1
|
Hagheh Kavousi Z, Abdallah L, Ghorbanloo M, Bonniol V, Rebiere B, Cornu D, Bechelany M, Holade Y. Galvanostatic Electroshock Synthesis of Low Loading Au-Pt Nanoalloys Onto Gas Diffusion Electrodes as Multifunctional Electrocatalysts for a Glycerol-Fed Electrolyzer. CHEMSUSCHEM 2024; 17:e202400996. [PMID: 38965888 DOI: 10.1002/cssc.202400996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/06/2024]
Abstract
Water electrolysis is increasingly considered a viable solution for meeting the world's growing energy demands and mitigating environmental issues. An inventive strategy to mitigate the energy requirements involves substituting the energy-intensive oxygen evolution reaction (OER) with biomass-derived glycerol electrooxidation. Nonetheless, the synthesis of electrocatalysts for controlling the selectivity towards added-value chemicals at the anode and efficient H2 generation at the cathode remains a critical bottleneck. Herein, we implemented a galvanostatic electroshock synthesis approach to control the reduction kinetics of Au(III) and Pt(IV) to grow ultra-low amount of gold-platinum alloys on a gas diffusion electrode (12-26 μgmetal cm-2) for glycerol-fed hydroxide anion exchange membrane based electrolyzer. The symmetric GDE-Au100-xPtx||GDE-Au100-xPtx systems showed a notable improvement in electrolyzer performance (GDE-Au64Pt36=201 mA cm-2) as compared to monometallic versions (GDE-Au100Pt0=18 mA cm-2, GDE-Au0Pt100=81 mA cm-2). Chromatography (HPLC) analysis underscores the critical importance of bulk electrolysis methodology (galvanostatic vs potentiostatic) for the efficient conversion of glycerol into high-value-added products. Regarding the electrical energy required to produce 1 kg of H2 for such an electrolyzer fed at the anode with glycerol, our results confirm a drastic decrease by a factor of at least two compared with conventional water electrolysis.
Collapse
Affiliation(s)
- Zahra Hagheh Kavousi
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
- Department of Chemistry, Faculty of Sciences, University of Zanjan, P.O. Box, Zanjan, 4537138791, Iran
| | - Layal Abdallah
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Massomeh Ghorbanloo
- Department of Chemistry, Faculty of Sciences, University of Zanjan, P.O. Box, Zanjan, 4537138791, Iran
| | - Valerie Bonniol
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - Bertrand Rebiere
- Institut Charles Gerhardt, ICGM, UMR 5253, Univ Montpellier, ENSCM, CNRS, Montpellier, France
| | - David Cornu
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
- French Research Network on Hydrogen (FRH2), Research Federation No. 2044 CNRS CNRS BP, 32229, Nantes CEDEX 3 44322, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah, 32093, Kuwait
| | - Yaovi Holade
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, CNRS, Montpellier, France
- French Research Network on Hydrogen (FRH2), Research Federation No. 2044 CNRS CNRS BP, 32229, Nantes CEDEX 3 44322, France
| |
Collapse
|
2
|
Tang Y, Moreira GA, Vanegas D, Datta SPA, McLamore ES. Batch-to-Batch Variation in Laser-Inscribed Graphene (LIG) Electrodes for Electrochemical Sensing. MICROMACHINES 2024; 15:874. [PMID: 39064384 PMCID: PMC11279040 DOI: 10.3390/mi15070874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Laser-inscribed graphene (LIG) is an emerging material for micro-electronic applications and is being used to develop supercapacitors, soft actuators, triboelectric generators, and sensors. The fabrication technique is simple, yet the batch-to-batch variation of LIG quality is not well documented in the literature. In this study, we conduct experiments to characterize batch-to-batch variation in the manufacturing of LIG electrodes for applications in electrochemical sensing. Numerous batches of 36 LIG electrodes were synthesized using a CO2 laser system on polyimide film. The LIG material was characterized using goniometry, stereomicroscopy, open circuit potentiometry, and cyclic voltammetry. Hydrophobicity and electrochemical screening (cyclic voltammetry) indicate that LIG electrode batch-to-batch variation is less than 5% when using a commercial reference and counter electrode. Metallization of LIG led to a significant increase in peak current and specific capacitance (area between anodic/cathodic curve). However, batch-to-batch variation increased to approximately 30%. Two different platinum electrodeposition techniques were studied, including galvanostatic and frequency-modulated electrodeposition. The study shows that formation of metallized LIG electrodes with high specific capacitance and peak current may come at the expense of high batch variability. This design tradeoff has not been discussed in the literature and is an important consideration if scaling sensor designs for mass use is desired. This study provides important insight into the variation of LIG material properties for scalable development of LIG sensors. Additional studies are needed to understand the underlying mechanism(s) of this variability so that strategies to improve the repeatability may be developed for improving quality control. The dataset from this study is available via an open access repository.
Collapse
Affiliation(s)
- Yifan Tang
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Geisianny A. Moreira
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Diana Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Shoumen P. A. Datta
- Department of Mechanical Engineering, MIT Auto-ID Labs, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Biomedical Engineering Program, Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Eric S. McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC 29631, USA;
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
3
|
Oliveira DA, McLamore ES, Gomes CL. Rapid and label-free Listeria monocytogenes detection based on stimuli-responsive alginate-platinum thiomer nanobrushes. Sci Rep 2022; 12:21413. [PMID: 36496515 PMCID: PMC9741594 DOI: 10.1038/s41598-022-25753-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, we demonstrate the development of a rapid and label-free electrochemical biosensor to detect Listeria monocytogenes using a novel stimulus-response thiomer nanobrush material. Nanobrushes were developed via one-step simultaneous co-deposition of nanoplatinum (Pt) and alginate thiomers (ALG-thiomer). ALG-thiomer/Pt nanobrush platform significantly increased the average electroactive surface area of electrodes by 7 folds and maintained the actuation properties (pH-stimulated osmotic swelling) of the alginate. Dielectric behavior during brush actuation was characterized with positively, neutral, and negatively charged redox probes above and below the isoelectric point of alginate, indicating ALG-thiomer surface charge plays an important role in signal acquisition. The ALG-thiomer platform was biofunctionalized with an aptamer selective for the internalin A protein on Listeria for biosensing applications. Aptamer loading was optimized and various cell capture strategies were investigated (brush extended versus collapsed). Maximum cell capture occurs when the ALG-thiomer/aptamer is in the extended conformation (pH > 3.5), followed by impedance measurement in the collapsed conformation (pH < 3.5). Low concentrations of bacteria (5 CFU mL-1) were sensed from a complex food matrix (chicken broth) and selectivity testing against other Gram-positive bacteria (Staphylococcus aureus) indicate the aptamer affinity is maintained, even at these pH values. The new hybrid soft material is among the most efficient and fastest (17 min) for L. monocytogenes biosensing to date, and does not require sample pretreatment, constituting a promising new material platform for sensing small molecules or cells.
Collapse
Affiliation(s)
- Daniela A Oliveira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Eric S McLamore
- Agricultural Sciences, Clemson University, Clemson, SC, 29631, USA
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
4
|
Moreira G, Casso-Hartmann L, Datta SPA, Dean D, McLamore E, Vanegas D. Development of a Biosensor Based on Angiotensin-Converting Enzyme II for Severe Acute Respiratory Syndrome Coronavirus 2 Detection in Human Saliva. FRONTIERS IN SENSORS 2022; 3:917380. [PMID: 35992634 PMCID: PMC9386735 DOI: 10.3389/fsens.2022.917380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for COVID-19. Infection in humans requires angiotensin-converting enzyme II (hACE2) as the point of entry for SARS-CoV-2. PCR testing is generally definitive but expensive, although it is highly sensitive and accurate. Biosensor-based monitoring could be a low-cost, accurate, and non-invasive approach to improve testing capacity. We develop a capacitive hACE2 biosensor for intact SARS-CoV-2 detection in saliva. Laser-induced graphene (LIG) electrodes were modified with platinum nanoparticles. The quality control of LIG electrodes was performed using cyclic voltammetry. Truncated hACE2 was used as a biorecognition element and attached to the electrode surface by streptavidin-biotin coupling. Biolayer interferometry was used for qualitative interaction screening of hACE2 with UV-attenuated virions. Electrochemical impedance spectroscopy (EIS) was used for signal transduction. Truncated hACE2 binds wild-type SARS-CoV-2 and its variants with greater avidity than human coronavirus (common cold virus). The limit of detection (LoD) is estimated to be 2,960 copies/ml. The detection process usually takes less than 30 min. The strength of these features makes the hACE2 biosensor a potentially low-cost approach for screening SARS-CoV-2 in non-clinical settings with high demand for rapid testing (for example, schools and airports).
Collapse
Affiliation(s)
- Geisianny Moreira
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
- Global Alliance for Rapid Diagnostics, Michigan State University, Cambridge, MI, United States
| | - Lisseth Casso-Hartmann
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
| | - Shoumen Palit Austin Datta
- Medical Device (MDPnP) Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, United States
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, United States
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Eric McLamore
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
- Global Alliance for Rapid Diagnostics, Michigan State University, Cambridge, MI, United States
- Department of Agricultural Sciences, Clemson University, Clemson, SC, United States
| | - Diana Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, United States
- Global Alliance for Rapid Diagnostics, Michigan State University, Cambridge, MI, United States
| |
Collapse
|
5
|
Oliveira DA, Althawab S, McLamore ES, Gomes CL. One-Step Fabrication of Stimuli-Responsive Chitosan-Platinum Brushes for Listeria monocytogenes Detection. BIOSENSORS 2021; 11:bios11120511. [PMID: 34940268 PMCID: PMC8699315 DOI: 10.3390/bios11120511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Bacterial contamination in food-processing facilities is a critical issue that leads to outbreaks compromising the integrity of the food supply and public health. We developed a label-free and rapid electrochemical biosensor for Listeria monocytogenes detection using a new one-step simultaneous sonoelectrodeposition of platinum and chitosan (CHI/Pt) to create a biomimetic nanostructure that actuates under pH changes. The XPS analysis shows the effective co-deposition of chitosan and platinum on the electrode surface. This deposition was optimized to enhance the electroactive surface area by 11 times compared with a bare platinum-iridium electrode (p < 0.05). Electrochemical behavior during chitosan actuation (pH-stimulated osmotic swelling) was characterized with three different redox probes (positive, neutral, and negative charge) above and below the isoelectric point of chitosan. These results showed that using a negatively charged redox probe led to the highest electroactive surface area, corroborating previous studies of stimulus-response polymers on metal electrodes. Following this material characterization, CHI/Pt brushes were functionalized with aptamers selective for L. monocytogenes capture. These aptasensors were functional at concentrations up to 106 CFU/mL with no preconcentration nor extraneous reagent addition. Selectivity was assessed in the presence of other Gram-positive bacteria (Staphylococcus aureus) and with a food product (chicken broth). Actuation led to improved L. monocytogenes detection with a low limit of detection (33 CFU/10 mL in chicken broth). The aptasensor developed herein offers a simple fabrication procedure with only one-step deposition followed by functionalization and rapid L. monocytogenes detection, with 15 min bacteria capture and 2 min sensing.
Collapse
Affiliation(s)
- Daniela A. Oliveira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
| | - Suleiman Althawab
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Eric S. McLamore
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Carmen L. Gomes
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA; (D.A.O.); (S.A.)
- Department of Agricultural Sciences, Clemson University, Clemson, SC 26631, USA
| |
Collapse
|
6
|
Sense–Analyze–Respond–Actuate (SARA) Paradigm: Proof of Concept System Spanning Nanoscale and Macroscale Actuation for Detection of Escherichia coli in Aqueous Media. ACTUATORS 2020. [DOI: 10.3390/act10010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Foodborne pathogens are a major concern for public health. We demonstrate for the first time a partially automated sensing system for rapid (~17 min), label-free impedimetric detection of Escherichia coli spp. in food samples (vegetable broth) and hydroponic media (aeroponic lettuce system) based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) nanobrushes. This proof of concept (PoC) for the Sense-Analyze-Respond-Actuate (SARA) paradigm uses a biomimetic nanostructure that is analyzed and actuated with a smartphone. The bio-inspired soft material and sensing mechanism is inspired by binary symbiotic systems found in nature, where low concentrations of bacteria are captured from complex matrices by brush actuation driven by concentration gradients at the tissue surface. To mimic this natural actuation system, carbon-metal nanohybrid sensors were fabricated as the transducer layer, and coated with PNIPAAm nanobrushes. The most effective coating and actuation protocol for E. coli detection at various temperatures above/below the critical solution temperature of PNIPAAm was determined using a series of electrochemical experiments. After analyzing nanobrush actuation in stagnant media, we developed a flow through system using a series of pumps that are triggered by electrochemical events at the surface of the biosensor. SARA PoC may be viewed as a cyber-physical system that actuates nanomaterials using smartphone-based electroanalytical testing of samples. This study demonstrates thermal actuation of polymer nanobrushes to detect (sense) bacteria using a cyber-physical systems (CPS) approach. This PoC may catalyze the development of smart sensors capable of actuation at the nanoscale (stimulus-response polymer) and macroscale (non-microfluidic pumping).
Collapse
|
7
|
Soares RRA, Hjort RG, Pola CC, Parate K, Reis EL, Soares NFF, McLamore ES, Claussen JC, Gomes CL. Laser-Induced Graphene Electrochemical Immunosensors for Rapid and Label-Free Monitoring of Salmonella enterica in Chicken Broth. ACS Sens 2020; 5:1900-1911. [PMID: 32348124 DOI: 10.1021/acssensors.9b02345] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Food-borne illnesses are a growing concern for the food industry and consumers, with millions of cases reported every year. Consequently, there is a critical need to develop rapid, sensitive, and inexpensive techniques for pathogen detection in order to mitigate this problem. However, current pathogen detection strategies mainly include time-consuming laboratory methods and highly trained personnel. Electrochemical in-field biosensors offer a rapid, low-cost alternative to laboratory techniques, but the electrodes used in these biosensors require expensive nanomaterials to increase their sensitivity, such as noble metals (e.g., platinum, gold) or carbon nanomaterials (e.g., carbon nanotubes, or graphene). Herein, we report the fabrication of a highly sensitive and label-free laser-induced graphene (LIG) electrode that is subsequently functionalized with antibodies to electrochemically quantify the food-borne pathogen Salmonella enterica serovar Typhimurium. The LIG electrodes were produced by laser induction on the polyimide film in ambient conditions and, hence, circumvent the need for high-temperature, vacuum environment, and metal seed catalysts commonly associated with graphene-based electrodes fabricated via chemical vapor deposition processes. After functionalization with Salmonella antibodies, the LIG biosensors were able to detect live Salmonella in chicken broth across a wide linear range (25 to 105 CFU mL-1) and with a low detection limit (13 ± 7 CFU mL-1; n = 3, mean ± standard deviation). These results were acquired with an average response time of 22 min without the need for sample preconcentration or redox labeling techniques. Moreover, these LIG immunosensors displayed high selectivity as demonstrated by nonsignificant response to other bacteria strains. These results demonstrate how LIG-based electrodes can be used for electrochemical immunosensing in general and, more specifically, could be used as a viable option for rapid and low-cost pathogen detection in food processing facilities before contaminated foods reach the consumer.
Collapse
Affiliation(s)
- Raquel R. A. Soares
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Robert G. Hjort
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Cicero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Kshama Parate
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Efraim L. Reis
- Department of Chemistry, Federal University of Vicosa, Viçosa 36570-900, Brazil
| | - Nilda F. F. Soares
- Department of Food Technology, Federal University of Viçosa, Viçosa 36570-900, Brazil
| | - Eric S. McLamore
- Agricultural & Biological Engineering, University of Florida, Gainesville 32611, Florida, United States
| | - Jonathan C. Claussen
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames 50011, Iowa, United States
| |
Collapse
|
8
|
Zargazi M, Entezari MH. Sono-electrodeposition of novel bismuth sulfide films on the stainless steel mesh: Photocatalytic reduction of Cr (VI). JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121300. [PMID: 31590084 DOI: 10.1016/j.jhazmat.2019.121300] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
In this work, for the first time, bismuth sulfide (Bi2S3) film formed on the stainless steel mesh surface as a suitable substrate. Different films were synthesized by various combinations of the two methods (sonochemistry and electrochemistry) in continuous and pulse modes. The Bi2S3 films characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Atomic Force Microscope (AFM). To reach the best film for photocatalytic reduction of Cr (VI), different films were deposited on the substrate by changing three independent variables including pulse times (ton, toff) and sonication amplitude. Response Surface Methodology (RSM) applied for optimization of independent variables by using Central Composite Design (CCD). Here, the films prepared by sono-electrodeposition in pulse modes led to high photocatalytic efficiency in comparison with other films. The results confirmed that ultrasound affected the morphology of film due to the production of cavitation, micro jets and acoustic streaming. On the other hand, ultrasound decreased double layer thickness and dissolved diffusion problems. Sono-electrodeposition in pulse modes produced films with pumice and fractal like structures. The high photocatalytic activity attributed to special morphologies that have key roles in separation of hole/electron pairs and light multi-scattering.
Collapse
Affiliation(s)
- Mahboobeh Zargazi
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Mohammad H Entezari
- Sonochemical Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Iran; Environmental Chemistry Research Center, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
9
|
Morgan V, Casso-Hartmann L, Bahamon-Pinzon D, McCourt K, Hjort RG, Bahramzadeh S, Velez-Torres I, McLamore E, Gomes C, Alocilja EC, Bhusal N, Shrestha S, Pote N, Briceno RK, Datta SPA, Vanegas DC. Sensor-as-a-Service: Convergence of Sensor Analytic Point Solutions (SNAPS) and Pay-A-Penny-Per-Use (PAPPU) Paradigm as a Catalyst for Democratization of Healthcare in Underserved Communities. Diagnostics (Basel) 2020; 10:E22. [PMID: 31906350 PMCID: PMC7169468 DOI: 10.3390/diagnostics10010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 12/29/2019] [Accepted: 12/30/2019] [Indexed: 01/10/2023] Open
Abstract
In this manuscript, we discuss relevant socioeconomic factors for developing and implementing sensor analytic point solutions (SNAPS) as point-of-care tools to serve impoverished communities. The distinct economic, environmental, cultural, and ethical paradigms that affect economically disadvantaged users add complexity to the process of technology development and deployment beyond the science and engineering issues. We begin by contextualizing the environmental burden of disease in select low-income regions around the world, including environmental hazards at work, home, and the broader community environment, where SNAPS may be helpful in the prevention and mitigation of human exposure to harmful biological vectors and chemical agents. We offer examples of SNAPS designed for economically disadvantaged users, specifically for supporting decision-making in cases of tuberculosis (TB) infection and mercury exposure. We follow-up by discussing the economic challenges that are involved in the phased implementation of diagnostic tools in low-income markets and describe a micropayment-based systems-as-a-service approach (pay-a-penny-per-use-PAPPU), which may be catalytic for the adoption of low-end, low-margin, low-research, and the development SNAPS. Finally, we provide some insights into the social and ethical considerations for the assimilation of SNAPS to improve health outcomes in marginalized communities.
Collapse
Affiliation(s)
- Victoria Morgan
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (V.M.); (E.M.); (S.P.A.D.)
| | - Lisseth Casso-Hartmann
- Natural Resources and Environmental Engineering, Universidad del Valle, Cali 760026, Colombia; (L.C.-H.); (I.V.-T.)
- Interdisciplinary Group for Biotechnological Innovation and Ecosocial Change BioNovo, Universidad del Valle, Cali 760026, Colombia
| | - David Bahamon-Pinzon
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA; (D.B.-P.); (K.M.)
| | - Kelli McCourt
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA; (D.B.-P.); (K.M.)
| | - Robert G. Hjort
- Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (R.G.H.); (C.G.)
| | - Sahar Bahramzadeh
- School of Computer Engineering, Azad University, Science and Research Branch, Saveh 11369, Iran;
| | - Irene Velez-Torres
- Natural Resources and Environmental Engineering, Universidad del Valle, Cali 760026, Colombia; (L.C.-H.); (I.V.-T.)
- Interdisciplinary Group for Biotechnological Innovation and Ecosocial Change BioNovo, Universidad del Valle, Cali 760026, Colombia
| | - Eric McLamore
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (V.M.); (E.M.); (S.P.A.D.)
| | - Carmen Gomes
- Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (R.G.H.); (C.G.)
| | - Evangelyn C. Alocilja
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA; (E.C.A.); (N.B.)
- Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Nirajan Bhusal
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA; (E.C.A.); (N.B.)
- School of Medical Sciences, Kathmandu University, Kathmandu 44600, Nepal
- Dhulikhel Hospital, Kathmandu University, Kavrepalanchok 45200, Nepal; (S.S.); (N.P.)
| | - Sunaina Shrestha
- Dhulikhel Hospital, Kathmandu University, Kavrepalanchok 45200, Nepal; (S.S.); (N.P.)
| | - Nisha Pote
- Dhulikhel Hospital, Kathmandu University, Kavrepalanchok 45200, Nepal; (S.S.); (N.P.)
| | - Ruben Kenny Briceno
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA; (E.C.A.); (N.B.)
- Instituto de Investigacion en Ciencia y Tecnologia, Universidad Cesar Vallejo, Trujillo 13100, Peru;
- Hospital Victor Lazarte Echegaray, Trujillo 13100, Peru
- Institute for Global Health, Michigan State University, East Lansing, MI 48824, USA
| | - Shoumen Palit Austin Datta
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; (V.M.); (E.M.); (S.P.A.D.)
- MIT Auto-ID Labs, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MDPnP Interoperability and Cybersecurity Labs, Biomedical Engineering Program, Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- NSF Center for Robots and Sensors for Human Well-Being, Purdue University, 156 Knoy Hall, Purdue Polytechnic, West Lafayette, IN 47907, USA
| | - Diana C. Vanegas
- Interdisciplinary Group for Biotechnological Innovation and Ecosocial Change BioNovo, Universidad del Valle, Cali 760026, Colombia
- Biosystems Engineering, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29631, USA; (D.B.-P.); (K.M.)
| |
Collapse
|
10
|
Kucherenko IS, Soldatkin OO, Kucherenko DY, Soldatkina OV, Dzyadevych SV. Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review. NANOSCALE ADVANCES 2019; 1:4560-4577. [PMID: 36133111 PMCID: PMC9417062 DOI: 10.1039/c9na00491b] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 05/06/2023]
Abstract
Electrochemical enzyme-based biosensors are one of the largest and commercially successful groups of biosensors. Integration of nanomaterials in the biosensors results in significant improvement of biosensor sensitivity, limit of detection, stability, response rate and other analytical characteristics. Thus, new functional nanomaterials are key components of numerous biosensors. However, due to the great variety of available nanomaterials, they should be carefully selected according to the desired effects. The present review covers the recent applications of various types of nanomaterials in electrochemical enzyme-based biosensors for the detection of small biomolecules, environmental pollutants, food contaminants, and clinical biomarkers. Benefits and limitations of using nanomaterials for analytical purposes are discussed. Furthermore, we highlight specific properties of different nanomaterials, which are relevant to electrochemical biosensors. The review is structured according to the types of nanomaterials. We describe the application of inorganic nanomaterials, such as gold nanoparticles (AuNPs), platinum nanoparticles (PtNPs), silver nanoparticles (AgNPs), and palladium nanoparticles (PdNPs), zeolites, inorganic quantum dots, and organic nanomaterials, such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), carbon and graphene quantum dots, graphene, fullerenes, and calixarenes. Usage of composite nanomaterials is also presented.
Collapse
Affiliation(s)
- I S Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Department of Mechanical Engineering, Iowa State University Ames Iowa 50011 USA
| | - O O Soldatkin
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
| | - D Yu Kucherenko
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
| | - O V Soldatkina
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
- F. D. Ovcharenko Institute of Biocolloidal Chemistry Acad. Vernadskoho Blvd. 42 Kyiv 03142 Ukraine
| | - S V Dzyadevych
- Department of Biomolecular Electronics, Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine Zabolotnogo Street 150 Kyiv 03143 Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv Volodymyrska Street 64 Kyiv 01003 Ukraine
| |
Collapse
|
11
|
Hills KD, Oliveira DA, Cavallaro ND, Gomes CL, McLamore ES. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing. Analyst 2019. [PMID: 29541704 DOI: 10.1039/c7an02039b] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We demonstrate a sensing mechanism for rapid detection of Listeria monocytogenes in food samples using the actuation of chitosan-aptamer nanobrush borders. The bio-inspired soft material and sensing strategy mimic natural symbiotic systems, where low levels of bacteria are selectively captured from complex matrices. To engineer this biomimetic system, we first develop reduced graphene oxide/nanoplatinum (rGO-nPt) electrodes, and characterize the fundamental electrochemical behavior in the presence and absence of chitosan nanobrushes during actuation (pH-stimulated osmotic swelling). We then characterize the electrochemical behavior of the nanobrush when receptors (antibodies or DNA aptamers) are conjugated to the surface. Finally, we test various techniques to determine the most efficient capture strategy based on nanobrush actuation, and then apply the biosensors in a food product. Maximum cell capture occurs when aptamers conjugated to the nanobrush bind cells in the extended conformation (pH < 6), followed by impedance measurement in the collapsed nanobrush conformation (pH > 6). The aptamer-nanobrush hybrid material was more efficient than the antibody-nanobrush material, which was likely due to the relatively high adsorption capacity for aptamers. The biomimetic material was used to develop a rapid test (17 min) for selectively detecting L. monocytogenes at concentrations ranging from 9 to 107 CFU mL-1 with no pre-concentration, and in the presence of other Gram-positive cells (Listeria innocua and Staphylococcus aureus). Use of this bio-inspired material is among the most efficient for L. monocytogenes sensing to date, and does not require sample pretreatment, making nanobrush borders a promising new material for rapid pathogen detection in food.
Collapse
|
12
|
Vanegas DC, Patiño L, Mendez C, Oliveira DAD, Torres AM, Gomes CL, McLamore ES. Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials. BIOSENSORS 2018; 8:E42. [PMID: 29695046 PMCID: PMC6023090 DOI: 10.3390/bios8020042] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/11/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
In foods, high levels of biogenic amines (BA) are the result of microbial metabolism that could be affected by temperatures and storage conditions. Thus, the level of BA is commonly used as an indicator of food safety and quality. This manuscript outlines the development of laser scribed graphene electrodes, with locally sourced materials, for reagent-free food safety biosensing. To fabricate the biosensors, the graphene surface was functionalized with copper microparticles and diamine oxidase, purchased from a local supermarket; and then compared to biosensors fabricated with analytical grade materials. The amperometric biosensor exhibits good electrochemical performance, with an average histamine sensitivity of 23.3 µA/mM, a lower detection limit of 11.6 µM, and a response time of 7.3 s, showing similar performance to biosensors constructed from analytical grade materials. We demonstrated the application of the biosensor by testing total BA concentration in fish paste samples subjected to fermentation with lactic acid bacteria. Biogenic amines concentrations prior to lactic acid fermentation were below the detection limit of the biosensor, while concentration after fermentation was 19.24 ± 8.21 mg histamine/kg, confirming that the sensor was selective in a complex food matrix. The low-cost, rapid, and accurate device is a promising tool for biogenic amine estimation in food samples, particularly in situations where standard laboratory techniques are unavailable, or are cost prohibitive. This biosensor can be used for screening food samples, potentially limiting food waste, while reducing chances of foodborne outbreaks.
Collapse
Affiliation(s)
- Diana C Vanegas
- Department of Food Engineering, Universidad del Valle, Cali 760032, Colombia.
| | - Laksmi Patiño
- Department of Food Engineering, Universidad del Valle, Cali 760032, Colombia.
| | - Connie Mendez
- Department of Food Engineering, Universidad del Valle, Cali 760032, Colombia.
| | - Daniela Alves de Oliveira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Alba M Torres
- Department of Biology, Universidad del Valle, Cali 760032, Colombia.
| | - Carmen L Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Eric S McLamore
- Department of Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
He Q, Das SR, Garland NT, Jing D, Hondred JA, Cargill AA, Ding S, Karunakaran C, Claussen JC. Enabling Inkjet Printed Graphene for Ion Selective Electrodes with Postprint Thermal Annealing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12719-12727. [PMID: 28218507 DOI: 10.1021/acsami.7b00092] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inkjet printed graphene (IPG) has recently shown tremendous promise in reducing the cost and complexity of graphene circuit fabrication. Herein we demonstrate, for the first time, the fabrication of an ion selective electrode (ISE) with IPG. A thermal annealing process in a nitrogen ambient environment converts the IPG into a highly conductive electrode (sheet resistance changes from 52.8 ± 7.4 MΩ/□ for unannealed graphene to 172.7 ± 33.3 Ω/□ for graphene annealed at 950 °C). Raman spectroscopy and field emission scanning electron microscopy (FESEM) analysis reveals that the printed graphene flakes begin to smooth at an annealing temperature of 500 °C and then become more porous and more electrically conductive when annealed at temperatures of 650 °C and above. The resultant thermally annealed, IPG electrodes are converted into potassium ISEs via functionalization with a poly(vinyl chloride) (PVC) membrane and valinomycin ionophore. The developed potassium ISE displays a wide linear sensing range (0.01-100 mM), a low detection limit (7 μM), minimal drift (8.6 × 10-6 V/s), and a negligible interference during electrochemical potassium sensing against the backdrop of interfering ions [i.e., sodium (Na), magnesium (Mg), and calcium (Ca)] and artificial eccrine perspiration. Thus, the IPG ISE shows potential for potassium detection in a wide variety of human fluids including plasma, serum, and sweat.
Collapse
Affiliation(s)
- Qing He
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Suprem R Das
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
- Ames Laboratory, Ames, Iowa 50011, United States
| | - Nathaniel T Garland
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Dapeng Jing
- Materials Analysis and Research Laboratory, Iowa State University , Ames, Iowa 50010, United States
| | - John A Hondred
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Allison A Cargill
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Shaowei Ding
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
| | - Chandran Karunakaran
- Biomedical Research Laboratory, Department of Chemistry, VHNSN College (Autonomous) , Virudhunagar 626 001, Tamil Nadu, India
| | - Jonathan C Claussen
- Mechanical Engineering Department, Iowa State University , Ames, Iowa 50011, United States
- Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
14
|
In Situ Coupling of Ultrasound to Electro- and Photo-Deposition Methods for Materials Synthesis. Molecules 2017; 22:molecules22020216. [PMID: 28146131 PMCID: PMC6155787 DOI: 10.3390/molecules22020216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 11/22/2022] Open
Abstract
This short review provides the current state-of-the-art of in situ coupling of ultrasound to chemical deposition methods. Synergetic action of ultrasound and light radiation or electrical fields may result in new powerful methodologies, which include sonophotodeposition and sonoelectrodeposition processes. The effect of ultrasound is explained on the basis of different physical mechanisms emerging from cavitation phenomenon. Some possible mechanisms of the interactions between ultrasound and photochemical and electrochemical processes are discussed here. The application of sonophotodeposition and sonoelectrodeposition as green energy sources in the syntheses of different nanomaterials is also reviewed.
Collapse
|
15
|
Burrs SL, Bhargava M, Sidhu R, Kiernan-Lewis J, Gomes C, Claussen JC, McLamore ES. A paper based graphene-nanocauliflower hybrid composite for point of care biosensing. Biosens Bioelectron 2016; 85:479-487. [PMID: 27209574 DOI: 10.1016/j.bios.2016.05.037] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/26/2022]
Abstract
We demonstrate the first report of graphene paper functionalized with fractal platinum nanocauliflower for use in electrochemical biosensing of small molecules (glucose) or detection of pathogenic bacteria (Escherichia coli O157:H7). Raman spectroscopy, scanning electron microscopy and energy dispersive spectroscopy show that graphene oxide-coated nanocellulose was partially reduced by both thermal treatment, and further reduced by chemical treatment (ascorbic acid). Fractal nanoplatinum with cauliflower-like morphology was formed on the reduced graphene oxide paper using pulsed sonoelectrodeposition, producing a conductive paper with an extremely high electroactive surface area (0.29±0.13cm(2)), confirmed by cyclic voltammetry and electrochemical impedance spectroscopy. The platinum surface was functionalized with either glucose oxidase (via chitosan encapsulation) or a RNA aptamer (via covalent linking) for demonstration as a point of care biosensor. The detection limit for both glucose (0.08±0.02μM) and E. coli O157:H7 (≈4 CFUmL(-1)) were competitive with, or superior to, previously reported devices in the biosensing literature. The response time (6s for glucose and 12min for E. coli) were also similar to silicon biochip and commercial electrode sensors. The results demonstrate that the nanocellulose-graphene-nanoplatinum material is an excellent paper-based platform for development of electrochemical biosensors targeting small molecules or whole cells for use in point of care biosensing.
Collapse
Affiliation(s)
- S L Burrs
- Agricultural & Biological Engineering Department, Institute of Food and Agricultural Systems, University of Florida, USA
| | - M Bhargava
- Agricultural & Biological Engineering Department, Institute of Food and Agricultural Systems, University of Florida, USA
| | - R Sidhu
- Biological & Agricultural Engineering, Texas A&M University, USA
| | - J Kiernan-Lewis
- Agricultural & Biological Engineering Department, Institute of Food and Agricultural Systems, University of Florida, USA
| | - C Gomes
- Biological & Agricultural Engineering, Texas A&M University, USA
| | - J C Claussen
- Mechanical Engineering Department, Iowa State University, USA
| | - E S McLamore
- Agricultural & Biological Engineering Department, Institute of Food and Agricultural Systems, University of Florida, USA.
| |
Collapse
|