1
|
Heterogeneity in the reported values and methodologies for detecting plasma D-Dimer in rat models: A systematic review. THROMBOSIS UPDATE 2023. [DOI: 10.1016/j.tru.2023.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
|
2
|
Wei J, Zhang L, Ren L, Zhang J, Liu J, Duan J, Yu Y, Li Y, Peng C, Zhou X, Sun Z. Endosulfan induces cell dysfunction through cycle arrest resulting from DNA damage and DNA damage response signaling pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:97-106. [PMID: 28273598 DOI: 10.1016/j.scitotenv.2017.02.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/07/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
Our previous study showed that endosulfan increases the risk of cardiovascular disease. To identify toxic mechanism of endosulfan, we conducted an animal study for which 32 male Wistar rats were randomly and equally divided into four groups: Control group (corn oil only) and three treatment groups (1, 5 and 10mgkg-1·d-1). The results showed that exposure to endosulfan resulted in injury of cardiac tissue with impaired mitochondria integrity and elevated 8-OHdG expression in myocardial cells. Moreover, endosulfan increased the expressions of Fas, FasL, Caspase-8, Cleaved Caspase-8, Caspase-3 and Cleaved Caspase-3 in cardiac tissue. In vitro, human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of endosulfan (1, 6 and 12μgmL-1) for 24h. An inhibitor for Ataxia Telangiectasia Mutated Protein (ATM) (Ku-55933, 10μM) was added in 12μgmL-1 group for 2h before exposure to endosulfan. Results showed that endosulfan induced DNA damage and activated DNA damage response signaling pathway (ATM/Chk2 and ATR/Chk1) and consequent cell cycle checkpoint. Furthermore, endosulfan promoted the cell apoptosis through death receptor pathway resulting from oxidative stress. The results provide a new insight for mechanism of endosulfan-induced cardiovascular toxicity which will be helpful in future prevention of cardiovascular diseases induced by endosulfan.
Collapse
Affiliation(s)
- Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Cheng Peng
- National Research Centre for Environmental Toxicology (Entox), Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, Coopers Plains, Brisbane, QLD 4108, Australia
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069 Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Sampath S, Veeramani V, Krishnakumar GS, Sivalingam U, Madurai SL, Chellan R. Evaluation of in vitro anticancer activity of 1,8-Cineole-containing n-hexane extract of Callistemon citrinus (Curtis) Skeels plant and its apoptotic potential. Biomed Pharmacother 2017. [PMID: 28651231 DOI: 10.1016/j.biopha.2017.06.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plants are the source of a variety of secondary metabolites, which are often used in the anticancer activity. Discovering new anticancer drug from herbal source is more important in both biological and pharmacological activities. Hence, the objective of this study is to identify the anticancer agent in Callistemon citrinus (Curtis) Skeels (CC) for the treatment of cancer. Very recently we have reported an increased antioxidant activity in the ethanolic and methanolic extracts (EE and ME) of CC but significantly reduced activity (rather increased cytotoxicity), in the n-hexane extract (HE). In this study, the cytotoxicity of all the three solvent extracts was tested against A431, MG-63 and HaCaT cell lines by MTT assay. Interestingly HE has showed increased anti-proliferative effect against the cancer cells but was resisted by non-malignant cells. HPLC and GC-MS analysis revealed the presence of 1,8-Cineole as a predominant compound in HE, the semi-purified bioactive extract. Henceforth, this would be called HE-C and be used for further analyses to understand its mode of action on induced apoptosis/necrosis. Alamar blue assay of HE-C showed cytotoxicity and change in morphological characteristics, which was confirmed by AO/EB staining using fluorescence microscopy, ultra-structural features of apoptosis using SEM and TEM. HE-C induced cell death was also detected by FACS using FITC-labelled Annexin-V and Propidium iodide. ROS generation was monitored using DCF-DA by flow cytometry. The overall results suggested that the selective extract (HE-C) containing 1,8-Cineole has shown potential anti-cancer activity in a dose-dependent manner, and cell death was induced through ROS-mediated apoptosis. Our findings provide an insight into the potential of 1,8-Cineole as a novel drug for killing cancer cells.
Collapse
Affiliation(s)
- Sowndarya Sampath
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, India
| | - Vidhya Veeramani
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, India
| | | | - Udhayakumar Sivalingam
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, India
| | - Suguna Lakshmi Madurai
- Polymer Science and Technology, CSIR - Central Leather Research Institute, Chennai, India
| | - Rose Chellan
- Department of Biochemistry and Biotechnology, CSIR - Central Leather Research Institute, Chennai, India.
| |
Collapse
|
4
|
Wei J, Zhang L, Ren L, Zhang J, Yu Y, Wang J, Duan J, Peng C, Sun Z, Zhou X. Endosulfan inhibits proliferation through the Notch signaling pathway in human umbilical vein endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:26-36. [PMID: 27939630 DOI: 10.1016/j.envpol.2016.08.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Our previous research showed that endosulfan triggers the extrinsic coagulation pathway by damaging endothelial cells and causes hypercoagulation of blood. To identify the mechanism of endosulfan-impaired endothelial cells, we treated human umbilical vein endothelial cells (HUVECs) with different concentrations of endosulfan, with and without an inhibitor for Notch, N-[N-(3, 5-difluorophenacetyl)-1-alanyl]S-Phenylglycinet-butylester (DAPT, 20 μM), or a reactive oxygen species (ROS) scavenger, N-Acetyl-l-cysteine (NAC, 3 mM), for 24 h. The results showed that endosulfan could inhibit cell viability/proliferation by increasing the release of lactate dehydrogenase (LDH), arresting the cell cycle in both S and G2/M phases, and inducing apoptosis in HUVECs. We also found that endosulfan can damage microfilaments, microtubules, and nuclei; arrest mitosis; remarkably increase the expressions of Dll4, Notch1, Cleaved-Notch1, Jagged1, Notch4, Hes1, and p21; and significantly induce ROS and malondialdehyde production in HUVECs. The presence of DAPT antagonized the above changes of cycle arrest, proliferation inhibition, and expressions of Dll4, Notch1, Cleaved-Notch1, Hes1, and p21 caused by endosulfan; however, NAC could attenuate LDH release; ROS and malondialdehyde production; apoptosis; and the expression levels of Dll4, Notch1, Cleaved-Notch1, Notch4, and Hes1 induced by endosulfan. These results demonstrated that endosulfan inhibited proliferation through the Notch signaling pathway as a result of oxidative stress. In addition, endosulfan can damage the cytoskeleton and block mitosis, which may add another layer of toxic effects on endothelial cells.
Collapse
Affiliation(s)
- Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Cheng Peng
- National Research Centre for Environmental Toxicology (Entox), Member of Queensland Alliance for Environmental Health Science (QAEHS), The University of Queensland, Coopers Plains, 4108, Brisbane, QLD, Australia
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing China.
| |
Collapse
|
5
|
Guo FZ, Xu Y, Ren LH, Zhang J, Zhang F, Duan J, Zhou XQ, Sun ZW. Endosulfan induces apoptosis by activating the negative regulation pathway of cell cycle and death receptor pathway in spermatogenic cells. Toxicol Res (Camb) 2017; 6:223-231. [PMID: 30090493 DOI: 10.1039/c6tx00315j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
The male reproductive toxicity of endosulfan has been proved. Nevertheless, the underlying molecular mechanisms of the apoptosis caused by endosulfan in spermatogenic cells remains poorly understood. In order to investigate the reproductive toxicity mechanism caused by endosulfan, there were four groups, which had eight Wistar male rats randomly assigned to them, and the rats in different groups received different doses of endosulfan for a period of 21 days. GC-1 spermatogenic cell lines were divided into four groups, and each group was exposed to different doses of endosulfan for 24 hours. The results of this research showed that endosulfan decreased the cell viability, damaged cell membranes and induced apoptosis in spermatogenic cells. Endosulfan had obviously activated the protein expression of PKC-δ, p53, p21cip1, p27kip1, Fas, FasL, Caspase-8, Caspase-3, and inhibited the expression of E2F-1. Endosulfan also induced oxidative stress and DNA damage in spermatogenic cells. The results of this research suggested that endosulfan could lead to E2F-1-induced apoptosis of spermatogenic cells by activating the negative regulation factors of the cell cycle, and endosulfan might cause apoptosis by death receptor pathway, causing oxidative stress.
Collapse
Affiliation(s)
- Fang-Zi Guo
- Department of Toxicology and Hygienic Chemistry , School of Public Health , Capital Medical University , Beijing , 100069 , China . ; ; Tel: +8610-83911775.,Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Ying Xu
- Department of Toxicology and Hygienic Chemistry , School of Public Health , Capital Medical University , Beijing , 100069 , China . ; ; Tel: +8610-83911775.,Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Li-Hua Ren
- Department of Toxicology and Hygienic Chemistry , School of Public Health , Capital Medical University , Beijing , 100069 , China . ; ; Tel: +8610-83911775.,Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry , School of Public Health , Capital Medical University , Beijing , 100069 , China . ; ; Tel: +8610-83911775.,Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Feng Zhang
- College of Life Science , Qilu Normal University , Jinan 250013 , China
| | - Junchao Duan
- Department of Toxicology and Hygienic Chemistry , School of Public Health , Capital Medical University , Beijing , 100069 , China . ; ; Tel: +8610-83911775.,Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Xian-Qing Zhou
- Department of Toxicology and Hygienic Chemistry , School of Public Health , Capital Medical University , Beijing , 100069 , China . ; ; Tel: +8610-83911775.,Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Zhi-Wei Sun
- Department of Toxicology and Hygienic Chemistry , School of Public Health , Capital Medical University , Beijing , 100069 , China . ; ; Tel: +8610-83911775.,Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| |
Collapse
|
6
|
Zhang L, Wei J, Ren L, Zhang J, Yang M, Jing L, Wang J, Sun Z, Zhou X. Endosulfan inducing apoptosis and necroptosis through activation RIPK signaling pathway in human umbilical vascular endothelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:215-225. [PMID: 27709431 DOI: 10.1007/s11356-016-7652-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/07/2016] [Indexed: 06/06/2023]
Abstract
Endosulfan, an organochlorine pesticide, was found in human blood, and its possible cardiovascular toxicity has been suggested. However, the mechanism about endothelial cell injuries induced by endosulfan has remained unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were chosen to explore the toxicity mechanism and were treated with 0, 1, 6, and 12 μg/mL-1 endosulfan for 24 h, respectively. The results showed that exposure to endosulfan could inhibit the cell viability, increase the release of lactate dehydrogenase (LDH), damage the ultrastructure, and lead to apoptosis and necroptosis in HUVECs. Furthermore, endosulfan upregulated the expressions of receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), mixed lineage kinase domain-like (MLKL), caspase 8, and caspase 3, which means the activation of RIPK1 pathways. In addition, endosulfan promoted the increases of ROS, IL-1α, and IL-33 levels while antioxidant N-acetyl-L-cysteine (NAC) effectively attenuated the cytotoxicity from endosulfan. Taken together, these results have demonstrated that endosulfan induces the apoptosis and necroptosis of HUVECs, where the RIPK pathway plays a pro-necroptotic role and NAC plays an anti-necroptotic role. Our results may contribute to understanding cellular mechanisms for endosulfan-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
- Department of Histology and Embryology, Bin Zhou Medical College, Yan Tai, 264003, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Man Yang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
7
|
Wang X, Yang P, Li J, Ihsan A, Liu Q, Cheng G, Tao Y, Liu Z, Yuan Z. Genotoxic risk of quinocetone and its possible mechanism in in vitro studies. Toxicol Res (Camb) 2016; 5:446-460. [PMID: 30090359 PMCID: PMC6062406 DOI: 10.1039/c5tx00341e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022] Open
Abstract
Quinoxalines possessing the quinoxaline-1,4-dioxide (QdNOs) basic structure are used for their antibacterial action, although their mechanism of genotoxicity is not clear. After comparing the sensitivity of V79 cells and HepG2 cells to quinocetone (QCT) and other QdNOs, it was found that HepG2 cells are more sensitive. The results show that QCT induces the generation of O2˙- and OH˙ during metabolism. Free radicals could then attack guanine and induce 8-hydroxy-deoxyguanine (8-OHdG) generation, causing DNA strand breakage, the inhibition of topoisomerase II (topo II) activity, and alter PCNA, Gadd45 and topo II gene expression. QCT also caused mutations in the mtDNA genes COX1, COX3 and ATP6, which might affect the function of the mitochondrial respiratory chain and increase the production of reactive oxygen species (ROS). Nuclear extracts from HepG2 cells treated with QCT had markedly reduced topo II activity, as judged by the inability to convert pBR322 DNA from the catenated to the decatenated form by producing stable DNA-topo II complexes. This study suggests that QCT electrostatically bound to DNA in a groove, affecting the dissociation of topo II from DNA and impacting DNA replication. Taken together, these data reveal that DNA damage induced by QCT resulted from O2˙- and OH˙ generated in the metabolism process. This data throws new light onto the genotoxicity of quinoxalines.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei 430070 , China . ; ; Tel: +86-27-87287186
| | - Panpan Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Juan Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Awais Ihsan
- Department of Biosciences , COMSATS Institute of Information Technology , Sahiwal , Pakistan
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Yanfei Tao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - Zhengli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei 430070 , China . ; ; Tel: +86-27-87287186
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| |
Collapse
|