1
|
Ahmed FF, Das AD, Sumi MJ, Islam MZ, Rahman MS, Rashid MH, Alyami SA, Alotaibi N, Azad AKM, Moni MA. Identification of genetic biomarkers, drug targets and agents for respiratory diseases utilising integrated bioinformatics approaches. Sci Rep 2023; 13:19072. [PMID: 37925496 PMCID: PMC10625598 DOI: 10.1038/s41598-023-46455-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023] Open
Abstract
Respiratory diseases (RD) are significant public health burdens and malignant diseases worldwide. However, the RD-related biological information and interconnection still need to be better understood. Thus, this study aims to detect common differential genes and potential hub genes (HubGs), emphasizing their actions, signaling pathways, regulatory biomarkers for diagnosing RD and candidate drugs for treating RD. In this paper we used integrated bioinformatics approaches (such as, gene ontology (GO) and KEGG pathway enrichment analysis, molecular docking, molecular dynamic simulation and network-based molecular interaction analysis). We discovered 73 common DEGs (CDEGs) and ten HubGs (ATAD2B, PPP1CB, FOXO1, AKT3, BCR, PDE4D, ITGB1, PCBP2, CD44 and SMARCA2). Several significant functions and signaling pathways were strongly related to RD. We recognized six transcription factor (TF) proteins (FOXC1, GATA2, FOXL1, YY1, POU2F2 and HINFP) and five microRNAs (hsa-mir-218-5p, hsa-mir-335-5p, hsa-mir-16-5p, hsa-mir-106b-5p and hsa-mir-15b-5p) as the important transcription and post-transcription regulators of RD. Ten HubGs and six major TF proteins were considered drug-specific receptors. Their binding energy analysis study was carried out with the 63 drug agents detected from network analysis. Finally, the five complexes (the PDE4D-benzo[a]pyrene, SMARCA2-benzo[a]pyrene, HINFP-benzo[a]pyrene, CD44-ketotifen and ATAD2B-ponatinib) were selected for RD based on their strong binding affinity scores and stable performance as the most probable repurposable protein-drug complexes. We believe our findings will give readers, wet-lab scientists, and pharmaceuticals a thorough grasp of the biology behind RD.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Arnob Dip Das
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mst Joynab Sumi
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Zohurul Islam
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- High Performance Computing (HPC) Laboratory, Department of Mathematics, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Harun Rashid
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - Naif Alotaibi
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - A K M Azad
- Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
2
|
Lin YS, Liu CY, Chen PW, Wang CY, Chen HC, Tsao CW. Coenzyme Q 10 amends testicular function and spermatogenesis in male mice exposed to cigarette smoke by modulating oxidative stress and inflammation. Am J Transl Res 2021; 13:10142-10154. [PMID: 34650686 PMCID: PMC8507068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
This study explored the effects of coenzyme Q10 (CoQ10) on the testicular functions of male mice exposed to cigarette smoke. Eight-week-old BALB/c male mice were divided into the following groups: the AV group (air with a vehicle), the AQ group (air with CoQ10), the SV group (smoke with a vehicle), and the SQ group (smoke with CoQ10). The results showed that the CoQ10 concentrations in the sera and testes were decreased in the groups subjected to smoke but they were improved after the administration of CoQ10. Neither smoke nor CoQ10 supplementation affected the serum or testis testosterone concentrations. Regarding the antioxidant system in the testis, the exposure to smoke induced malondialdehyde and hydrogen peroxide production and decreased the catalase and glutathione peroxidase activities. Oral CoQ10 administration reversed the oxidative damage. In apoptosis, the cytochrome c, c-caspase 9, and c-caspase 3 proteins were increased in the groups exposed to smoke but they were decreased after the CoQ10 administration. In mitochondrial biogenesis, smoke exposure led to decreases in the PGC1-α, NRF1, and NRF2 levels, but CoQ10 increased the expressions of these proteins. Additionally, oral CoQ10 administration improved the mitochondrial copy numbers that were reduced following the exposure to smoke. In summary, CoQ10 administration reduces smoke-induced testicular damage by regulating the antioxidant capacity, the cell apoptosis, the mitochondrial biogenesis, and the copy numbers in the testes.
Collapse
Affiliation(s)
- You-Shuei Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
| | - Chin-Yu Liu
- Department of Nutritional Science, Fu Jen Catholic UniversityNew Taipei City 242, Taiwan
| | - Pei-Wen Chen
- Department of Nutritional Science, Fu Jen Catholic UniversityNew Taipei City 242, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu-Jen Catholic UniversityNew Taipei City 242, Taiwan
| | - Hsin-Chih Chen
- Department of Critical Care Medicine, Landseed International HospitalTaoyuan 324, Taiwan
| | - Chih-Wei Tsao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical CenterTaipei 114, Taiwan
| |
Collapse
|
3
|
Ghosh B, Reyes-Caballero H, Akgün-Ölmez SG, Nishida K, Chandrala L, Smirnova L, Biswal S, Sidhaye VK. Effect of sub-chronic exposure to cigarette smoke, electronic cigarette and waterpipe on human lung epithelial barrier function. BMC Pulm Med 2020; 20:216. [PMID: 32787821 PMCID: PMC7425557 DOI: 10.1186/s12890-020-01255-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Taking into consideration a recent surge of a lung injury condition associated with electronic cigarette use, we devised an in vitro model of sub-chronic exposure of human bronchial epithelial cells (HBECs) in air-liquid interface, to determine deterioration of epithelial cell barrier from sub-chronic exposure to cigarette smoke (CS), e-cigarette aerosol (EC), and tobacco waterpipe exposures (TW). METHODS Products analyzed include commercially available e-liquid, with 0% or 1.2% concentration of nicotine, tobacco blend (shisha), and reference-grade cigarette (3R4F). In one set of experiments, HBECs were exposed to EC (0 and 1.2%), CS or control air for 10 days using 1 cigarette/day. In the second set of experiments, exposure of pseudostratified primary epithelial tissue to TW or control air exposure was performed 1-h/day, every other day, until 3 exposures were performed. After 16-18 h of last exposure, we investigated barrier function/structural integrity of the epithelial monolayer with fluorescein isothiocyanate-dextran flux assay (FITC-Dextran), measurements of trans-electrical epithelial resistance (TEER), assessment of the percentage of moving cilia, cilia beat frequency (CBF), cell motion, and quantification of E-cadherin gene expression by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS When compared to air control, CS increased fluorescence (FITC-Dextran assay) by 5.6 times, whereby CS and EC (1.2%) reduced TEER to 49 and 60% respectively. CS and EC (1.2%) exposure reduced CBF to 62 and 59%, and cilia moving to 47 and 52%, respectively, when compared to control air. CS and EC (1.2%) increased cell velocity compared to air control by 2.5 and 2.6 times, respectively. The expression of E-cadherin reduced to 39% of control air levels by CS exposure shows an insight into a plausible molecular mechanism. Altogether, EC (0%) and TW exposures resulted in more moderate decreases in epithelial integrity, while EC (1.2%) substantially decreased airway epithelial barrier function comparable with CS exposure. CONCLUSIONS The results support a toxic effect of sub-chronic exposure to EC (1.2%) as evident by disruption of the bronchial epithelial cell barrier integrity, whereas further research is needed to address the molecular mechanism of this observation as well as TW and EC (0%) toxicity in chronic exposures.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hermes Reyes-Caballero
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Sevcan Gül Akgün-Ölmez
- Department of Environmental Health and Engineering, Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kristine Nishida
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lakshmana Chandrala
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Lena Smirnova
- Department of Environmental Health and Engineering, Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Wang T, Dai F, Li GH, Chen XM, Li YR, Wang SQ, Ren DM, Wang XN, Lou HX, Zhou B, Shen T. Trans-4,4'-dihydroxystilbene ameliorates cigarette smoke-induced progression of chronic obstructive pulmonary disease via inhibiting oxidative stress and inflammatory response. Free Radic Biol Med 2020; 152:525-539. [PMID: 31760092 DOI: 10.1016/j.freeradbiomed.2019.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease resulted from airflow obstructions, and there is a driving requirement for novel and effective preventive and therapeutic agents of COPD. Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been regarded to be a promising therapeutic target for COPD. Resveratrol is a natural Nrf2 activator with antioxidant and anti-inflammatory properties, however, its application is limited by its relative low efficiency and poor bioavailability. Herein, based on the skeleton of resveratrol, trans-4,4'-dihydroxystilbene (DHS) has been firstly identified to be an Nrf2 activator, which is more potent than the well-known sulforaphane (SF) and resveratrol. Our results indicate that DHS blocks Nrf2 ubiquitylation through specifically reacting with Cys151 cysteine in Keap1 protein to activate Nrf2-regulated defensive response, and thus enhances intracellular antioxidant capability. Furthermore, DHS relieves lipopolysaccharide (LPS)-stimulated inflammatory response via inhibition of NF-κB. Importantly, DHS significantly ameliorates pathological alterations (e.g. infiltration of leukocytes and fibrosis), downregulates the levels of oxidant biomarkers malondialdehyde (MDA) and 8-oxo-7,8-dihydro-2'-deoxyguanosin (8-oxo-dG), and inhibits the overproductions of inflammatory mediators [e.g. tumor necrosis factor α (TNF-α), cyclooxygenase-2 (COX-2), and matrix metalloproteinase-9 (MMP-9)] in a cigarette smoke (CS)-induced pulmonary impairment mice model. Taken together, this study demonstrates that DHS attenuates the CS-induced pulmonary impairments through inhibitions of oxidative stress and inflammatory response targeting Nrf2 and NF-κB in vitro and in vivo, and could be developed into a preventive agent against pulmonary impairments induced by CS.
Collapse
Affiliation(s)
- Tian Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Fang Dai
- State Key Lab of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Guo-Hui Li
- Department of Pharmacy, Jinan Maternity and Child Care Hospital, Jinan, People's Republic of China
| | - Xue-Mei Chen
- Department of Health Management, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ru Li
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Shu-Qi Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Dong-Mei Ren
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Xiao-Ning Wang
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Hong-Xiang Lou
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Bo Zhou
- State Key Lab of Applied Organic Chemistry, Lanzhou University, Lanzhou, People's Republic of China
| | - Tao Shen
- Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
5
|
Diminished stimulator of interferon genes production with cigarette smoke-exposure contributes to weakened anti-adenovirus vectors response and destruction of lung in chronic obstructive pulmonary disease model. Exp Cell Res 2019; 384:111545. [PMID: 31470016 DOI: 10.1016/j.yexcr.2019.111545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD) and dampens antiviral response, which increases viral infections and leads to COPD acute exacerbation (AECOPD). Adenovirus, a nonenveloped DNA virus, is linked with AECOPD, whose DNAs trigger innate immune response via interacting with pattern recognition receptors (PRRs). Stimulator of interferon genes (STING), as a cytosolic DNA sensor, participates in adenovirus-induced interferon β (IFNβ)-dependent antiviral response. STING is involved in various pulmonary diseases, but role of STING in pathogenesis of AECOPD is not well documented. In the present study, we explored relationship between STING and AECOPD induced by recombinant adenovirus vectors (rAdVs) and CS in wild type (WT) and STING-/- mice; and also characterized the inhibition of STING- IFNβ pathway in pulmonary epithelium exposed to cigarette smoke extract (CSE). We found that CS or CSE exposure alone dramatically inhibited STING expression, but not significantly effected IFNβ production. Moreover, CS or CSE-exposed significantly suppressed activation of STING-IFNβ pathway induced by rAdVs and suppressed clearance of rAdVs DNA. Inflammation, fibrosis and emphysema of lung tissues were exaggerated when treated with CS plus rAdVs, which further deteriorate in absences of STING. In A549 cells with knockdown of STING, we also observed enhancing apoptosis related to emphysema, especially CSE and adenovirus vectors in combination. Therefore, STING may play a protective role in preventing the progress of COPD.
Collapse
|
6
|
TRPC channels mediated calcium entry is required for proliferation of human airway smooth muscle cells induced by nicotine-nAChR. Biochimie 2019; 158:139-148. [DOI: 10.1016/j.biochi.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/09/2018] [Indexed: 01/06/2023]
|
7
|
Hu Q, He T, Sun Y, Wang F, Wu J. Effect of fast-track surgery on inflammatory response and immune function in patients with laparoscopic distal gastrectomy. Eur Surg 2019. [DOI: 10.1007/s10353-019-0572-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Gogoi K, Manna P, Dey T, Kalita J, Unni BG, Ozah D, Baruah PK. Circulatory heavy metals (cadmium, lead, mercury, and chromium) inversely correlate with plasma GST activity and GSH level in COPD patients and impair NOX4/Nrf2/GCLC/GST signaling pathway in cultured monocytes. Toxicol In Vitro 2018; 54:269-279. [PMID: 30359721 DOI: 10.1016/j.tiv.2018.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/08/2018] [Accepted: 10/19/2018] [Indexed: 01/17/2023]
Abstract
This study aims to examine the hypothesis that circulatory heavy metals may be associated with lung function decline and lower plasma GST activity and GSH level in COPD patients via activating monocytes mediated by impairing the NOX4/Nrf2/GCLC/GST signaling pathway. Results showed that the blood levels of heavy metals (cadmium, lead, mercury, and chromium) were significantly higher in COPD patients of coal mine site compared to the healthy controls. The levels of heavy metals in COPD patients were significantly and negatively correlated with lung function, GST activity, and GSH level. Using flowcytometry, fluorescence spectroscopy, and immunoblotting studies we have further demonstrated that treatment with individual heavy metals dose-dependently increased the NOX4 protein expression, intracellular ROS production, and decreased the Nrf2, GCLC, and GST protein expression, GST activity, and GSH level in THP-1 monocytes. None of the treatment caused any change in cell viability compared to control. In conclusion, this study suggests that circulatory heavy metals in COPD patients of coal mine site weakened the lung function, decreased the plasma GST activity and GSH level via impairing the NOX4/Nrf2/GCLC/GST signaling pathway in monocytes, which may cause monocyte activation and initiate the COPD pathophysiology.
Collapse
Affiliation(s)
- Kabita Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Prasenjit Manna
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India
| | - Tapan Dey
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Academy of Scientific and Innovative Research, CSIR-North East Institute of Science and Technology Campus, Jorhat 785006, Assam, India; Research Planning and Business Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| | - Bala Gopalan Unni
- Research Cell, Assam Downtown University, Guwahati 781026, Assam, India
| | - Dibyajyoti Ozah
- Clinical Centre, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Pranab Kumar Baruah
- Clinical Centre, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
9
|
Dutta P, Dey T, Manna P, Kalita J. Antioxidant Potential of Vespa affinis L., a Traditional Edible Insect Species of North East India. PLoS One 2016; 11:e0156107. [PMID: 27195807 PMCID: PMC4873131 DOI: 10.1371/journal.pone.0156107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/08/2016] [Indexed: 11/25/2022] Open
Abstract
Introduction Elevated oxidative stress plays an important role in the pathogenesis of health disorders, like arthritis. Traditionally, Vespa affinis L., a common edible insect among many tribes in North-East India, is believed to have a beneficial role in extenuating health disorders, such as arthritis. The present study investigated the molecular mechanism underlying medicinal benefit of the Aqueous Extract of Vespa affinis L. (AEVA) against oxidative stress pathophysiology. Methods The free radical scavenging activities of AEVA were examined against DPPH, hydroxyl, and superoxide radicals and the effect on the activities of antioxidant enzyme (GST and CAT) was determined using both recombinant proteins and human plasma. The antioxidant potential of AEVA was again investigated using THP-1 monocytes. Results AEVA possesses a significant free radical scavenging activity as evident from the DPPH, superoxide, and hydroxyl radical scavenging assay. Incubation of AEVA (2.5, 5, 7.5, and 10 μg/μL) with the recombinant antioxidant enzymes, rGST and rCAT significantly increased the enzyme activities compared to those observed in corresponding enzyme alone or AEVA itself. AEVA supplementation (5, 7.5, and 10 μg/μL) also stimulates the activities of GST and CAT when incubated with human plasma. A cell culture study also confirmed the beneficial role of AEVA (0.8 and 1.2 μg/μL) which enhances the activities of GST and CAT, and also reduces the intercellular ROS production in monocytes treated with or without H2O2 and the effects are at par with what is observed in N-acetyl cysteine-treated cells. Conclusion The antioxidant potential of the aqueous extract of Vespa affinis L. may mediate its therapeutic activities in oxidative stress-associated health disorders.
Collapse
Affiliation(s)
- Prachurjya Dutta
- Academy of Scientific and Innovative Research, Chennai- 600113, India.,Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Tapan Dey
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.,Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Prasenjit Manna
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Jatin Kalita
- Biological Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| |
Collapse
|