1
|
Raza A, Ullah Z, Khalil A, Batool R, Haider S, Alam K, Sonil NI, Rouf AM, Nazar MF. Facile fabrication of a graphene-based chemical sensor with ultrasensitivity for nitrobenzene. RSC Adv 2024; 14:9799-9804. [PMID: 38528921 PMCID: PMC10961958 DOI: 10.1039/d3ra08794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Chemical sensors have a wide range of applications in a variety of industries, particularly for sensing volatile organic compounds. This work demonstrates the fabrication of a chemical sensor based on graphene deposited on Cu foils using low-pressure chemical vapor deposition, following its transfer on oxidized silicon through a wet etching method. Scanning electron microscopy, Raman spectroscopy and UV-vis spectroscopy of the transferred graphene were performed. A device was fabricated by simply connecting the strips of a Cu tape along the two opposite edges of graphene, which acted as a chemical sensor. The sensor was exposed to different analytes, namely acetone, propanol, benzyl chloride, nitrobenzene, carbon tetrachloride and acetic acid. A relative change in the resistance of the device was observed, which was attributed to the interaction of analytes with graphene as it changes charge concentrations in the graphene lattice. The fabricated sensor showed a notable sensitivity and response time for all analytes, particularly a sensitivity as high as 231.1 for nitrobenzene and a response time as short as 6.9 s for benzyl chloride. The sensor was also tested for analyte leakage from containers for domestic, laboratory and industrial applications.
Collapse
Affiliation(s)
- Ali Raza
- Department of Physics, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Zaka Ullah
- Department of Physics, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Adnan Khalil
- Institute of Physics, Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan 64200 Pakistan
| | - Rashida Batool
- Department of Chemistry, Division of Science and Technology, University of Education Lahore 54770 Pakistan
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University PO Box 800 Riyadh 11421 Saudi Arabia
| | - Kamran Alam
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome Rome 00184 Italy
| | - Nazmina Imrose Sonil
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University Shenzhen 518060 China
| | - Alvi Muhammad Rouf
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University Shenzhen 518060 China
| | - Muhammad Faizan Nazar
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University Shenzhen 518060 China
| |
Collapse
|
2
|
Sekine T, Sakai J, Horita Y, Mabuchi H, Irie T, Hossain S, Kawawaki T, Das S, Takahashi S, Das S, Negishi Y. Five Novel Silver-Based Coordination Polymers as Photoluminescent Sensing Platforms for the Detection of Nitrobenzene. Chemistry 2023; 29:e202300706. [PMID: 37293845 DOI: 10.1002/chem.202300706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Nitrobenzene (NB) is a highly toxic chemical and a cause for concern to human health and the environment. Hence, it is worth designing new efficient and robust sensing platforms for NB. In this study, we present three newly synthesized luminescent silver cluster-based coordination polymers, {[Ag10 (StBu)6 (CF3 COO)4 (hpbt)] (DMAc)2 (CH3 CN)2 }n (hpbt=N,N,N',N'N",N"-hexa(pyridine-4-yl)benzene-1,3,5-triamine), [Ag12 (StBu)6 (CF3 COO)6 (bpva)3 ]n (bpva=9,10-Bis(2-(pyridin-4-yl)vinyl)anthracene), and {[Ag12 (StBu)6 (CF3 COO)6 (bpb)(DMAc)2 (H2 O)2 ] (DMAc)2 }n (bpb=1,4-Bis(4-pyridyl)benzene) composed of Ag10 , Ag12 and Ag12 cluster cores, respectively, connected by multidentate pyridine linkers. In addition, two new luminescent polymorphic silver(I)-based coordination polymers, [Ag(CF3 COO)(dpa)]n (dpa=9,10-di(4-pyridyl)anthracene) referred to as Agdpa (H) and Agdpa (R), where H and R denote hexagon- and rod-like crystal shapes, respectively, have been prepared. The coordination polymers exhibit highly sensitive luminescence quenching effects to NB, attributed to the π-π stacking interactions between the polymers and NB as well as the electron-withdrawing character of NB.
Collapse
Affiliation(s)
- Taishu Sekine
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yusuke Horita
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Subhabrata Das
- Chemical Materials Development Department, Tanaka Kikinzoku Kogyo K.K., Tsukuba Technical Center, 22 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Shuntaro Takahashi
- Chemical Materials Development Department, Tanaka Kikinzoku Kogyo K.K., Tsukuba Technical Center, 22 Wadai, Tsukuba, Ibaraki, 300-4247, Japan
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
3
|
Bressi V, Chiarotto I, Ferlazzo A, Celesti C, Michenzi C, Len T, Iannazzo D, Neri G, Espro C. Voltammetric Sensor Based on Waste‐Derived Carbon Nanodots for Enhanced Detection of Nitrobenzene. ChemElectroChem 2023. [DOI: 10.1002/celc.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Viviana Bressi
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
- Department of Organic Chemistry University of Córdoba Campus de Rabanales, Marie Curie (C-3), Ctra Nnal IV−A Km 396 Cordoba Spain
| | - Isabella Chiarotto
- Department of Basic and Applied Sciences for Engineering (SBAI) Sapienza University of Rome Via Castro Laurenziano, 7 00161 Rome Italy
| | - Angelo Ferlazzo
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Consuelo Celesti
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
- Department of Clinical and Experimental Medicine University of Messina Via Consolare Valeria 98125 Messina Italy
| | - Cinzia Michenzi
- Department of Basic and Applied Sciences for Engineering (SBAI) Sapienza University of Rome Via Castro Laurenziano, 7 00161 Rome Italy
| | - Thomas Len
- Department of Organic Chemistry University of Córdoba Campus de Rabanales, Marie Curie (C-3), Ctra Nnal IV−A Km 396 Cordoba Spain
| | - Daniela Iannazzo
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Giovanni Neri
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| | - Claudia Espro
- Department of Engineering University of Messina Contrada di Dio–Vill. S. Agata I-98166 Messina Italy
| |
Collapse
|
4
|
Yuan H, Shang P, Yang J, Huang Q, Song L, Jiang XF. Anion-Directed Self-Assembly of Calix[4]arene-Based Silver(I) Coordination Polymers and Photocatalytic Degradation of Organic Pollutants. Inorg Chem 2023; 62:2652-2662. [PMID: 36719869 DOI: 10.1021/acs.inorgchem.2c03587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coordination polymers (CPs) have recently emerged as promising candidates for heterogeneous photocatalysis due to their structural designability and tunable properties. Herein, we developed two novel Ag(I)-calix[4]arene coordination polymers with the formula {[Ag2(μ-NO3)L1]}n (CP 1) and {[AgL1]·PF6}n (CP 2) (L1 = 2-mercapto-5-methyl-1,3,4-thiadiazole resorcinol calix[4]arene). Crystallography revealed that anion coordination and self-inclusion behavior induced the cavitand and silver ions to self-assemble into well-defined CPs 1 and 2 with different topological coordination frameworks, respectively. Furthermore, CPs 1 and 2 display high photocatalytic activity for the photodegradation of rhodamine B (RhB) and methyl orange (MO) in an aqueous solution under mild conditions (WLED and UV irradiation). The comparison results demonstrate that CP 1 exhibited better photocatalytic performance than CP 2, which correlated well with the differences in their molecular structure and HOMO-LUMO energy gaps. The photocatalysis products and possible intermediates were successfully monitored and determined using mass spectrum, gas chromatography, and electron paramagnetic resonance measurements. The rational photocatalysis mechanism was further investigated and proposed.
Collapse
Affiliation(s)
- Hui Yuan
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Ping Shang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Jie Yang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Qing Huang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Ling Song
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, P.R. China.,Hubei Key Laboratory of Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei 438000, P.R. China
| |
Collapse
|
5
|
Keyan AK, Vasu D, Sakthinathan S, Chiu TW, Lee YH, Lin CC. Facile Synthesis of Silver-Doped Copper Selenide Composite for Enhanced Electrochemical Detection of Ecological Toxic Nitrobenzene. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-022-00803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Singh R, Singh M. Highly selective and specific monitoring of pollutants using dual template imprinted MIP sensor. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Huner K. Synthesis, characterization, and thermoelectric properties of poly(
p
‐phenylenediamine)/poly(sulfonic acid diphenyl aniline) composites. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Keziban Huner
- Department of Chemistry Yildiz Technical University Istanbul Turkey
| |
Collapse
|
8
|
Hassan D, Bakhsh H, Khurram AM, Bhutto SA, Jalbani NS, Ghumro T, Solangi AR. Fluorescent Nanotechnology: An Evolution in Optical Sensors. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411017666201215121420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The optical properties of nanomaterials have evolved enormously with the introduction of nanotechnology. The property of materials to absorb and/or emit specific wavelength has turned them into one of the most favourite candidates to be effectively utilized in different sensing applications e.g organic light emission diodes (OLEDs) sensors, gas sensors, biosensors and fluorescent sensors. These materials have been reported as a sensor in the field of tissue and cell imaging, cancer detection and detection of environmental contaminants etc. Fluorescent nanomaterials are heling in rapid and timely detection of various contaminants that greatly impact the quality of life and food, that is exposed to these contaminants. Later, all the contaminants have been investigated to be most perilous entities that momentously affect the life span of the animals and humans who use those foods which have been contaminated.
Objective:
In this review, we will discuss about various methods and approaches to synthesize the fluorescent nanoparticles and quantum dots (QDs) and their applications in various fields. The application will include the detection of various environmental contaminants and bio-medical applications. We will discuss the possible mode of action of the nanoparticles when used as sensor for the environmental contaminants as well as the surface modification of some fluorescent nanomaterials with anti-body and enzyme for specific detection in animal kingdom. We will also describe some RAMAN based sensors as well as some optical sensing-based nanosensors.
Conclusion:
Nanotechnology has enabled to play with the size, shape and morphology of materials in the nanoscale. The physical, chemical and optical properties of materials change dramatically when they are reduced to nanoscale. The optical properties can become choosy in terms of emission or absorption of wavelength in the size range and can result in production of very sensitive optical sensor. The results show that the use of fluorescent nanomaterials for the sensing purposes are helping a great deal in the sensing field.
Collapse
Affiliation(s)
- Dilawar Hassan
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro - Pakistan
| | - Hadi Bakhsh
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro - Pakistan
| | - Asif M. Khurram
- Department
of Chemistry, Govt. College of Science, Lahore - Pakistan
| | - Shakeel A. Bhutto
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro - Pakistan
| | - Nida S. Jalbani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro - Pakistan
| | - Tania Ghumro
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro - Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro - Pakistan
| |
Collapse
|
9
|
Khosravi Ardakani H, Gerami M, Chashmpoosh M, Omidifar N, Gholami A. Recent Progress in Nanobiosensors for Precise Detection of Blood Glucose Level. Biochem Res Int 2022; 2022:2964705. [PMID: 35083086 PMCID: PMC8786499 DOI: 10.1155/2022/2964705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) follows a series of metabolic diseases categorized by high blood sugar levels. Owing to the increasing diabetes disease in the world, early diagnosis of this disease is critical. New methods such as nanotechnology have made significant progress in many areas of medical science and physiology. Nanobiosensors are very sensible and can identify single virus particles or even low concentrations of a material that can be inherently harmful. One of the main factors for developing glucose sensors in the body is the diagnosis of hypoglycemia in individuals with insulin-dependent diabetes. Therefore, this study aimed to evaluate the most up-to-date and fastest glucose detection method by nanosensors and, as a result, faster and better treatment in medical sciences. In this review, we try to explore new ways to control blood glucose levels and treat diabetes. We begin with a definition of biosensors and their classification and basis, and then we examine the latest biosensors in glucose detection and new biosensors applications, including the artificial pancreas and updating quantum graphene data.
Collapse
Affiliation(s)
| | - Mitra Gerami
- Biotechnology Research Center, University of Medical Sciences, Shiraz, Iran
| | - Mostafa Chashmpoosh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Li M, Peng X, Liu X, Wang H, Zhang S, Hu G. Single-atom niobium doped BCN nanotubes for highly sensitive electrochemical detection of nitrobenzene. RSC Adv 2021; 11:28988-28995. [PMID: 35478577 PMCID: PMC9038177 DOI: 10.1039/d1ra05517h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Herein, single-atom niobium-doped boron-carbon-nitrogen nanotubes (SANb-BCN) were synthesized and utilized to fabricate an electrochemical sensor for the detection of nitrobenzene (NB), an environmental pollutant. SANb-BCN were characterized through scanning transmission electron microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. The Nb-BNC material modified on a glassy carbon electrode (GCE) showed an excellent electrochemical response behavior toward NB. The SANb-BCN-modified GCE (SANb-BCN/GCE) gave rise to a prominent NB reduction peak at -0.6 V, which was positively shifted by 120 mV from the NB reduction peak of the bare GCE. Furthermore, the NB peak current (55.74 μA) obtained using SANb-BCN/GCE was nearly 42-fold higher than that using the bare GCE (1.32 μA), indicating that SANb-BCN/GCE is a highly sensitive electrochemical sensor for NB. An ultralow limit of detection (0.70 μM, S/N = 3) was also achieved. Furthermore, the SANb-BCN/GCE sensor was found to possess favorable anti-interference ability during NB detection; thus, the presence of various organic and inorganic coexisting species, including Mg2+, Cr6+, Cu2+, K+, Ca2+, NH4+, Cd2+, urea, 1-bromo-4-nitrobenzene, 3-hydroxybenzoic, terephthalic acid, 1-iodo-4-nitrobenzene, and toluene, minimally affected the NB detection signal. Notably, the SANb-BNC sensor material exhibited high sensitivity and specificity toward detection of NB in environmental samples. Thus, the use of the proposed sensor will serve as an effective alternative method for the identification and treatment of pollutants.
Collapse
Affiliation(s)
- Meng Li
- College of Chemistry, Zhengzhou University Zhengzhou 450000 China
| | - Xianyun Peng
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology Tianjin 300384 China
| | - Xijun Liu
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology Tianjin 300384 China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University Zhengzhou 450000 China
| | - Guangzhi Hu
- College of Chemistry, Zhengzhou University Zhengzhou 450000 China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 China
| |
Collapse
|
11
|
Paul D, Vaidyanathan A, Sarkar U, Chakraborty B. Detection of nitrobenzene using transition metal doped C24: A DFT study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01800-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Direct electrochemical enhanced detection of dopamine based on peroxidase-like activity of Fe3O4@Au composite nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Li SS, Fang JH, Li L, Zhu M, Zhang F, Zhang BY, Jiang TJ, Zhang YX. An ultra-sensitive electrochemical sensor of Ni/Fe-LDH toward nitrobenzene with the assistance of surface functionalization engineering. Talanta 2021; 225:122087. [PMID: 33592798 DOI: 10.1016/j.talanta.2021.122087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 11/18/2022]
Abstract
Hypersensitive detection of organic pollutions with high toxicity in drinking water always keeps its challenge in electroanalysis due to their low concentration and electrochemical redox inert. In this work, a novel nanomaterial modified electrode for the sensitive detection of nitrobenzene (NB) is presented, based on environmental friendly and cost-effective Ni/Fe layered double hydroxides functionalized with sodium dodecyl sulfate (Ni/Fe(SDS)-LDH). Such 2D layered composites were prepared and used to improve the sensitivity for NB detection, due to its good catalytic activity for NB reduction. Besides, the proposed electrode shows a remarkably promoted sensitivity to NB compared to Ni/Fe-LDHs modified one. It is because that the surface modifier SDS can provide more adsorption sites to significantly improve the adsorption of NB, which has been confirmed by the adsorption experiment and the characterization of Fourier transform infrared spectroscopy (FTIR). As a result, an impressive sensing behaviour is achieved at the proposed Ni/Fe(SDS)-LDHs modified electrode with a sensitivity of 15.79 μA μM-1 cm-2. This work provides a promising way to build more advanced nanomaterials to electrochemical detection of organic pollution based on energetically synergizing of adsorption by surface functionalization engineering.
Collapse
Affiliation(s)
- Shan-Shan Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of materials science and engineering, Huaibei Normal University, Huaibei, 235000, PR China
| | - Jin-Hui Fang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of materials science and engineering, Huaibei Normal University, Huaibei, 235000, PR China
| | - Li Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of materials science and engineering, Huaibei Normal University, Huaibei, 235000, PR China
| | - Min Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of materials science and engineering, Huaibei Normal University, Huaibei, 235000, PR China
| | - Feng Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of materials science and engineering, Huaibei Normal University, Huaibei, 235000, PR China
| | - Bo-Ya Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of materials science and engineering, Huaibei Normal University, Huaibei, 235000, PR China
| | - Tian-Jia Jiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong, 264003, PR China.
| | - Yong-Xing Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of materials science and engineering, Huaibei Normal University, Huaibei, 235000, PR China.
| |
Collapse
|
14
|
Minakshi P, Mohan H, Manjeet, Ravina, Brar B, Shafiq M, Pundir CS. Organic Polymer and Metal Nano-particle Based Composites for Improvement of the Analytical Performance of Electrochemical Biosensors. Curr Top Med Chem 2021; 20:1029-1041. [PMID: 32148195 DOI: 10.2174/1568026620666200309092957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 01/28/2023]
Abstract
Metal nanoparticles (NPs) are described in the nanoscale and made from either pure metals or their compounds such as oxides. Metallic NPs have certain indistinct functional groups due to which these can bind with any type of ligand, antibody and drugs. Organic polymers, which conduct electricity, are called conducting polymers (intrinsically conducting polymers). They behave like semiconductors by exhibiting metallic conductivity. Process-ability is the major advantage of conducting polymers. Nanocomposite is a novel material having nano-fillers scattered in a matrix with morphology and interfacial characteristics of nano-composites including their individual property that influence their characteristics. Conducting polymers and NP composites can enhance the rate of electron transport between the current collector material (electrode) and the electrolyte; therefore they have been employed in the construction of improved electrochemical sensors such as amperometric, catalytic and potentiodynamic affinity sensors.
Collapse
Affiliation(s)
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak-124001, India
| | - Manjeet
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak-124001, India
| | - Ravina
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak-124001, India
| | - Basanti Brar
- Department of Animal Biotechnology, LUVAS, Hisar, India
| | - Mohammad Shafiq
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - C S Pundir
- Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
15
|
Palani P, Karpagam S. Conjugated polymers – a versatile platform for various photophysical, electrochemical and biomedical applications: a comprehensive review. NEW J CHEM 2021. [DOI: 10.1039/d1nj04062f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tuneable properties of conjugated polymers are attractive for use in multiple domains like optical, electronic and biological applications.
Collapse
Affiliation(s)
- Purushothaman Palani
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-14, Tamil Nadu, India
| | - Subramanian Karpagam
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore-14, Tamil Nadu, India
| |
Collapse
|
16
|
Tajik S, Beitollahi H, Garkani Nejad F, Dourandish Z, Khalilzadeh MA, Jang HW, Venditti RA, Varma RS, Shokouhimehr M. Recent Developments in Polymer Nanocomposite-Based Electrochemical Sensors for Detecting Environmental Pollutants. Ind Eng Chem Res 2021; 60:1112-1136. [PMID: 35340740 PMCID: PMC8943708 DOI: 10.1021/acs.iecr.0c04952] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human population is generally subjected to diverse pollutants and contaminants in the environment like those in the air, soil, foodstuffs, and drinking water. Therefore, the development of novel purification techniques and efficient detection devices for pollutants is an important challenge. To date, experts in the field have designed distinctive analytical procedures for the detection of pollutants including gas chromatography/mass spectrometry and atomic absorption spectroscopy. While the mentioned procedures enjoy high sensitivity, they suffer from being laborious, expensive, require advanced skills for operation, and are inconvenient to deploy as a result of their massive size. Therefore, in response to the above-mentioned limitations, electrochemical sensors are being developed that enjoy robustness, selectivity, sensitivity, and real-time measurements. Considerable advancements in nanomaterials-based electrochemical sensor platforms have helped to generate new technologies to ensure environmental and human safety. Recently, investigators have expanded considerable effort to utilize polymer nanocomposites for building the electrochemical sensors in view of their promising features such as very good electrocatalytic activities, higher electrical conductivity, and effective surface area in comparison to the traditional polymers. Herein, the first section of this review briefly discusses the most important methods for polymer nanocomposites synthesis, such as in situ polymerization, direct mixing of polymer and nanofillers (melt-mixing and solution-mixing), sol-gel, and electrochemical methods. It then summarizes the current utilization of polymer nanocomposites for the preparation of electrochemical sensors as a novel approach for monitoring and detecting environmental pollutants which include heavy metal ions, pesticides, phenolic compounds, nitroaromatic compounds, nitrite, and hydrazine in different mediums. Finally, the current challenges and future directions for the polymer nanocomposites-based electrochemical sensing of environmental pollutants are outlined.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7518934119, Iran
| | - Mohammad A Khalilzadeh
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Richard A Venditti
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, North Carolina 27695-8005, United States
| | - Rajender S Varma
- Chemical Methods and Treatment Branch, Water Infrastructure Division, Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States; Regional Center of Advanced Technologies and Materials, Palacky University, Olomouc 783 71, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Shivakumar M, Dharmaprakash MS, Manjappa S, Nagashree KL. Green synthesis of silver nanoparticles (SNPs)-modified electrode for electrochemical detection of nitrobenzene. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01822-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Zhao X, Zhao H, Yan L, Li N, Shi J, Jiang C. Recent Developments in Detection Using Noble Metal Nanoparticles. Crit Rev Anal Chem 2019; 50:97-110. [DOI: 10.1080/10408347.2019.1576496] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Haobin Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Na Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
19
|
Cao X, Li Y, Liu B, Gao A, Cao J, Yu Y, Hei X. A fluorescent conjugated polymer photocatalyst based on Knoevenagel polycondensation for hydrogen production. NEW J CHEM 2019. [DOI: 10.1039/c9nj01686d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An organic polymer photocatalyst (p-P) for hydrogen production was designed and synthesized through Knoevenagel condensation with a high yield.
Collapse
Affiliation(s)
- Xinhua Cao
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yiran Li
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Binqian Liu
- State Key Laboratory Breeding Base of Photocatalysis Fuzhou University
- Fuzhou
- P. R. China
| | - Aiping Gao
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Juntao Cao
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yongsheng Yu
- College of Chemistry and Chemical Engineering & Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan
- Xinyang Normal University
- Xinyang 464000
- China
| | - Xiaohan Hei
- College of Municipal and Environmental Engineering
- Henan University of Urban Construction
- Pingdingshan 467000
- China
| |
Collapse
|
20
|
Liu LL, Chen J, Yu CX, Lv WX, Yu HY, Cui XQ, Liu L. A novel Ag(i)-calix[4]arene coordination polymer for the sensitive detection and efficient photodegradation of nitrobenzene in aqueous solution. Dalton Trans 2018; 46:178-185. [PMID: 27905617 DOI: 10.1039/c6dt03990a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nitrobenzene (NB) is a widespread and highly toxic organic pollutant in water, and consequently its detection and removal have attracted considerable attention. In the present study, we designed and synthesized a novel coordination polymer, [AgL0.5(NO3)]n (1), {L = 25,26,27,28-tetra[(3-pyridylmethyl)oxy]calix[4]arene}, from AgNO3 and a tetra-pyridyl-functionalized calix[4]arene ligand, which possessed a 2D network based on [Ag4L(NO3)4] units. The 1-modified glassy carbon electrode (1/GCE) exhibited good electrocatalytic activity toward the reduction of NB, offering the selective detection of NB in a wide linear range (1-2450 μM) and a low detection limit (0.62 μM). Furthermore, it displayed excellent photocatalytic activity for the degradation of NB in aqueous solution under UV light. The kinetics of the catalytic degradation reaction and the stability of the catalyst were also studied. These results indicated that compound 1 is a favorable material for the effective determination and degradation of NB, which makes it a promising candidate in both monitoring water quality and treating wastewater.
Collapse
Affiliation(s)
- Lei-Lei Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, Henan, P. R. China.
| | - Jing Chen
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, Henan, P. R. China.
| | - Cai-Xia Yu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, Henan, P. R. China.
| | - Wen-Xing Lv
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, Henan, P. R. China.
| | - Hui-Ying Yu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, Henan, P. R. China.
| | - Xiao-Qing Cui
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, Henan, P. R. China.
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, Henan, P. R. China.
| |
Collapse
|
21
|
Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:164-172. [DOI: 10.1016/j.jphotobiol.2017.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/26/2017] [Indexed: 11/20/2022]
|
22
|
Gowthaman NSK, Sinduja B, John SA. Tuning the composition of gold–silver bimetallic nanoparticles for the electrochemical reduction of hydrogen peroxide and nitrobenzene. RSC Adv 2016. [DOI: 10.1039/c6ra05658j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gold@silver core–shell nanoparticles were synthesized by galvanic displacement reaction and modified on glassy carbon electrode for the reduction of hydrogen peroxide and nitrobenzene.
Collapse
Affiliation(s)
- N. S. K. Gowthaman
- Centre for Nanoscience and Nanotechnology
- Department of Chemistry
- Gandhigram Rural Institute
- Dindigul
- India
| | - Bharathi Sinduja
- Centre for Nanoscience and Nanotechnology
- Department of Chemistry
- Gandhigram Rural Institute
- Dindigul
- India
| | - S. Abraham John
- Centre for Nanoscience and Nanotechnology
- Department of Chemistry
- Gandhigram Rural Institute
- Dindigul
- India
| |
Collapse
|