AL, UK
| | - Seung-Woo Lee
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Kitakyushu, 808-0135, Japan.
| |
Collapse
|
17
|
Liu J, Xu N, Men H, Li S, Lu Y, Low SS, Li X, Zhu L, Cheng C, Xu G, Liu Q. Salivary Cortisol Determination on Smartphone-Based Differential Pulse Voltammetry System. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1422. [PMID: 32150916 PMCID: PMC7085790 DOI: 10.3390/s20051422] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Cortisol is commonly used as a significant biomarker of psychological or physical stress. With the accelerated pace of life, non-invasive cortisol detection at the point of care (POC) is in high demand for personal health monitoring. In this paper, an ultrasensitive immunosensor using gold nanoparticles/molybdenum disulfide/gold nanoparticles (AuNPs/MoS2/AuNPs) as transducer was explored for non-invasive salivary cortisol monitoring at POC with the miniaturized differential pulse voltammetry (DPV) system based on a smartphone. Covalent binding of cortisol antibody (CORT-Ab) onto the AuNPs/MoS2/AuNPs transducer was achieved through the self-assembled monolayer of specially designed polyethylene glycol (PEG, SH-PEG-COOH). Non-specific binding was avoided by passivating the surface with ethanolamine. The miniaturized portable DPV system was utilized for human salivary cortisol detection. A series current response of different cortisol concentrations decreased and exhibited a linear range of 0.5-200 nM, the detection limit of 0.11 nM, and high sensitivity of 30 μA M-1 with a regression coefficient of 0.9947. Cortisol was also distinguished successfully from the other substances in saliva. The recovery ratio of spiked human salivary cortisol and the variation of salivary cortisol level during one day indicated the practicability of the immunosensor based on the portable system. The results demonstrated the excellent performance of the smartphone-based immunosensor system and its great potential application for non-invasive human salivary cortisol detection at POC.
Collapse
Affiliation(s)
- Jingjing Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (N.X.); (H.M.)
- Department of Computer Science and Bioimaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ning Xu
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (N.X.); (H.M.)
| | - Hong Men
- College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China; (N.X.); (H.M.)
| | - Shuang Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Sze Shin Low
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Lihang Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Chen Cheng
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Gang Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (J.L.); (S.L.); (Y.L.); (S.S.L.); (X.L.); (L.Z.); (C.C.); (G.X.)
| |
Collapse
|
18
|
Lee MH, Thomas JL, Liu WC, Zhang ZX, Liu BD, Yang CH, Lin HY. A multichannel system integrating molecularly imprinted conductive polymers for ultrasensitive voltammetric determination of four steroid hormones in urine. Mikrochim Acta 2019; 186:695. [PMID: 31612312 DOI: 10.1007/s00604-019-3797-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/07/2019] [Indexed: 11/30/2022]
Abstract
This work reports on a modularized electrochemical method for the determination of the hormones cortisol, progesterone, testosterone and 17β-estradiol in urine. These hormones were employed as templates when generating molecular imprints from aniline and metanilic acid by electropolymerization on the surface of screen-printed electrodes. The electrically conductive imprint was characterized by SEM, AFM and cyclic voltammetry. A four-channel system was then established to enable simultaneous determination of the hormones by cyclic voltammetry. The detection limits for cortisol, progesterone, testosterone and 17β-estradiol are as low as 2, 2.5, 10 and 9 ag·mL-1 (for S/N = 3). Graphical abstract A four-channel system was established to enable simultaneous determination of 4 steroid hormones by cyclic voltammetry and by using moleculalry imprinted polymers.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Wei-Chiun Liu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Zheng-Xiang Zhang
- Department of Chemical and Materials Engineering, National University of Kaohsiung (NUK), 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung, 81148, Taiwan
| | - Bin-Da Liu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung (NUK), 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung, 81148, Taiwan.
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung (NUK), 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
19
|
Fluorescence polarization assays for chemical contaminants in food and environmental analyses. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
20
|
KITAYAMA Y, TAKEUCHI T. Oriented Immobilization-based Molecular Imprinting for Constructing Nanocavities Capable of Precise Molecular Recognition. BUNSEKI KAGAKU 2019. [DOI: 10.2116/bunsekikagaku.68.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Zhou T, Ashley J, Feng X, Sun Y. Detection of hemoglobin using hybrid molecularly imprinted polymers/carbon quantum dots-based nanobiosensor prepared from surfactant-free Pickering emulsion. Talanta 2018; 190:443-449. [DOI: 10.1016/j.talanta.2018.08.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
|
22
|
Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis. Biosens Bioelectron 2018; 112:54-71. [DOI: 10.1016/j.bios.2018.04.028] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/31/2023]
|
23
|
Development of ELISA-Like Fluorescence Assay for Melamine Detection Based on Magnetic Dummy Molecularly Imprinted Polymers. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Kitayama Y, Isomura M. Gas-stimuli-responsive molecularly imprinted polymer particles with switchable affinity for target protein. Chem Commun (Camb) 2018; 54:2538-2541. [DOI: 10.1039/c7cc09889h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecularly imprinted polymer particles bearing gas-responsive property was successfully prepared using functional initiator.
Collapse
Affiliation(s)
- Yukiya Kitayama
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - Manabu Isomura
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| |
Collapse
|
25
|
Kitayama Y, Yoshikawa K, Takeuchi T. Post-Cross-Linked Molecular Imprinting with Functional Polymers as a Universal Building Block for Artificial Polymeric Receptors. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01233] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yukiya Kitayama
- Graduate School of Engineering, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kazuki Yoshikawa
- Graduate School of Engineering, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
26
|
Suda N, Sunayama H, Kitayama Y, Kamon Y, Takeuchi T. Oriented, molecularly imprinted cavities with dual binding sites for highly sensitive and selective recognition of cortisol. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170300. [PMID: 28878979 PMCID: PMC5579094 DOI: 10.1098/rsos.170300] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Novel, molecularly imprinted polymers (MIPs) were developed for the highly sensitive and selective recognition of the stress marker cortisol. Oriented, homogeneous cavities with two binding sites for cortisol were fabricated by surface-initiated atom transfer radical polymerization, using a cortisol motif template molecule (TM1) which consists of a polymerizable moiety attached at the 3-carbonyl group of cortisol via an oxime linkage and an adamantane carboxylate moiety coupled with the 21-hydroxyl group. TM1 was orientationally immobilized on a β-cyclodextrin (β-CD)-grafted gold-coated sensor chip by inclusion of the adamantane moiety of TM1, followed by copolymerization of a hydrophilic comonomer, 2-methacryloyloxyethyl phosphorylcholine, with or without a cross-linker, N,N'-methylenebisacrylamide. Subsequent cleavage of the oxime linkage leaves the imprinted cavities that contain dual binding sites-namely, the aminooxy group and β-CD-capable of oxime formation and hydrophobic interaction, respectively. As an application, MIP-based picomolar level detection of cortisol was demonstrated by a competitive binding assay using a fluorescent competitor. Cross-linking of the MIP imparts rigidity to the binding cavities, and improves the selectivity and sensitivity significantly, reducing the limit of detection to 4.8 pM. In addition, detection of cortisol in saliva samples was demonstrated as a feasibility study.
Collapse
Affiliation(s)
| | | | | | | | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
27
|
Rapid micromotor-based naked-eye immunoassay. Talanta 2017; 167:651-657. [DOI: 10.1016/j.talanta.2017.02.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 11/23/2022]
|
28
|
Zhang Q, Nie J, Xu H, Qiu Y, Li X, Gu W, Tang G, Luo J. Fluorescent microspheres for one-photon and two-photon imaging of mesenchymal stem cells. J Mater Chem B 2017; 5:7809-7818. [DOI: 10.1039/c7tb01942d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Preparation of fluorescent beads to quantitatively evaluate the one-photon and two-photon imaging of hMSCs that have endocytosed AO-PLGA nanospheres.
Collapse
Affiliation(s)
- Qi Zhang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X)
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Medical College of Soochow University
- Suzhou
- China
| | - Jihua Nie
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X)
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Medical College of Soochow University
- Suzhou
- China
| | - Hong Xu
- Department of Radiology
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Yuyou Qiu
- Department of Radiology
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou
| | - Wei Gu
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X)
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions
- Medical College of Soochow University
- Suzhou
- China
| | - Guangyu Tang
- Department of Radiology
- Shanghai Tenth People's Hospital
- Tongji University School of Medicine
- Shanghai 200072
- China
| | - Judong Luo
- Department of Oncology
- The Affiliated Changzhou No. 2 People's Hospital With Nanjing Medical University
- Changzhou
- China
| |
Collapse
|
29
|
TAKEUCHI T, HAYASHI T, ICHIKAWA S, KAJI A, MASUI M, MATSUMOTO H, SASAO R. Molecularly Imprinted Tailor-Made Functional Polymer Receptors for Highly Sensitive and Selective Separation and Detection of Target Molecules. CHROMATOGRAPHY 2016. [DOI: 10.15583/jpchrom.2016.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | | | - Ayaka KAJI
- Graduate School of Engineering, Kobe University
| | | | | | - Reo SASAO
- Graduate School of Engineering, Kobe University
| |
Collapse
|