1
|
Ito S, Hirano K, Koyasu K, Wan XK, Wang QM, Tsukuda T. Resistance of a PdAu 12(8e) Core to Growth in Collision-Induced Sequential Reductive Elimination of (C≡CR) 2 from [PdAu 24(C≡CR) 18] 2. J Phys Chem Lett 2024; 15:11060-11066. [PMID: 39470462 DOI: 10.1021/acs.jpclett.4c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Previous studies have reported that [PdAu24(PAF)18]2- (PAF = 3,5-(CF3)2C6H3C≡C) with an icosahedral superatomic PdAu12(8e) core underwent collision-induced sequential reductive elimination (CISRE) of 1,3-diyne (PAF)2 ( J. Phys. Chem. C 2020, 124, 19119). The most likely scenario after the CISRE of (PAF)2 is the growth of the PdAu12(8e) core via the fusion of the Au(0) atoms produced from the Au2(PAF)3 units on the core surface. Contrary to expectation, anion photoelectron spectroscopy and theoretical calculations regarding the CISRE products [PdAu24(PAF)18-2n]2- (n = 1-6) revealed that the electronically closed PdAu12(8e) core does not grow to a single superatom with (8 + 2n)e but assembles with Au2(2e) units. Characterization of the CISRE products of other alkynyl-protected Au clusters suggested that even the non-superatomic Au17(8e) core was resistant to growth due probably to rigidification by PA ligands. We propose that there is a kinetic bottleneck in the growth process of protected Au clusters at the stage where they are electronically closed and/or lose their structural fluxionality by ligation.
Collapse
Affiliation(s)
- Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koto Hirano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xian-Kai Wan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084 P. R. China
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Carbon to Metal Coating Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Antsiburov I, Schütz M, Bühler R, Muhr M, Stephan J, Gemel C, Klein W, Kahlal S, Saillard JY, Fischer RA. All-Hydrocarbon-Ligated Superatomic Gold/Aluminum Clusters. Inorg Chem 2024; 63:3749-3756. [PMID: 38335041 PMCID: PMC10900290 DOI: 10.1021/acs.inorgchem.3c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Key strategies in cluster synthesis include the use of modulating agents (e.g., coordinating additives). We studied the influence of various phosphines exhibiting different steric and electronic properties on the reduction of the Au(I) precursor to Au(0) clusters. We report a synthesis of the bimetallic clusters [Au6(AlCp*)6] = [Au6Al6](Cp*)6 (1) and [HAu7(AlCp*)6] = [HAu7Al6](Cp*)6 (2) (Cp* = pentamethylcyclopentadiene) using Au(I) precursors and AlCp*. The cluster [Au2(AlCp*)5] = [Au2Al5](Cp*)5 (3) was isolated and identified as an intermediate species in the reactions to 1 and 2. The processes of cluster growth and degradation were investigated by in situ 1H NMR and LIFDI-MS techniques. The structures of 1 and 2 were established by DFT geometry optimization. These octahedral clusters can both be described as closed-shell 18-electron superatoms.
Collapse
Affiliation(s)
- Ivan Antsiburov
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Max Schütz
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Raphael Bühler
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Maximilian Muhr
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Johannes Stephan
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Christian Gemel
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Wilhelm Klein
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, Beaulieu, Rennes F-35000, France
| | | | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| |
Collapse
|
3
|
Li S, Yang N, Ma Q, Li S, Tong S, Luo J, Song X, Yang H. Tailoring Oxidation Responsiveness of Gold Nanoclusters via Ligand Engineering for Imaging Acute Kidney Injury. Anal Chem 2023; 95:16153-16159. [PMID: 37877516 DOI: 10.1021/acs.analchem.3c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Gold nanoclusters (AuNCs) have shown great promise for in vivo imaging because of their definable structure, tunable photoluminescence (PL), and desired renal clearance. However, current understanding of the responsiveness of AuNCs to biological substances is still limited, which may hamper their biomedical applications. Herein, we explore the oxidation responsiveness of near-infrared II (NIR-II) luminescent AuNCs capped with two different ligands, which can be optimized for high-efficiency NIR-II PL imaging of mice acute kidney injury (AKI) featuring high-level peroxynitrite anions (ONOO-). We found that in the presence of ONOO-, N-acetylcysteine-capped AuNCs (NAC-AuNCs) tended to be oxidized more easily than that capped with the macromolecular mercapto-β-cyclodextrin (CDS-AuNCs), resulting in the aggregation of NAC-AuNCs into large-sized assemblies, which was not observed in CDS-AuNCs. The oxidation-triggered morphology, composition, and NIR-II PL changes in NAC-AuNCs were then systematically studied. We finally demonstrated that NAC-AuNCs can be implemented for sensitive NIR-II PL imaging of mice AKI, facilitated by the synergetic in situ AuNC aggregation and decreased glomerular filtration rate (GFR) in the injured kidney, which outperforms the methods solely based on the decreased GFR effect. Therefore, this work highlights the critical significance of ligand engineering in AuNCs and may motivate future design of AuNCs for diverse bioimaging applications.
Collapse
Affiliation(s)
- Shihua Li
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Nangen Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Qiuping Ma
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Shijie Li
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Shufen Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jiewei Luo
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1# Xueyuan Road, Quanzhou, Fujian 362801, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
4
|
Zhang J, Wang HD, Zhang Y, Li Z, Yang D, Zhang DH, Tsukuda T, Li G. A Revealing Insight into Gold Cluster Photocatalysts: Visible versus (Vacuum) Ultraviolet Light. J Phys Chem Lett 2023; 14:4179-4184. [PMID: 37114860 DOI: 10.1021/acs.jpclett.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
[Au25(PPh3)10(SC2H4Ph)5Cl2]2+ (Au25) supported on TiO2 (P25) exhibited distinct photocatalytic behaviors in the oxidation of amines using visible or ultraviolet light. The activity under visible light (455 nm) was superior to that under ultraviolet light. To gain insight into the origin of this difference, we investigated the photoreaction pathways of Au25 isolated in the gas phase upon irradiation with a pulsed laser with wavelengths of 455, 193, and 154 nm. High-resolution mass spectrometry revealed photon energy-dependent pathways for Au25: dissociation of the PPh3 ligands and PPh3AuCl units at 455 nm, dissociation into small [AunSm]+ ions (n = 3-20; m = 0-4) at 193 nm, and ionization affording the triply charged state at 154 nm. These results were substantiated by density functional theory simulations. On the basis of these results, we proposed that the inferior photocatalytic activity of Au25/P25 under ultraviolet light is mainly due to the poor photostability of Au25.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Heng-Ding Wang
- State Key Laboratory Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dongyuan Yang
- State Key Laboratory Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dong H Zhang
- State Key Laboratory Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
5
|
Tiefenthaler L, Scheier P, Erdmann E, Aguirre NF, Díaz-Tendero S, Luxford TFM, Kočišek J. Non-ergodic fragmentation upon collision-induced activation of cysteine-water cluster cations. Phys Chem Chem Phys 2023; 25:5361-5371. [PMID: 36647750 PMCID: PMC9930733 DOI: 10.1039/d2cp04172c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/20/2022] [Indexed: 01/18/2023]
Abstract
Cysteine-water cluster cations Cys(H2O)3,6+ and Cys(H2O)3,6H+ are assembled in He droplets and probed by tandem mass spectrometry with collision-induced activation. Benchmark experimental data for this biologically important system are complemented with theory to elucidate the details of the collision-induced activation process. Experimental energy thresholds for successive release of water are compared to water dissociation energies from DFT calculations showing that clusters do not only fragment exclusively by sequential emission of single water molecules but also by the release of small water clusters. Release of clustered water is observed also in the ADMP (atom centered density matrix propagation) molecular dynamics model of small Cys(H2O)3+ and Cys(H2O)3H+ clusters. For large clusters Cys(H2O)6+ and Cys(H2O)6H+ the less computationally demanding statistical Microcanonical Metropolis Monte-Carlo method (M3C) is used to model the experimental fragmentation patterns. We are able to detail the energy redistribution in clusters upon collision activation. In the present case, about two thirds of the collision energy redistribute via an ergodic process, while the remaining one third is transferred into a non-ergodic channel leading to ejection of a single water molecule from the cluster. In contrast to molecular fragmentation, which can be well described by statistical models, modelling of collision-induced activation of weakly bound clusters requires inclusion of non-ergodic processes.
Collapse
Affiliation(s)
- Lukas Tiefenthaler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria.
| | - Paul Scheier
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Austria.
| | - Ewa Erdmann
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
- Departamento de Química, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Néstor F Aguirre
- Software for Chemistry and Materials (SCM), Amsterdam, The Netherlands
| | - Sergio Díaz-Tendero
- Departamento de Química, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in ChemicalSciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Thomas F M Luxford
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia.
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia.
| |
Collapse
|
6
|
Oliveira de Souza D, Girardon JS, Hoffmann DJ, Berrier E. Dynamics of Citrate Coordination on Gold Nanoparticles Under Low Specific Power Laser-Induced Heating. Chemphyschem 2022; 24:e202200744. [PMID: 36495221 DOI: 10.1002/cphc.202200744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
SERS evolution recorded over a drop-coated coffee-ring pattern of citrate-capped gold colloids was investigated as a function of time under low-specific laser power. Spectral changes caused by plasmon-induced reaction could not be detected, but a long-term transient original spectral profile showing additional lines was observed. We performed deep qualitative and quantitative SERS intensity variation analysis based on the complementary use of extreme deviation and cross-correlation statistics, which provided further insights on the behavior of citrate-capping layers of gold nanoparticles upon laser illumination. More precisely, the cross-correlation analysis made possible to follow the so-called individual events denoting particular resonance structures, in which groups of modes were assigned to an evolution of citrate coordination on gold surface driven by photo-activation. As a consequence, the detection limit was increased and new lines were related to the presence of a very low amount of dicarboxy-acetone (DCA), which was already present in the system.
Collapse
Affiliation(s)
| | | | - David J Hoffmann
- Electrical Engineering Department, Federal University of Espírito Santo (UFES), Vitória, ES, Brazil
| | - Elise Berrier
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois - UCCS, Lille, France
| |
Collapse
|
7
|
Philliber M, Baxter ET, Johnson GE. Synthesis and Stability of Mixed-Diphosphine Ligated Gold Clusters. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2138-2146. [PMID: 36166416 DOI: 10.1021/jasms.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sub-nanometer gold clusters are promising size- and composition-tunable materials that may be used for advanced technological applications such as catalysis, energy generation, and microelectronics. Synthesis and characterization of phosphine ligated gold clusters containing different ligands provide insight into how steric and electronic effects resulting from changes in chemical functionality influence cluster size, stability, and formation in solution. Herein, we demonstrate that synthesizing gold clusters using two different diphosphines in solution at the same time results in a broad distribution of novel mixed-ligand clusters. In comparison, adding a second diphosphine to a solution of gold clusters presynthesized with another diphosphine does not result in extensive formation of mixed-ligand species. Utilizing high-mass resolution electrospray ionization mass spectrometry, we determined novel cluster compositions and observed size-dependent trends in gold clusters that undergo ligand exchange forming mixed diphosphine species. Adjacent peaks in the mass spectra, separated by characteristic mass-to-charge ratios, provide evidence for multiple 1,3-bis(diphenylphosphino)propane (L3) and 1,5-bis(diphenylphosphino)pentane (L5) ligands on cationic clusters containing 8, 10, 11, and 22 gold atoms. Energy-resolved collision-induced dissociation experiments provide qualitative insight into how different diphosphine ligands affect the relative stability of specific size gold clusters. Our results indicate that mixed-ligand clusters containing both L3 and L5 are generally more stable than their single ligand counterparts containing either L3 or L5. These molecular-level insights will facilitate the rational and scalable synthesis of gold clusters for targeted applications.
Collapse
Affiliation(s)
- Mallory Philliber
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemistry, University of Utah, 315 S 1400 E, Room 2020, Salt Lake City, Utah 84112, United States
| | - Eric T Baxter
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Grant E Johnson
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
8
|
Gholipour-Ranjbar H, Deepika, Jena P, Laskin J. Gas-phase fragmentation of single heteroatom-incorporated Co 5MS 8(PEt 3) 6+ (M = Mn, Fe, Co, Ni) nanoclusters. Commun Chem 2022; 5:130. [PMID: 36697963 PMCID: PMC9814561 DOI: 10.1038/s42004-022-00750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/07/2022] [Indexed: 01/28/2023] Open
Abstract
Functionalization of metal-chalcogenide clusters by either replacing core atoms or by tuning the ligand is a powerful technique to tailor their properties. Central to this approach is understanding the competition between the strength of the metal-ligand and metal-metal interactions. Here, using collision-induced dissociation of atomically precise metal sulfide nanoclusters, Co5MS8L6+ (L = PEt3, M = Mn, Fe, Co, Ni) and Co5-xFexS8L6+ (x = 1-3), we study the effect of a heteroatom incorporation on the core-ligand interactions and relative stability towards fragmentation. Sequential ligand loss is the dominant dissociation pathway that competes with ligand sulfide (LS) loss. Because the ligands are attached to metal atoms, LS loss is an unusual dissociation pathway, indicating significant rearrangement of the core prior to fragmentation. Both experiments and theoretical calculations indicate the reduced stability of Co5MnS8L6+ and Co5FeS8L6+ towards the first ligand loss in comparison with their Co6S8L6+ and Co5NiS8L6+ counterparts and provide insights into the core-ligand interaction.
Collapse
Affiliation(s)
| | - Deepika
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
9
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
10
|
Bista D, Aydt AP, Anderton KJ, Paley DW, Betley TA, Reber AC, Chauhan V, Bartholomew AK, Roy X, Khanna SN. High-Spin Superatom Stabilized by Dual Subshell Filling. J Am Chem Soc 2022; 144:5172-5179. [PMID: 35289175 DOI: 10.1021/jacs.2c00731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantum confinement in small symmetric clusters leads to the bunching of electronic states into closely packed shells, enabling the classification of clusters with well-defined valences as superatoms. Like atoms, superatomic clusters with filled shells exhibit enhanced electronic stability. Here, we show that octahedral transition-metal chalcogenide clusters can achieve filled shell electronic configurations when they have 100 valence electrons in 50 orbitals or 114 valence electrons in 57 orbitals. While these stable clusters are intrinsically diamagnetic, we use our understanding of their electronic structures to theoretically predict that a cluster with 107 valence electrons would uniquely combine high stability and high-spin magnetic moment, attained by filling a majority subshell of 57 electrons and a minority subshell of 50 electrons. We experimentally demonstrate this predicted stability, high-spin magnetic moment (S = 7/2), and fully delocalized electronic structure in a new cluster, [NEt4]5[Fe6S8(CN)6]. This work presents the first computational and experimental demonstration of the importance of dual subshell filling in transition-metal chalcogenide clusters.
Collapse
Affiliation(s)
- Dinesh Bista
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Alexander P Aydt
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kevin J Anderton
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel W Paley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Arthur C Reber
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Vikas Chauhan
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | | | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shiv N Khanna
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
11
|
Brindle J, Nigra MM. Compensation Effect Exhibited by Gold Bimetallic Nanoparticles during CO Oxidation. ACS OMEGA 2021; 6:24269-24279. [PMID: 34568704 PMCID: PMC8459437 DOI: 10.1021/acsomega.1c04236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 06/13/2023]
Abstract
While CO oxidation catalyzed by gold nanoparticles has been practiced academically for several decades, there are still important discoveries to be made. One area of current interest is to pair Au with another alloying metal and observe the catalytic consequences of the presence of the other metal. In this work, TiO2-supported bimetallic Au nanoparticles are alloyed with Cu, Co, Ni, Pd, and Ru and used as catalysts for CO oxidation. Two synthetic methods for the alloys are presented: a strong electrostatic adsorption (SEA) method and a sterically demanding ligand synthesis (SDLS) method which uses triphenylphosphine (TPP) as the ligand. The catalytic performance of the materials synthesized with the SEA and SDLS methods is compared in CO oxidation. The results indicate that the materials tested present an enthalpy-entropy compensation effect. Interestingly, both the enthalpy of activation, ΔH ‡, and the entropy of activation, ΔS ‡, generally decrease with particle size. AuCo and AuRu materials exhibit a decrease in the overall activity as compared to Au and the other Au alloys when synthesized via SEA. Au face-centered-cubic alloys AuCu, AuNi, and AuPd prepared via SEA show an improvement in activity compared to monometallic Au in our reaction conditions. In situ diffuse reflectance infrared Fourier transform spectroscopy presents two distinct regions for Au bimetallics where AuCo and AuRu show peak positions in the region of 2070-2050 cm-1, indicating a weaker interaction for AuCo and AuRu with CO when compared to that of the other alloys. For the SDLS method samples, the hypothesis is that TPP would enhance the CO oxidation rate by enhancing the charge transfer to the metallic surface. The results indicate that SDLS samples have lower CO oxidation rates and if any charge transfer occurs, it is masked by the lateral interactions of the CO π bonds and the phenyl groups of TPP.
Collapse
|
12
|
Ceylan YS, Gieseking RLM. Hydride- and halide-substituted Au 9(PH 3) 83+ nanoclusters: similar absorption spectra disguise distinct geometries and electronic structures. Phys Chem Chem Phys 2021; 23:17287-17299. [PMID: 34346427 DOI: 10.1039/d1cp02761a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ligands dramatically affect the electronic structure of gold nanoclusters (NCs) and provide a useful handle to tune the properties required for nanomaterials that have high performance for important functions like catalysis. Recently, questions have arisen about the nature of the interactions of hydride and halide ligands with Au NCs: hydride and halide ligands have similar effects on the absorption spectra of Au9 NCs, which suggested that the interactions of the two classes of ligands with the Au core may be similar. Here, we elucidate the interactions of halide and hydride ligands with phosphine-protected gold clusters via theoretical investigations. The computed absorption spectra using time-dependent density functional theory are in reasonable agreement with the experimental spectra, confirming that the computational methods are capturing the ligand-metal interactions accurately. Despite the similarities in the absorption spectra, the hydride and halide ligands have distinct geometric and electronic effects. The hydride ligand behaves as a metal dopant and contributes its two electrons to the number of superatomic electrons, while the halides act as electron-withdrawing ligands and do not change the number of superatomic electrons. Clarifying the binding modes of these ligands will aid in future efforts to use ligand derivatization as a powerful tool to rationally design Au NCs for use in functional materials.
Collapse
Affiliation(s)
- Yavuz S Ceylan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, USA.
| | | |
Collapse
|
13
|
Wang Y, Liu XH, Wang R, Cula B, Chen ZN, Chen Q, Koch N, Pinna N. Secondary Phosphine Oxide Functionalized Gold Clusters and Their Application in Photoelectrocatalytic Hydrogenation Reactions. J Am Chem Soc 2021; 143:9595-9600. [PMID: 34128669 DOI: 10.1021/jacs.1c04048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ligands in ligand-protected metal clusters play a crucial role, not only because of their interaction with the metal core, but also because of the functionality they provide to the cluster. Here, we report the utilization of secondary phosphine oxide (SPO), as a new family of functional ligands, for the preparation of an undecagold cluster Au11-SPO. Different from the commonly used phosphine ligand (i.e., triphenylphosphine, TPP), the SPOs in Au11-SPO work as electron-withdrawing anionic ligands. While coordinating to gold via the phosphorus atom, the SPO ligand keeps its O atom available to act as a nucleophile. Upon photoexcitation, the clusters are found to inject holes into p-type semiconductors (here, bismuth oxide is used as a model), sensitizing the p-type semiconductor in a different way compared to the photosensitization of a n-type semiconductor. Furthermore, the Au11-SPO/Bi2O3 photocathode exhibits a much higher activity toward the hydrogenation of benzaldehyde than a TPP-protected Au11-sensitized Bi2O3 photocathode. Control experiments and density functional theory studies point to the crucial role of the cooperation between gold and the SPO ligands on the selectivity toward the hydrogenation of the C═O group in benzaldehyde.
Collapse
Affiliation(s)
- Yu Wang
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Xiao-He Liu
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Rongbin Wang
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Beatrice Cula
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qingyun Chen
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Norbert Koch
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 12489, Germany
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| |
Collapse
|
14
|
Koyasu K, Tsukuda T. Gas-phase studies of chemically synthesized Au and Ag clusters. J Chem Phys 2021; 154:140901. [DOI: 10.1063/5.0041812] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520,
Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033,
Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520,
Japan
| |
Collapse
|
15
|
Massai L, Zoppi C, Cirri D, Pratesi A, Messori L. Reactions of Medicinal Gold(III) Compounds With Proteins and Peptides Explored by Electrospray Ionization Mass Spectrometry and Complementary Biophysical Methods. Front Chem 2020; 8:581648. [PMID: 33195070 PMCID: PMC7609534 DOI: 10.3389/fchem.2020.581648] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Electrospray ionization mass spectrometry (ESI MS) is a powerful investigative tool to analyze the reactions of metallodrugs with proteins and peptides and characterize the resulting adducts. Here, we have applied this type of approach to four experimental anticancer gold(III) compounds for which extensive biological and mechanistic data had previously been gathered, namely, Auoxo6, Au2phen, AuL12, and Aubipyc. These gold(III) compounds were reacted with two representative proteins, i.e., human serum albumin (HSA) and human carbonic anhydrase I (hCA I), and with the C-terminal dodecapeptide of thioredoxin reductase. ESI MS analysis allowed us to elucidate the nature of the resulting metal-protein adducts from which the main features of the occurring metallodrug-protein reactions can be inferred. In selected cases, MS data were integrated and supported by independent 1HNMR and UV-Vis absorption measurements to gain an overall description of the occurring processes. From data analysis, it emerges that most of the investigated gold(III) complexes, endowed with an appreciable oxidizing character, undergo quite facile reduction to gold(I); the resulting gold(I) species tightly associate with the above proteins/peptides with a remarkable selectivity for free cysteine residues. In contrast, in the case of the less-oxidizing Aubipyc complex, the gold(III) oxidation state is conserved, and a gold(III) fragment still containing the original ligand is found to be associated with the target proteins. It is notable that the C-terminal dodecapeptide of thioredoxin reductase containing the characteristic -Gly-Cys-Sec-Gly metal-binding motif is able in all cases to trigger gold(III)-to-gold(I) reduction. Our investigation allowed us to identify in detail the nature of the gold fragments that ultimately bind the protein targets and determine the exact binding stoichiometry; some insight on the reaction kinetics was also gained. Notably, a few clear correlations could be established between the structure of the metal complexes and the nature of the resulting protein adducts. The mechanistic implications of these findings are analyzed and thoroughly discussed. Overall, the present results set the stage to better understand the real target biomolecules of these gold compounds and elucidate at the atomic level their interaction modes with proteins and peptides.
Collapse
Affiliation(s)
- Lara Massai
- Department of Chemistry, University of Florence, Florence, Italy
| | - Carlotta Zoppi
- Department of Chemistry, University of Florence, Florence, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Luigi Messori
- Department of Chemistry, University of Florence, Florence, Italy
| |
Collapse
|
16
|
Hirai H, Ito S, Takano S, Koyasu K, Tsukuda T. Ligand-protected gold/silver superatoms: current status and emerging trends. Chem Sci 2020; 11:12233-12248. [PMID: 34094434 PMCID: PMC8162828 DOI: 10.1039/d0sc04100a] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Monolayer-protected gold/silver clusters have attracted much interest as nano-scale building units for novel functional materials owing to their nonbulk-like structures and size-specific properties. They can be viewed as ligand-protected superatoms because their magic stabilities and fundamental properties are well explained in the framework of the jellium model. In the last decade, the number of ligand-protected superatoms with atomically-defined structures has been increasing rapidly thanks to the well-established synthesis and structural determination by X-ray crystallography. This perspective summarizes the current status and emerging trends in synthesis and characterization of superatoms. The topics related to synthesis include (1) development of targeted synthesis based on transformation, (2) enhancement of robustness and synthetic yield for practical applications, and (3) development of controlled fusion and assembly of well-defined superatoms to create new properties. New characterization approaches are also introduced such as (1) mass spectrometry and laser spectroscopies in the gas phase, (2) determination of static and dynamic structures, and (3) computational analysis by machine learning. Finally, future challenges and prospects are discussed for further promotion and development of materials science of superatoms. This perspective summarizes the current status and emerging trends in synthesis and characterization of ligand-protected gold/silver superatoms.![]()
Collapse
Affiliation(s)
- Haru Hirai
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Katsura Kyoto 615-8520 Japan
| |
Collapse
|
17
|
Estévez L. C-HAu interactions and optical properties of [(P,P) 4Au 6] 2+ molecular gold nanoclusters. Dalton Trans 2020; 49:4797-4804. [PMID: 32211720 DOI: 10.1039/d0dt00464b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two hexagold diphosphine-stabilized [(P,P)4Au6]2+ molecular nanoclusters with the same [core + exo] arrangement differing in the linker (phenylene or trimethylene) connecting the two P-donor sites have been subjected to theoretical studies with the aim of shedding light on two main questions. On one hand, from a previous study [J. Vícha, C. Foroutan-Nejadand M. Straka,Nat. Commun., 2019, 10, 1643], it is still unclear whether short C-H2Au contacts revealed in the corresponding crystal structures are just forced by bulky P(Ph)2 groups and, on the other hand, to what extent the linker affects the visible band position [M. A. Bakar, M. Sugiuchi, M. Iwasaki, Y. Shichibuand K. Konishi, Nat. Commun., 2017, 8, 576]. Here, it is demonstrated that even in simpler model systems in which bulky groups were replaced by PH2 groups, C-H2Au hydrogen bonding interactions are retained and show comparable values, as measured by NBO and QTAIM analyses, to those of 1 and 2. These analyses further confirmed a stronger HB in 1 than in 2. Also, the comparison of model systems without and with a linker connecting the phosphine groups showed a bathochromic shift of 47 and 60 nm, revealing the key role of the linker. The Δρ(r)EE-GS plots of 1 and 2 revealed electron density depletion in the inter-nuclear C-H2 region upon electronic transition unveiling its contribution to their optical properties.
Collapse
Affiliation(s)
- Laura Estévez
- Departamento de Química Física, Universidade de Vigo, As Lagoas-Marcosende s/n, 36310 Galicia, Spain.
| |
Collapse
|
18
|
Cirri A, Hernández HM, Johnson CJ. High Precision Electronic Spectroscopy of Ligand-Protected Gold Nanoclusters: Effects of Composition, Environment, and Ligand Chemistry. J Phys Chem A 2020; 124:1467-1479. [PMID: 31916764 DOI: 10.1021/acs.jpca.9b09164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atomically precise gold nanoclusters (AuNCs) are a class of nanomaterials valued for their electronic properties and diverse structural features. While the advent of X-ray crystallography of AuNCs has revealed their geometric structures with high precision, detailed electronic structure analysis is challenged by environmental, compositional, and thermal averaging effects present in electronic spectra of typical samples. To circumvent these challenges, we have adapted mass spectrometer-based electronic absorption spectroscopy techniques to acquire high-resolution electronic spectra of atomically precisely defined nanoclusters separated from a synthetic mixture. Here we discuss recent results using this approach to link the surface chemistry of triphenylphosphine-protected AuNCs to their electronic structure and expand on key elements of the experiment and the link between these gas-phase measurements and solution-phase behavior of AuNCs. Chemically derivatized Au8(P(p-X-Ph)3)72+ and Au9(P(p-X-Ph)3)83+ clusters, where X = -H, -CH3, or -OCH3, are used to derive systematic trends in the response of the electronic spectrum to the electron-donating character of the ligand shell. We find a linear relationship between the substituent Hammett parameter σp and the transition energy between both sets of clusters' highest occupied and lowest unoccupied molecular orbitals, a transition that is localized in the metal core within the limits of the superatomic model. The similarity of the mass-selective and solution-phase UV/vis spectra of Au9(PPh3)83+ indicates that the interpretation of these experiments is transferable to the condensed phase. He and N2 environments are introduced to a series of isovalent clusters as a subtle probe of discrete environmental effects over electronic structure. Strikingly, select bands in the UV/vis spectrum respond strongly to the identity of the environment, which we interpret as a state-selective indicator of interfacially relevant electronic transitions. Physically predictable trends such as these will aid in building molecular design principles necessary for the development of novel materials based on nanoclusters.
Collapse
Affiliation(s)
- Anthony Cirri
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , New York 11794-3400 , United States
| | - Hanna Morales Hernández
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , New York 11794-3400 , United States
| | - Christopher J Johnson
- Department of Chemistry , Stony Brook University , 100 Nicolls Road , Stony Brook , New York 11794-3400 , United States
| |
Collapse
|
19
|
Cirri A, Hernández HM, Johnson CJ. Hydride, chloride, and bromide show similar electronic effects in the Au9(PPh3)83+ nanocluster. Chem Commun (Camb) 2020; 56:1283-1285. [DOI: 10.1039/c9cc08009k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydride and halide ligands in gold nanoclusters exhibit an unexpected similar electronic relationship, suggesting an underlying chemical linkage between them.
Collapse
|
20
|
Cirri A, Morales Hernández H, Kmiotek C, Johnson CJ. Systematically Tuning the Electronic Structure of Gold Nanoclusters through Ligand Derivatization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anthony Cirri
- Department of Chemistry Stony Brook University 100 Nicolls Rd. Stony Brook NY 11794 USA
| | | | - Christina Kmiotek
- Department of Chemistry Stony Brook University 100 Nicolls Rd. Stony Brook NY 11794 USA
| | | |
Collapse
|
21
|
Cirri A, Morales Hernández H, Kmiotek C, Johnson CJ. Systematically Tuning the Electronic Structure of Gold Nanoclusters through Ligand Derivatization. Angew Chem Int Ed Engl 2019; 58:13818-13822. [DOI: 10.1002/anie.201907586] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Anthony Cirri
- Department of Chemistry Stony Brook University 100 Nicolls Rd. Stony Brook NY 11794 USA
| | | | - Christina Kmiotek
- Department of Chemistry Stony Brook University 100 Nicolls Rd. Stony Brook NY 11794 USA
| | | |
Collapse
|
22
|
Hirata K, Tomihara R, Kim K, Koyasu K, Tsukuda T. Characterization of chemically modified gold and silver clusters in gas phase. Phys Chem Chem Phys 2019; 21:17463-17474. [PMID: 31363731 DOI: 10.1039/c9cp02622c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Atomically precise Au and Ag clusters protected by organic ligands can be viewed as chemically modified Au/Ag superatoms and have attracted interest as promising building units of functional materials and ideal platforms for studying the size-dependent evolution of structures and properties. Their structures, stability, and physicochemical properties have been characterized in solution and solid (or crystalline) phases by various methods conventionally used in materials science. However, novel and complementary information on their intrinsic stability and structures can be obtained by applying a variety of gas-phase methods, including mass spectrometry, ion mobility mass spectrometry, collision- or surface-induced dissociation mass spectrometry, photoelectron spectroscopy, and photodissociation mass spectrometry, to the chemically modified Au/Ag superatoms isolated in the gas phase. This perspective describes our recent efforts in the gas-phase studies on chemically synthesized Au/Ag superatoms.
Collapse
Affiliation(s)
- Keisuke Hirata
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
23
|
Parrish KA, King M, Ligare MR, Johnson GE, Hernández H. Role of sterics in phosphine-ligated gold clusters. Phys Chem Chem Phys 2019; 21:1689-1699. [DOI: 10.1039/c8cp04961k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study examined the solution-phase exchange reactions of triphenylphosphine (PPh3) ligands on Au8L72+ (L = PPh3) gold clusters with three different tolyl ligands using electrospray ionization mass spectrometry to provide insight into how steric differences in the phosphines influence the extent of ligand exchange and the stability of the resulting mixed-phosphine clusters.
Collapse
Affiliation(s)
| | - Mary King
- Department of Chemistry
- University of Texas at Austin
- Austin
- USA
| | - Marshall R. Ligare
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Grant E. Johnson
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | | |
Collapse
|
24
|
Bertorelle F, Russier-Antoine I, Comby-Zerbino C, Chirot F, Dugourd P, Brevet PF, Antoine R. Isomeric Effect of Mercaptobenzoic Acids on the Synthesis, Stability, and Optical Properties of Au 25(MBA) 18 Nanoclusters. ACS OMEGA 2018; 3:15635-15642. [PMID: 31458220 PMCID: PMC6643454 DOI: 10.1021/acsomega.8b02615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/05/2018] [Indexed: 05/03/2023]
Abstract
We report a simple size focusing, two-step "bottom-up" protocol to prepare water-soluble Au25(MBA)18 nanoclusters, using the three isomers of mercaptobenzoic acids (p/m/o-MBA) as capping ligands and Me3NBH3 as a mild reducing agent. The relative stability of the gas-phase multiply deprotonated Au25(MBA)18 ions was investigated by collision-induced dissociation. This permitted us to evaluate the possible isomeric effect on the Au-S interfacial bond stress. We also investigated their optical properties. The absorption spectra of Au25(MBA)18 isomers were very similar and showed bands at 690, 470, and 430 nm. For all Au25(MBA)18 isomeric clusters, no measurable one-photon excited fluorescence under UV-vis light was found, in neither solid- nor solution-state. The two-photon excited emission spectra and first hyperpolarizabilities of the clusters were also determined. The results are discussed in terms of the possible isomeric effect on excitations within the metal core and the possibility of charge transfer excitations from the ligands to the metal nanocluster.
Collapse
Affiliation(s)
- Franck Bertorelle
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Isabelle Russier-Antoine
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Clothilde Comby-Zerbino
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Fabien Chirot
- Univ
Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon,
Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Philippe Dugourd
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Pierre-François Brevet
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
| | - Rodolphe Antoine
- Univ
Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière
Matière, UMR 5306, 69100 Villeurbanne, France
- E-mail: (R.A.)
| |
Collapse
|
25
|
Smith JN, Hook JM, Lucas NT. Superphenylphosphines: Nanographene-Based Ligands That Control Coordination Geometry and Drive Supramolecular Assembly. J Am Chem Soc 2018; 140:1131-1141. [PMID: 29253338 DOI: 10.1021/jacs.7b12251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tertiary phosphines remain widely utilized in synthesis, most notably as supporting ligands in metal complexes. A series of triarylphosphines bearing one to three hexa-peri-hexabenzocoronene (HBC) substituents has been prepared by an efficient divergent route. These "superphenylphosphines", P{HBC(t-Bu)5}nPh3-n (n = 1-3), form the palladium complexes PdCl2L2 and Pd2Cl4L2 where the isomer distribution in solution is dependent on the number of HBC substituents. The crystalline structures of five complexes all show intramolecular π-stacking between HBC-phosphines to form a supramolecular bidentate-like ligand that distorts the metal coordination geometry. When n = 2 or 3, the additional HBC substituents engage in intermolecular π-stacking to assemble the complexes into continuous ribbons or sheets. The phosphines adopt HBC's characteristics including strong optical absorption, green emission, and redox activity.
Collapse
Affiliation(s)
- Jordan N Smith
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago , Union Place, Dunedin 9016, New Zealand
| | - James M Hook
- Mark Wainwright Analytical Centre, University of New South Wales , Sydney, NSW 2052, Australia
| | - Nigel T Lucas
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago , Union Place, Dunedin 9016, New Zealand
| |
Collapse
|
26
|
Zohreh N, Hosseini SH, Jahani M, Xaba MS, Meijboom R. Stabilization of Au NPs on symmetrical tridentate NNN-Pincer ligand grafted on magnetic support as water dispersible and recyclable catalyst for coupling reaction of terminal alkyne. J Catal 2017. [DOI: 10.1016/j.jcat.2017.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Parcher JF, Wang M, Chittiboyina AG, Khan IA. In‐source collision‐induced dissociation (IS‐CID): Applications, issues and structure elucidation with single‐stage mass analyzers. Drug Test Anal 2017; 10:28-36. [DOI: 10.1002/dta.2249] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jon F. Parcher
- National Center for Natural Products Research, School of Pharmacy University of Mississippi University Mississippi USA
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy University of Mississippi University Mississippi USA
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, School of Pharmacy University of Mississippi University Mississippi USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy University of Mississippi University Mississippi USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy University of Mississippi, University Mississippi USA
| |
Collapse
|
28
|
Liu G, Ciborowski SM, Bowen KH. Photoelectron Spectroscopic and Computational Study of Pyridine-Ligated Gold Cluster Anions. J Phys Chem A 2017; 121:5817-5822. [DOI: 10.1021/acs.jpca.7b05712] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gaoxiang Liu
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Sandra M. Ciborowski
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Kit H. Bowen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
29
|
Ligare MR, Johnson GE, Laskin J. Observing the real time formation of phosphine-ligated gold clusters by electrospray ionization mass spectrometry. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp01402c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time monitoring of the gold cluster synthesis by electrospray ionization mass spectrometry reveals distinct formation pathways for Au8, Au9 and Au10 clusters.
Collapse
Affiliation(s)
- Marshall R. Ligare
- Physical Sciences Division
- Pacific Northwest National Laboratory
- P. O. Box 999
- Richland
- USA
| | - Grant E. Johnson
- Physical Sciences Division
- Pacific Northwest National Laboratory
- P. O. Box 999
- Richland
- USA
| | - Julia Laskin
- Physical Sciences Division
- Pacific Northwest National Laboratory
- P. O. Box 999
- Richland
- USA
| |
Collapse
|
30
|
Ligare MR, Baker ES, Laskin J, Johnson GE. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry. Chem Commun (Camb) 2017; 53:7389-7392. [DOI: 10.1039/c7cc02251d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry.
Collapse
Affiliation(s)
- Marshall R. Ligare
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Erin S. Baker
- Biological Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Julia Laskin
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| | - Grant E. Johnson
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
| |
Collapse
|