1
|
Friedemann AER, Andernach L, Jungnickel H, Borchmann DW, Baltaci D, Laux P, Schulz H, Luch A. Phosphine fumigation - Time dependent changes in the volatile profile of table grapes. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122480. [PMID: 32197200 DOI: 10.1016/j.jhazmat.2020.122480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Industrial and agricultural goods are fumigated in transport containers in order to control pest infestations and to avoid the transmission of alien species. Phosphine is increasingly used prior to the export as fumigant for table grapes, fruit cultures and dried fruits to control active table grapevine insect pests. Less knowledge exists for fumigants about the desorption time of toxic gases and factors that affect the composition of the fumigated good. Therefore, red and white table grapes (´Thompson seedless´, ´Scarlotta´ and ´Flame seedless´) were chosen to represent the allowed group of phosphine fumigated foods and were treated with a concentration of 2000 vpm phosphine (PH3) at different temperatures. In the present study, sorption and desorption behavior of PH3 by table grapes and possible changes in their VOC (volatile organic compounds) profiles were investigated. The PH3 concentration was monitored before and after the fumigation process and was determined under the maximum residue level 0.005 ppm after 35 days. The adsorbed amount of PH3 was not influenced by fumigation parameters. For analysis of the influences on the volatile profile after fumigation, a headspace solid-phase micro-extraction coupled to gas chromatography mass spectrometry (HS-SPME-GC/MS) was used. Small differences in volatile profiles of fumigated and subsequently outgassed table grapes compared to non-fumigated table grapes could be observed. A slight influence on the aldehyde group directly after fumigation could be perceived by a decrease of hex-2-en-1-ol and 1- hexanol in PH3-treated table grapes. The concentrations of both compounds increase again after completion of the desorption process. On the other hand terpenes are not significantly influenced by the fumigation process. Overall these changes are likely to affect table grape aroma characteristics directly after a treatment with PH3 and it could be demonstrated that phosphine alters the volatile profile of fumigated table grapes qualitatively and quantitatively.
Collapse
Affiliation(s)
- A E R Friedemann
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - L Andernach
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - H Jungnickel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - D W Borchmann
- Julius Kühn-Institut (JKI), German Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - D Baltaci
- Julius Kühn-Institut (JKI), German Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - P Laux
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - H Schulz
- Julius Kühn-Institut (JKI), German Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Straße 19, 14195 Berlin, Germany
| | - A Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Pang Y, Qi G, Jiang S, Zhou Y, Li W. 1,2-Dichloroethane-induced hepatotoxicity and apoptosis by inhibition of ERK 1/2 pathways. Can J Physiol Pharmacol 2018; 96:1119-1126. [DOI: 10.1139/cjpp-2017-0677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yaqin Pang
- Youjiang Medical University for Nationalities, Faculty of Toxicology, School of Public Health, Baise, Guangxi, China
| | - Guangzi Qi
- Youjiang Medical University for Nationalities, Faculty of Toxicology, School of Public Health, Baise, Guangxi, China
| | - Sili Jiang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Ying Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Wenxue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Agus HH, Sarp C, Cemiloglu M. Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicol Res (Camb) 2018; 7:848-858. [PMID: 30310662 PMCID: PMC6116180 DOI: 10.1039/c8tx00100f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 12/27/2022] Open
Abstract
Terpinolene is one of the most abundant monoterpenes used as a food supplement or odorant in cosmetics and the pharmaceutical industry. In this study, we aimed to assess apoptotic, oxidative and cytotoxic effects of terpinolene. We used the fission yeast (Schizosaccharomyces pombe) as a promising uni-cellular model organism in molecular toxicology and cell death research, due to its resemblance to mammalian cells at the molecular level. After terpinolene exposure (200-800 mg L-1), the IC50 and LC50 were calculated as 349.17 mg L-1 and 593.87 mg L-1. Cells, stained with acridine orange/ethidium bromide and DAPI, showed apoptotic nuclear morphology, chromatin condensation and fragmentation. 2,7-Dichlorodihydrofluorescein diacetate (DCFDA) fluorescence gradually increased (1.5-2-fold increase) in correlation with increasing concentrations of terpinolene (200-800 mg L-1). Mitochondrial impairment at higher concentrations of terpinolene (400-800 mg L-1) was shown by Rhodamine 123 staining. Real-time PCR experiments showed significant increases (1.5-3-fold) in SOD1 and GPx1 levels (p < 0.05) as well as 2-2.5-fold increases (p < 0.05) in pro-apoptotic factors, Pca1 and Sprad9. The potential effects of terpinolene on programmed cell death and the underlying mechanisms were clarified in unicellular model fungi, Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Hizlan H Agus
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| | - Cemaynur Sarp
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| | - Meryem Cemiloglu
- Department of Molecular Biology and Genetics , Istanbul Yeni Yuzyil University , Istanbul , Turkey . ; Tel: +90 212 444 50 01
| |
Collapse
|
4
|
Austel N, Schubert J, Gadau S, Jungnickel H, Budnik LT, Luch A. Influence of fumigants on sunflower seeds: Characteristics of fumigant desorption and changes in volatile profiles. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:138-147. [PMID: 28514707 DOI: 10.1016/j.jhazmat.2017.04.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 04/03/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Fumigation of transport containers is common practice to protect stored products from pests. Yet little is known about the desorption times and effects of the highly toxic gases used in this process. To shed light on the behavior of fumigants in real food, we treated sunflower seeds (Helianthus annuus L.) with 100ppm phosphine (PH3), methyl bromide (MeBr) or 1,2-dichloroethane (DCE) for 72h. The compound concentrations in the air were then analyzed by thermal desorption/2D gas chromatography coupled to mass spectrometry and flame photometric detection (TD-2D-GC-MS/FPD). A desorption time of several months was observed for DCE, whereas PH3 and MeBr were outgassed in a matter of days. To investigate possible interactions between gases and constituents of the seeds, non-fumigated, fumigated and outgassed samples were analyzed by headspace solid-phase microextraction GC-MS. We observed significantly different volatile profiles in fumigated and subsequently outgassed seeds compared to non-fumigated seeds. Whereas PH3-treated seeds released far more terpenoids, the volatile pattern of seeds exposed to DCE revealed significantly fewer terpenoids but more aldehydes. These changes are likely to affect food aroma characteristics.
Collapse
Affiliation(s)
- Nadine Austel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical & Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; Freie Universität Berlin, Institute of Biology, Applied Zoology/Animal Ecology, Haderslebener Str. 9, 12163 Berlin, Germany.
| | - Jens Schubert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical & Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Sabrina Gadau
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Division of Occupational Toxicology and Immunology, Marckmannstraße 129b, 20539 Hamburg, Germany
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical & Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Lygia T Budnik
- Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf, Division of Occupational Toxicology and Immunology, Marckmannstraße 129b, 20539 Hamburg, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical & Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
5
|
Mao Y, Zhang M, Yang J, Sun H, Wang D, Zhang X, Yu F, Li J. The UCP2-related mitochondrial pathway participates in rhein-induced apoptosis in HK-2 cells. Toxicol Res (Camb) 2017; 6:297-304. [PMID: 30090499 PMCID: PMC6062232 DOI: 10.1039/c6tx00410e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
Rhein is one of the main active compounds in total rhubarb anthraquinones (TRAs) that were reported to cause nephrotoxicity. This paper explored the mechanism of how rhein induced apoptosis in human renal proximal tubular epithelial cells (HK-2 cells). In this study, rhein was found to induce apoptosis in HK-2 cells according to the results of annexin V/PI staining assay. The underlying mechanisms were investigated, and the mitochondria-mediated pathway was found to be critical. A series of related biological events were explored, including the disruption of mitochondrial membrane potential (MMP), the decrease of the ATP level, the release of cytochrome c (Cyt-c) from the mitochondrion to the cytosol, and down-regulation of Bcl-2 and up-regulation of Bax. Furthermore, rhein significantly increased the levels of ROS and inhibited the expression of mitochondrial uncoupling protein 2 (UCP2). UCP2 inhibition dramatically boosted oxidative stress and exacerbated rhein-induced apoptosis, whereas co-incubation with an ROS scavenger N-acetylcysteine (NAC) could decrease rhein-induced apoptosis. In conclusion, our results have demonstrated that rhein induced apoptosis in HK-2 cells via the UCP2-related mitochondrial pathway and rhein might be a weak inhibitor of UCP2. Our findings provide new evidence that UCP2 plays an important role in the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Yong Mao
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Mincheng Zhang
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Jiapei Yang
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Hao Sun
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Dandan Wang
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Xiaoxia Zhang
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Feng Yu
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
- Key Laboratory of Drug Quality Control and Pharmacovigilance , Ministry of Education , China Pharmaceutical University , Nanjing 211198 , China
| | - Ji Li
- Department of Clinical Pharmacy , School of Basic Medicine and Clinical Pharmacy , China Pharmaceutical University , Nanjing 211198 , China . ;
| |
Collapse
|
6
|
Wang X, Yang P, Li J, Ihsan A, Liu Q, Cheng G, Tao Y, Liu Z, Yuan Z. Genotoxic risk of quinocetone and its possible mechanism in in vitro studies. Toxicol Res (Camb) 2016; 5:446-460. [PMID: 30090359 PMCID: PMC6062406 DOI: 10.1039/c5tx00341e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022] Open
Abstract
Quinoxalines possessing the quinoxaline-1,4-dioxide (QdNOs) basic structure are used for their antibacterial action, although their mechanism of genotoxicity is not clear. After comparing the sensitivity of V79 cells and HepG2 cells to quinocetone (QCT) and other QdNOs, it was found that HepG2 cells are more sensitive. The results show that QCT induces the generation of O2˙- and OH˙ during metabolism. Free radicals could then attack guanine and induce 8-hydroxy-deoxyguanine (8-OHdG) generation, causing DNA strand breakage, the inhibition of topoisomerase II (topo II) activity, and alter PCNA, Gadd45 and topo II gene expression. QCT also caused mutations in the mtDNA genes COX1, COX3 and ATP6, which might affect the function of the mitochondrial respiratory chain and increase the production of reactive oxygen species (ROS). Nuclear extracts from HepG2 cells treated with QCT had markedly reduced topo II activity, as judged by the inability to convert pBR322 DNA from the catenated to the decatenated form by producing stable DNA-topo II complexes. This study suggests that QCT electrostatically bound to DNA in a groove, affecting the dissociation of topo II from DNA and impacting DNA replication. Taken together, these data reveal that DNA damage induced by QCT resulted from O2˙- and OH˙ generated in the metabolism process. This data throws new light onto the genotoxicity of quinoxalines.
Collapse
Affiliation(s)
- Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei 430070 , China . ; ; Tel: +86-27-87287186
| | - Panpan Yang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Juan Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Awais Ihsan
- Department of Biosciences , COMSATS Institute of Information Technology , Sahiwal , Pakistan
| | - Qianying Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
| | - Yanfei Tao
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - Zhengli Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues , Wuhan , Hubei 430070 , China . ; ; Tel: +86-27-87287186
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety , Wuhan , Hubei , China
| |
Collapse
|