1
|
Holden CA, McAinsh M, Taylor JE, Beckett P, Martin FL. Attenuated total reflection Fourier-transform infrared spectroscopy reveals environment specific phenotypes in clonal Japanese knotweed. BMC PLANT BIOLOGY 2024; 24:769. [PMID: 39135189 PMCID: PMC11321083 DOI: 10.1186/s12870-024-05200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/24/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Japanese knotweed (Reynoutria japonica var. japonica), a problematic invasive species, has a wide geographical distribution. We have previously shown the potential for attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometrics to segregate regional differentiation between Japanese knotweed plants. However, the contribution of environment to spectral differences remains unclear. Herein, the response of Japanese knotweed to varied environmental habitats has been studied. Eight unique growth environments were created by manipulation of the red: far-red light ratio (R: FR), water availability, nitrogen, and micronutrients. Their impacts on plant growth, photosynthetic parameters, and ATR-FTIR spectral profiles, were explored using chemometric techniques, including principal component analysis (PCA), linear discriminant analysis, support vector machines (SVM) and partial least squares regression. Key wavenumbers responsible for spectral differences were identified with PCA loadings, and molecular biomarkers were assigned. Partial least squared regression (PLSR) of spectral absorbance and root water potential (RWP) data was used to create a predictive model for RWP. RESULTS Spectra from plants grown in different environments were differentiated using ATR-FTIR spectroscopy coupled with SVM. Biomarkers highlighted through PCA loadings corresponded to several molecules, most commonly cell wall carbohydrates, suggesting that these wavenumbers could be consistent indicators of plant stress across species. R: FR most affected the ATR-FTIR spectra of intact dried leaf material. PLSR prediction of root water potential achieved an R2 of 0.8, supporting the potential use of ATR-FTIR spectrometers as sensors for prediction of plant physiological parameters. CONCLUSIONS Japanese knotweed exhibits environmentally induced phenotypes, indicated by measurable differences in their ATR-FTIR spectra. This high environmental plasticity reflected by key biomolecular changes may contribute to its success as an invasive species. Light quality (R: FR) appears critical in defining the growth and spectral response to environment. Cross-species conservation of biomarkers suggest that they could function as indicators of plant-environment interactions including abiotic stress responses and plant health.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Martin McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | | | - Francis L Martin
- Biocel Ltd, Hull, HU10 7TS, UK
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool, FY3 8NR, UK
| |
Collapse
|
2
|
Holden CA, McAinsh MR, Taylor JE, Beckett P, Albacete A, Martínez-Andújar C, Morais CLM, Martin FL. Attenuated total reflection Fourier-transform infrared spectroscopy for the prediction of hormone concentrations in plants. Analyst 2024; 149:3380-3395. [PMID: 38712606 DOI: 10.1039/d3an01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Plant hormones are important in the control of physiological and developmental processes including seed germination, senescence, flowering, stomatal aperture, and ultimately the overall growth and yield of plants. Many currently available methods to quantify such growth regulators quickly and accurately require extensive sample purification using complex analytic techniques. Herein we used ultra-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) to create and validate the prediction of hormone concentrations made using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectral profiles of both freeze-dried ground leaf tissue and extracted xylem sap of Japanese knotweed (Reynoutria japonica) plants grown under different environmental conditions. In addition to these predictions made with partial least squares regression, further analysis of spectral data was performed using chemometric techniques, including principal component analysis, linear discriminant analysis, and support vector machines (SVM). Plants grown in different environments had sufficiently different biochemical profiles, including plant hormonal compounds, to allow successful differentiation by ATR-FTIR spectroscopy coupled with SVM. ATR-FTIR spectral biomarkers highlighted a range of biomolecules responsible for the differing spectral signatures between growth environments, such as triacylglycerol, proteins and amino acids, tannins, pectin, polysaccharides such as starch and cellulose, DNA and RNA. Using partial least squares regression, we show the potential for accurate prediction of plant hormone concentrations from ATR-FTIR spectral profiles, calibrated with hormonal data quantified by UHPLC-HRMS. The application of ATR-FTIR spectroscopy and chemometrics offers accurate prediction of hormone concentrations in plant samples, with advantages over existing approaches.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Martin R McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | - Alfonso Albacete
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/ Mayor s/n, La Alberca, E-30150 Murcia, Spain
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | | | - Camilo L M Morais
- Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
| | - Francis L Martin
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
- Biocel UK Ltd, Hull HU10 6TS, UK
| |
Collapse
|
3
|
Jin N, Song J, Wang Y, Yang K, Zhang D. Biospectroscopic fingerprinting phytotoxicity towards environmental monitoring for food security and contaminated site remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133515. [PMID: 38228003 DOI: 10.1016/j.jhazmat.2024.133515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
Human activities have resulted in severe environmental pollution since the industrial revolution. Phytotoxicity-based environmental monitoring is well known due to its sedentary nature, abundance, and sensitivity to environmental changes, which are essential preconditions to avoiding potential environmental and ecological risks. However, conventional morphological and physiological methods for phytotoxicity assessment mainly focus on descriptive determination rather than mechanism analysis and face challenges of labour and time-consumption, lack of standardized protocol and difficulties in data interpretation. Molecular-based tests could reveal the toxicity mechanisms but fail in real-time and in-situ monitoring because of their endpoint manner and destructive operation in collecting cellular components. Herein, we systematically propose and lay out a biospectroscopic tool (e.g., infrared and Raman spectroscopy) coupled with multivariate data analysis as a relatively non-destructive and high-throughput approach to quantitatively measure phytotoxicity levels and qualitatively profile phytotoxicity mechanisms by classifying spectral fingerprints of biomolecules in plant tissues in response to environmental stresses. With established databases and multivariate analysis, this biospectroscopic fingerprinting approach allows ultrafast, in situ and on-site diagnosis of phytotoxicity. Overall, the proposed protocol and validation of biospectroscopic fingerprinting phytotoxicity can distinguish the representative biomarkers and interrogate the relevant mechanisms to quantify the stresses of interest, e.g., environmental pollutants. This state-of-the-art concept and design broaden the knowledge of phytotoxicity assessment, advance novel implementations of phytotoxicity assay, and offer vast potential for long-term field phytotoxicity monitoring trials in situ.
Collapse
Affiliation(s)
- Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Jiaxuan Song
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Yingying Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
4
|
Whatley CR, Wijewardane NK, Bheemanahalli R, Reddy KR, Lu Y. Effects of fine grinding on mid-infrared spectroscopic analysis of plant leaf nutrient content. Sci Rep 2023; 13:6314. [PMID: 37072478 PMCID: PMC10113243 DOI: 10.1038/s41598-023-33558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023] Open
Abstract
Fourier transform mid infrared (FT-MIR) spectroscopy combined with modeling techniques has been studied as a useful tool for multivariate chemical analysis in agricultural research. A drawback of this method is the sample preparation requirement, in which samples must be dried and fine ground for accurate model calibrations. For research involving large sample sets, this may dramatically increase the time and cost of analysis. This study investigates the effect of fine grinding on model performance using leaf tissue from a variety of crop species. Dried leaf samples (N = 300) from various environmental conditions were obtained with data on 11 nutrients measured using chemical methods. The samples were scanned with attenuated total reflectance (ATR) and diffuse reflectance (DRIFT) FT-MIR techniques. Scanning was repeated after fine grinding for 2, 5, and 10 min. The spectra were analyzed for the 11 nutrients using partial least squares regression with a 75%/25% split for calibration and validation and repeated for 50 iterations. All analytes except for boron, iron, and zinc were well-modeled (average R2 > 0.7), with higher R2 values on ATR spectra. The 5 min level of fine grinding was found to be most optimal considering overall model performance and sample preparation time.
Collapse
Affiliation(s)
- Caleb R Whatley
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Nuwan K Wijewardane
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Raju Bheemanahalli
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - K Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Yuzhen Lu
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 44824, USA
| |
Collapse
|
5
|
Holden CA, Bailey JP, Taylor JE, Martin F, Beckett P, McAinsh M. Know your enemy: Application of ATR-FTIR spectroscopy to invasive species control. PLoS One 2022; 17:e0261742. [PMID: 34995300 PMCID: PMC8740966 DOI: 10.1371/journal.pone.0261742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Extreme weather and globalisation leave our climate vulnerable to invasion by alien species, which have negative impacts on the economy, biodiversity, and ecosystem services. Rapid and accurate identification is key to the control of invasive alien species. However, visually similar species hinder conservation efforts, for example hybrids within the Japanese Knotweed complex.We applied the novel method of ATR-FTIR spectroscopy combined with chemometrics (mathematics applied to chemical data) to historic herbarium samples, taking 1580 spectra in total. Samples included five species from within the interbreeding Japanese Knotweed complex (including three varieties of Japanese Knotweed), six hybrids and five species from the wider Polygonaceae family. Spectral data from herbarium specimens were analysed with several chemometric techniques: support vector machines (SVM) for differentiation between plant types, supported by ploidy levels; principal component analysis loadings and spectral biomarkers to explore differences between the highly invasive Reynoutria japonica var. japonica and its non-invasive counterpart Reynoutria japonica var. compacta; hierarchical cluster analysis (HCA) to investigate the relationship between plants within the Polygonaceae family, of the Fallopia, Reynoutria, Rumex and Fagopyrum genera.ATR-FTIR spectroscopy coupled with SVM successfully differentiated between plant type, leaf surface and geographical location, even in herbarium samples of varying age. Differences between Reynoutria japonica var. japonica and Reynoutria japonica var. compacta included the presence of two polysaccharides, glucomannan and xyloglucan, at higher concentrations in Reynoutria japonica var. japonica than Reynoutria japonica var. compacta. HCA analysis indicated that potential genetic linkages are sometimes masked by environmental factors; an effect that can either be reduced or encouraged by altering the input parameters. Entering the absorbance values for key wavenumbers, previously highlighted by principal component analysis loadings, favours linkages in the resultant HCA dendrogram corresponding to expected genetic relationships, whilst environmental associations are encouraged using the spectral fingerprint region.The ability to distinguish between closely related interbreeding species and hybrids, based on their spectral signature, raises the possibility of using this approach for determining the origin of Japanese knotweed infestations in legal cases where the clonal nature of plants currently makes this difficult and for the targeted control of species and hybrids. These techniques also provide a new method for supporting biogeographical studies.
Collapse
Affiliation(s)
- Claire Anne Holden
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - John Paul Bailey
- Department of Genetics and Genome Biology, Leicester University, Leicester, United Kingdom
| | | | | | | | - Martin McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
6
|
Holden CA, Morais CLM, Taylor JE, Martin FL, Beckett P, McAinsh M. Regional differences in clonal Japanese knotweed revealed by chemometrics-linked attenuated total reflection Fourier-transform infrared spectroscopy. BMC PLANT BIOLOGY 2021; 21:522. [PMID: 34753418 PMCID: PMC8579538 DOI: 10.1186/s12870-021-03293-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Japanese knotweed (R. japonica var japonica) is one of the world's 100 worst invasive species, causing crop losses, damage to infrastructure, and erosion of ecosystem services. In the UK, this species is an all-female clone, which spreads by vegetative reproduction. Despite this genetic continuity, Japanese knotweed can colonise a wide variety of environmental habitats. However, little is known about the phenotypic plasticity responsible for the ability of Japanese knotweed to invade and thrive in such diverse habitats. We have used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, in which the spectral fingerprint generated allows subtle differences in composition to be clearly visualized, to examine regional differences in clonal Japanese knotweed. RESULTS We have shown distinct differences in the spectral fingerprint region (1800-900 cm- 1) of Japanese knotweed from three different regions in the UK that were sufficient to successfully identify plants from different geographical regions with high accuracy using support vector machine (SVM) chemometrics. CONCLUSIONS These differences were not correlated with environmental variations between regions, raising the possibility that epigenetic modifications may contribute to the phenotypic plasticity responsible for the ability of R. japonica to invade and thrive in such diverse habitats.
Collapse
Affiliation(s)
- Claire A Holden
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Jane E Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | - Martin McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
7
|
Skolik P, Morais CLM, Martin FL, McAinsh MR. Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and Chemometrics. BMC PLANT BIOLOGY 2019; 19:236. [PMID: 31164091 PMCID: PMC6549295 DOI: 10.1186/s12870-019-1852-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Development and ripening of tomato (Solanum lycopersicum) fruit are important processes for the study of crop biology related to industrial horticulture. Versatile uses of tomato fruit lead to its harvest at various points of development from early maturity through to red ripe, traditionally indicated by parameters such as size, weight, colour, and internal composition, according to defined visual 'grading' schemes. Visual grading schemes however are subjective and thus objective classification of tomato fruit development and ripening are needed for 'high-tech' horticulture. To characterize the development and ripening processes in whole tomato fruit (cv. Moneymaker), a biospectroscopy approach is employed using compact portable ATR-FTIR spectroscopy coupled with chemometrics. RESULTS The developmental and ripening processes showed unique spectral profiles, which were acquired from the cuticle-cell wall complex of tomato fruit epidermis in vivo. Various components of the cuticle including Cutin, waxes, and phenolic compounds, among others, as well as from the underlying cell wall such as celluloses, pectin and lignin like compounds among others. Epidermal surface structures including cuticle and cell wall were significantly altered during the developmental process from immature green to mature green, as well as during the ripening process. Changes in the spectral fingerprint region (1800-900 cm- 1) were sufficient to identify nine developmental and six ripening stages with high accuracy using support vector machine (SVM) chemometrics. CONCLUSIONS The non-destructive spectroscopic approach may therefore be especially useful for investigating in vivo biochemical changes occurring in fruit epidermis related to grades of tomato during development and ripening, for autonomous food production/supply chain applications.
Collapse
Affiliation(s)
- Paul Skolik
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ UK
| | - Camilo L. M. Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE UK
| | - Francis L. Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE UK
| | - Martin R. McAinsh
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster, LA1 4YQ UK
| |
Collapse
|
8
|
Skolik P, McAinsh MR, Martin FL. ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit. PLANTA 2019; 249:925-939. [PMID: 30488286 DOI: 10.1007/s00425-018-3060-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/23/2018] [Indexed: 05/20/2023]
Abstract
ATR-FTIR spectroscopy with subsequent multivariate analysis non-destructively identifies plant-pathogen interactions during disease progression, both directly and indirectly, through alterations in the spectral fingerprint. Plant-environment interactions are essential to understanding crop biology, optimizing crop use, and minimizing loss to ensure food security. Damage-induced pathogen infection of delicate fruit crops such as tomato (Solanum lycopersicum) are therefore important processes related to crop biology and modern horticulture. Fruit epidermis as a first barrier at the plant-environment interface, is specifically involved in environmental interactions and often shows substantial structural and functional changes in response to unfavourable conditions. Methods available to investigate such systems in their native form, however, are limited by often required and destructive sample preparation, or scarce amounts of molecular level information. To explore biochemical changes and evaluate diagnostic potential for damage-induced pathogen infection of cherry tomato (cv. Piccolo) both directly and indirectly, mid-infrared (MIR) spectroscopy was applied in combination with exploratory multivariate analysis. ATR-FTIR fingerprint spectra (1800-900 cm-1) of healthy, damaged or sour rot-infected tomato fruit were acquired and distinguished using principal component analysis and linear discriminant analysis (PCA-LDA). Main biochemical constituents of healthy tomato fruit epidermis are characterized while multivariate analysis discriminated subtle biochemical changes distinguishing healthy tomato from damaged, early or late sour rot-infected tomato indirectly based solely on changes in the fruit epidermis. Sour rot causing agent Geotrichum candidum was detected directly in vivo and characterized based on spectral features distinct from tomato fruit. Diagnostic potential for indirect pathogen detection based on tomato fruit skin was evaluated using the linear discriminant classifier (PCA-LDC). Exploratory and diagnostic analysis of ATR-FTIR spectra offers biological insights and detection potential for intact plant-pathogen systems as they are found in horticultural industries.
Collapse
Affiliation(s)
- Paul Skolik
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Martin R McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK.
| |
Collapse
|
9
|
Germond A, Kumar V, Ichimura T, Moreau J, Furusawa C, Fujita H, Watanabe TM. Raman spectroscopy as a tool for ecology and evolution. J R Soc Interface 2018; 14:rsif.2017.0174. [PMID: 28592661 PMCID: PMC5493802 DOI: 10.1098/rsif.2017.0174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022] Open
Abstract
Scientists are always on the lookout for new modalities of information which could reveal new biological features that are useful for deciphering the complexity of biological systems. Here, we introduce Raman spectroscopy as a prime candidate for ecology and evolution. To encourage the integration of this microscopy technique in the field of ecology and evolution, it is crucial to discuss first how Raman spectroscopy fits within the conceptual, technical and pragmatic considerations of ecology and evolution. In this paper, we show that the spectral information holds reliable indicators of intra- and interspecies variations, which can be related to the environment, selective pressures and fitness. Moreover, we show how the technical and pragmatic aspects of this modality (non-destructive, non-labelling, speed, relative low cost, etc.) enable it to be combined with more conventional methodologies. With this paper, we hope to open new avenues of research and extend the scope of available methodologies used in ecology and evolution.
Collapse
Affiliation(s)
- Arno Germond
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Vipin Kumar
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Taro Ichimura
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Jerome Moreau
- Université de Bourgogne Franche Comté, UMR CNRS 6656 Biogeosciences, Equipe Ecologie Evolutive, 6 Boulevard Gabriel, Dijon 21000, France
| | - Chikara Furusawa
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.,Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Hideaki Fujita
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.,WPI Immunology Frontier Research Center, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomonobu M Watanabe
- RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
10
|
Huleihel M, Shufan E, Tsror L, Sharaha U, Lapidot I, Mordechai S, Salman A. Differentiation of mixed soil-borne fungi in the genus level using infrared spectroscopy and multivariate analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:155-165. [PMID: 29433053 DOI: 10.1016/j.jphotobiol.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/24/2018] [Accepted: 02/06/2018] [Indexed: 01/31/2023]
Abstract
Early detection of soil-borne pathogens, which have a negative effect on almost all agricultural crops, is crucial for effective targeting with the most suitable antifungal agents and thus preventing and/or reducing their severity. They are responsible for severe diseases in various plants, leading in many cases to substantial economic losses. In this study, infrared (IR) spectroscopic method, which is known as sensitive, accurate and rapid, was used to discriminate between different fungi in a mixture was evaluated. Mixed and pure samples of Colletotrichum, Verticillium, Rhizoctonia, and Fusarium genera were measured using IR microscopy. Our spectral results showed that the best differentiation between pure and mixed fungi was obtained in the 675-1800 cm-1 wavenumber region. Principal components analysis (PCA), followed by linear discriminant analysis (LDA) as a linear classifier, was performed on the spectra of the measured classes. Our results showed that it is possible to differentiate between mixed-calculated categories of phytopathogens with high success rates (~100%) when the mixing percentage range is narrow (40-60) in the genus level; when the mixing percentage range is wide (10-90), the success rate exceeded 85%. Also, in the measured mixed categories of phytopathogens it is possible to differentiate between the different categories with ~100% success rate.
Collapse
Affiliation(s)
- M Huleihel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - E Shufan
- Department of Physics, SCE-Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel
| | - L Tsror
- Department of Plant Pathology, Institute of Plant Protection, Agricultural Research Organization, Gilat Research Center, M.P. Negev 85250, Israel
| | - U Sharaha
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - I Lapidot
- Department of Electrical and Electronics Engineering, ACLP-Afeka Center for Language Processing, Afeka Tel-Aviv Academic College of Engineering, Israel
| | - S Mordechai
- Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - A Salman
- Department of Physics, SCE-Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel.
| |
Collapse
|
11
|
Skolik P, McAinsh MR, Martin FL. Biospectroscopy for Plant and Crop Science. VIBRATIONAL SPECTROSCOPY FOR PLANT VARIETIES AND CULTIVARS CHARACTERIZATION 2018. [DOI: 10.1016/bs.coac.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|