1
|
Sun R, Xiong S, Zhang W, Huang Y, Zheng J, Shao J, Chi Y. Highly Active Coreactant-Capped and Water-Stable 3D@2D Core-Shell Perovskite Quantum Dots as a Novel and Strong Self-Enhanced Electrochemiluminescence Probe. Anal Chem 2024; 96:5711-5718. [PMID: 38551104 DOI: 10.1021/acs.analchem.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuyun Xiong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
2
|
Zhao B, Liang J, Zou X, Zhang B, Zhang Y, Niu L. Crystallization Regulation Engineering in the Carbon Nitride Nanoflower for Strong and Stable Electrochemiluminescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16723-16731. [PMID: 36971542 DOI: 10.1021/acsami.2c22803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cathode electrochemiluminescence (ECL) of C3N4 material has suffered from weak and unstable ECL emission for a long time, which greatly limits its practical application. Herein, a novel approach was developed to improve the ECL performance by regulating the crystallinity of the C3N4 nanoflower for the first time. The high-crystalline C3N4 nanoflower achieved a pretty strong ECL signal as well as excellent long-term stability compared to low-crystalline C3N4 when K2S2O8 was used as a co-reactant. Through the investigation, it is found that the enhanced ECL signal is attributed to the simultaneous inhibition of K2S2O8 catalytic reduction and enhancement of C3N4 reduction in the high-crystalline C3N4 nanoflower, which can provide more opportunities for SO4• - to react with electro-reduced C3N4• -, and a new "activity passivation ECL mechanism" was proposed, while the improvement of the stability is mainly ascribed to the long-range ordered atomic arrangements caused by structure stability in the high-crystalline C3N4 nanoflower. As a benefit from the excellent ECL emission and stability of high-crystalline C3N4, the C3N4 nanoflower/K2S2O8 system was employed as a Cu2+ detection sensing platform, which exhibited high sensitivity, excellent stability, and good selectivity with a wide linear range from 6 nM to 10 μM and a low detection limit of 1.8 nM.
Collapse
Affiliation(s)
- Bolin Zhao
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jiahui Liang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xingzi Zou
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Baohua Zhang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yuwei Zhang
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Li Niu
- Center for Advanced Analytical Science c/o School of Chemistry and Chemical Engineering, School of Economics and Statistics, Guangzhou Key Laboratory of Sensing Materials & Devices, Guangzhou University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
3
|
Deshmukh S, Pawar K, Koli V, Pachfule P. Emerging Graphitic Carbon Nitride-based Nanobiomaterials for Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:1339-1367. [PMID: 37011107 DOI: 10.1021/acsabm.2c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Graphitic carbon nitride (g-CN) based nanostructures are distinctive materials with unique compositional, structural, optical, and electronic properties with exceptional band structure, moderate surface area, and exceptional thermal and chemical stability. Because of these properties, g-CN based nanomaterials have shown promising applications and higher performance in the biological avenue. This review covers the state-of-the-art synthetic strategies used for the preparation of the materials, the basic structure, and a panorama of different optimization strategies leading to improved physicochemical properties responsible for the biological application. The following sections include the recent progress in the use of g-CN based nanobiomaterials for biosensors, bioimaging, photodynamic therapy, drug delivery, chemotherapy, and the antimicrobial segment. Furthermore, we have summarized the role and evaluation of biosafety and biocompatibility of the material. Finally, the unresolved issues, plausible challenges, current status, and future perspectives for the development and design of g-CN have been summarized and are expected to promote a clinical path for the medical sector and human well-being.
Collapse
Affiliation(s)
- Shamkumar Deshmukh
- Department of Chemistry, Damani Bhairuratan Fatechand, Dayanand College of Arts and Science, Solapur 413002, India
| | - Krishna Pawar
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, India
| | - Valmiki Koli
- Department of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
4
|
Alexander S, Prasantha Sudhakaran A, Anirudhan TS. Fabrication of selective electrochemical sensor for the detection of folic acid in spinach, wheat and tablets using functionalized graphene-oxide based molecular imprinted polymer. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2182779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Sheeba Alexander
- Post Graduate and Research Department of Chemistry, St. Stephen's College, Pathanapuram, Kollam-689 695, India
| | | | - Thayyath Sreenivasan Anirudhan
- Department of Chemistry, Research Centre, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Trivandrum - 695 581, India
| |
Collapse
|
5
|
Fu X, Huang J, Lai X, Rong J, Qi G, Lin Z, Fu F, Dong Y. Strategy and Mechanism for Strong and Stable Electrochemiluminescence of Graphitic Carbon Nitride. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Yin T, Ye Y, Dong W, Jie G. Electrochemiluminescence resonance energy transfer biosensing platform between g-C 3N 4 nanosheet and Ru-SiO 2@FA for dual-wavelength ratiometric detection of SARS-CoV-2 RdRp gene. Biosens Bioelectron 2022; 215:114580. [PMID: 35917609 PMCID: PMC9299981 DOI: 10.1016/j.bios.2022.114580] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 01/31/2023]
Abstract
Rational detection of syndrome coronavirus 2 (SARS-CoV-2) is crucial to prevention, control, and treatment of disease. Herein, a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on resonance energy transfer (RET) between g-C3N4 nanosheets and Ru-SiO2@folic acid (FA) nanomaterials was designed to realize ultrasensitive detection of SARS-CoV-2 virus (RdRp gene). Firstly, the unique g-C3N4 nanosheets displayed very intense and stable ECL at 460 nm, then the triple helix DNA was stably and vertically bound to g-C3N4 on electrode by high binding affinity between ssDNA and g-C3N4. Meanwhile, trace amounts of target genes were converted to a large number of output by three-dimensional (3D) DNA walker multiple amplification, and the output bridged a multifunctional probe Ru-SiO2@FA to electrode. Ru-SiO2@FA not only showed high ECL at 620 nm, but also effectively quenched g-C3N4 ECL. As a result, ECL decreased at 460 nm and increased at 620 nm, which was used to design a rational ECL biosensor for detection of SARS gene. The results show that the biosensor has excellent detection sensitivity for RdRp gene with a dynamic detection range of 1 fM to 10 nM and a limit of detection (LOD) of 0.18 fM. The dual-wavelength ratio ECL biosensor has inestimable value and application prospects in the fields of biosensing and clinical diagnosis.
Collapse
|
7
|
Pourmadadi M, Rajabzadeh-Khosroshahi M, Saeidi Tabar F, Ajalli N, Samadi A, Yazdani M, Yazdian F, Rahdar A, Díez-Pascual AM. Two-Dimensional Graphitic Carbon Nitride (g-C 3N 4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications. J Funct Biomater 2022; 13:204. [PMID: 36412845 PMCID: PMC9680252 DOI: 10.3390/jfb13040204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/14/2022] Open
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | | | - Fatemeh Saeidi Tabar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
| | - Amirmasoud Samadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Mahsa Yazdani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14179-35840, Iran
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran 14179-35840, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of science, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
8
|
Ahmad T, Khan S, Rasheed T, Ullah N. Graphitic carbon nitride nanosheets as promising candidates for the detection of hazardous contaminants of environmental and biological concern in aqueous matrices. Mikrochim Acta 2022; 189:426. [PMID: 36260130 DOI: 10.1007/s00604-022-05516-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2022]
Abstract
Monitoring of pollutant and toxic substances is essential for cleaner environment and healthy life. Sensing of various environmental contaminants and biomolecules such as heavy metals, pharmaceutics, toxic gases, volatile organic compounds, food toxins, and pathogens is of high importance to guaranty the good health and sustainable environment to community. In recent years, graphitic carbon nitride (g-CN) has drawn a significant amount of interest as a sensor due to its large surface area and unique electrochemical properties, low bandgap energy, high thermal and chemical stability, facile synthesis, nontoxicity, and electron rich property. Furthermore, the binary and ternary nanocomposites of graphitic carbon nitride further enhance their performance as a sensor making it a cost effective, fast, and reliable gadget for the purpose, and opens a wide area of research. Numerous reviews addressing a variety of applications including photocatalytic energy conversion, photoelectrochemical detection, and hydrogen evolution of graphitic carbon nitride have been documented to date. But a lesser attention has been devoted to the mechanistic approaches towards sensing of variety of pollutants concerned with environmental and biological aspects. Herein, we present the sensing features of graphitic carbon nitride towards the detection of various analytes including toxic heavy metals, pharmaceuticals, phenolic compounds, nitroaromatic compounds, volatile organic molecules, toxic gases, and foodborne pathogens. This review will undoubtedly provide future insights for researchers working in the field of sensors, allowing them to investigate the intriguing graphitic carbon nitride material as a sensing platform that is comparable to several other nanomaterials documented in the literature. Therefore, we hope that this study could reveal some intriguing sensing properties of graphitic carbon nitride, which may help researchers better understand how it interacts with contaminants of environmental and biological concern. Graphitic carbon nitride Nanosheets as Promising Analytical Tool for Environmental and Biological Monitoring of Hazardous Substances.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
9
|
A dual-recognition MIP-ECL sensor based on boric acid functional carbon dots for detection of dopamine. Mikrochim Acta 2022; 189:389. [PMID: 36136158 DOI: 10.1007/s00604-022-05483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
We report a molecularly imprinted polymer electrochemiluminescence (MIP-ECL) sensor with dual recognition effects on dopamine (DA). Boric-acid-functionalized carbon dots (B-CDs) with good ECL performance at - 2.0 V (vs. Ag/AgCl) were prepared and immobilized on a glassy carbon electrode (GCE). The MIP was then introduced via electropolymerization using o-phenylenediamine (OPD) as a functional monomer and DA as a template molecule to fabricate the MIP-ECL sensor. The cavities in the MIP after elution were used to capture the target molecular DA. The affinity of boric acid of B-CDs to the cis-diol of DA, as well as the special recognition of MIP, provides dual recognition effects on DA. The selective readsorption of DA onto the sensor leads to the ECL quenching of B-CDs. The quenching effect was used to detect DA from 1.0 × 10-9 to 1.0 × 10-5 mol·L-1 with a detection limit of 2.1 × 10-10 mol·L-1. The dual recognition caused the MIP-ECL sensor exhibiting excellent selectivity and sensitivity toward DA. The sensor was successfully used to determine DA in real samples.
Collapse
|
10
|
Ali H, Verma N. A Hybrid UV-Vis Spectroelectrochemical Approach for Measuring Folic Acid using a Novel Ni-CNF/ITO Electrode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Anupriya J, Rajakumaran R, Chen SM, Senthilkumar T. Samarium tungstate anchored on graphitic carbon nitride composite: A novel electrocatalyst for the ultra-selective electrocatalytic detection of 8-hydroxy-5-nitroquinoline in river water and biological samples. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Xue W, Zhong J, Wu H, Zhang J, Chi Y. A visualized ratiometric fluorescence sensing system for copper ions based on gold nanoclusters/perovskite quantum dot@SiO 2 nanocomposites. Analyst 2021; 146:7545-7553. [PMID: 34812805 DOI: 10.1039/d1an01857d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excessive copper ions (Cu2+) cause serious environmental pollution and even endanger the health of organisms. Fluorescence chemosensing materials are widely used in the detection of metal ions due to their simple operation and high sensitivity. In this study, SiO2-encapsulated single perovskite quantum dot (PQD@SiO2) core-shell nanostructures which show strong, stable, and green fluorescence are synthesized and composited with gold nanoclusters (AuNCs) which show Cu2+-sensitive and red light-emitting fluorescence to obtain a visualized ratiometric fluorescence sensor (AuNCs/PQD@SiO2) for the detection of Cu2+. In the visualized detection of Cu2+, the green fluorescence emitted from the ion-insensitive PQD@SiO2 component is used as a reference signal and the red fluorescence emitted by ion-sensitive AuNC component is adopted as a sensing signal. In the presence of Cu2+, the red fluorescence is quenched whereas the green fluorescence remains stable, which results in a visualized fluorescence color change from orange-red to yellow and finally to green with increasing Cu2+ concentration. The significant change in the fluorescence color of AuNCs/PQD@SiO2 in response to Cu2+ enables a rapid, sensitive, and visualized detection of Cu2+. Further accurate and sensitive ratiometric fluorescence analysis of Cu2+ can be accomplished by measuring the ratio of fluorescence intensities at 643 and 520 nm (I643/I520) at a certain Cu2+ level. The developed AuNCs/PQD@SiO2-based sensor has been validated by its satisfactory application in the detection of Cu2+ in human serum and environmental water samples.
Collapse
Affiliation(s)
- Wanying Xue
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China. .,Department of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jiangyan Zhong
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Haishan Wu
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China.
| | - Jianhua Zhang
- Radiation Environment Supervision Station of Fujian Province, Fuzhou, 350012, P.R. China
| | - Yuwu Chi
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, P.R. China.
| |
Collapse
|
13
|
Lin S, Zhong J, Chi Y, Chen Y, Khan MS, Shen J. Colorimetric immunosensor based on glassy carbon microspheres test strips for the detection of prostate-specific antigen. Mikrochim Acta 2021; 188:366. [PMID: 34617126 DOI: 10.1007/s00604-021-04907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/19/2021] [Indexed: 10/20/2022]
Abstract
Micro-sized glassy carbon microspheres (GCMs, typically 3 μm in diameter) instead of nano-sized gold nanoparticles (AuNPs, typically 20 nm in diameter) were for the first time used as signal markers for the quantitative detection of antigen such as prostate-specific antigen (PSA). After being treated with concentrated HNO3, GCMs bear carboxyl groups at their surfaces, which enables antibodies to be conjugated with GCMs to yield new type of micro-sized material-based colorimetric probes used for immunochromatographic test strips (ICTSs). The captured black GCMs (with strong and wide-band light absorption) on the T-line of ICTS were used both for qualitative and quantitative determination of PSA. In the case of quantitative determination, a lab-assembled optical strip reader system was used to measure the reflected LED light intensity at 550 nm. The sensing performances of the developed GCM-based ICTSs, such as sensitivity, selectivity, reproducibility, stability, and applicability, were investigated in detail. The developed GCM-based ICTSs can have much higher (3 times) detection sensitivity than AuNP-based ICTSs, showing promising applications in sensitive immunoassay.
Collapse
Affiliation(s)
- Shan Lin
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jiangyan Zhong
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuwu Chi
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Yipeng Chen
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Malik Saddam Khan
- MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianzhen Shen
- Department of Hematology, Fujian Institute of Hematology, Union Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
14
|
Recent advances in electrochemiluminescence luminophores. Anal Bioanal Chem 2021; 414:131-146. [PMID: 33893832 DOI: 10.1007/s00216-021-03329-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Electrochemiluminescence (ECL) has continued to receive considerable attention in various applications, owing to its intrinsic advantages such as near-zero background response, wide dynamic range, high sensitivity, simple instrumentation, and low cost. The ECL luminophore is one of the most significant components during the light generation processes. Despite significant progress that has been made in the synthesis of new luminophores and their roles in resolving various challenges, there are few comprehensive summaries on ECL luminophores. In this review, we discuss some of the recent advances in organic, metal complexes, nanomaterials, metal oxides, and near-infrared ECL luminophores. We also emphasize their roles in tackling various challenges with illustrative examples that have been reported in the last few years. Finally, perspective and some unresolved challenges in ECL that can potentially be addressed by introducing new luminophores have also been discussed. Graphical abstract.
Collapse
|
15
|
Zou R, Lin Y, Lu C. Nitrogen Vacancy Engineering in Graphitic Carbon Nitride for Strong, Stable, and Wavelength Tunable Electrochemiluminescence Emissions. Anal Chem 2021; 93:2678-2686. [PMID: 33459017 DOI: 10.1021/acs.analchem.0c05027] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As an attractive electrochemiluminescence (ECL) emitter, graphitic carbon nitride (CN) still suffers from weak and unstable ECL signals for its poor conductivity and the occurrence of electrode passivation. In this study, a simple nitrogen vacancy (NV) engineering strategy has been developed for the improvement of ECL performances (intensity and stability) for the first time. In comparison to pristine CN (RSD = 51.98% for 10 continuous scan), ca. 60 times amplification in ECL intensity and 70 times enhancement in ECL efficiency for CN modified with NVs (CN-NVs) were obtained. In addition, more stable ECL emissions (RSD = 0.53%) were achieved for CN-NV-550 by thermal treatment of pristine CN in a N2 atmosphere for another 2 h at 550 °C. The mechanism study for the vital role of NVs on the ECL of CN-NVs revealed that NVs can not only facilitate electron transfer to amplify the ECL intensity but also serve as the electron trap to inhibit electrode passivation. More interestingly, a series of CN-NVs exhibited a tunable ECL wavelength range from 470 to 516 nm with different NV contents. Moreover, their ECL spectra showed an obvious red-shift of the wavelength with their corresponding fluorescence spectra. These findings confirmed that the ECL emissions of CN-NVs were susceptible to the relevant surface states of NVs. Our work may open up a promising pathway for improving ECL performances of CN and create new possibilities for multitarget simultaneous detection based on ECL and construction of color tunable light-emitting devices.
Collapse
Affiliation(s)
- Rui Zou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Ai Z, Zhao M, Han D, Chen K, Xiong D, Tang H. An "on-off" electrochemiluminescence immunosensor for PIVKA-II detection based on the dual quenching of CeO 2-Au-g-C 3N 4 hybrids by Ag nanocubes-VB 2. Biosens Bioelectron 2021; 179:113059. [PMID: 33561664 DOI: 10.1016/j.bios.2021.113059] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023]
Abstract
Herein, we report a novel dual-quenching electrochemiluminescence (ECL) immunosensor for detecting protein induced by vitamin K absence or antagonist-II (PIVKA-II) based on ECL resonance energy transfer (ECL-RET). In this protocol, self-accelerated ECL hybrids of CeO2 and Au nanoparticles functionalized g-C3N4 nanosheets (CeO2-Au-g-C3N4) were prepared, which exhibited high ECL emission in the presence of S2O82- as a coreactant for "signal on" state. Concretely, CeO2 with a reproducible redox couple of Ce3+ and Ce4+ could act as an efficient co-reaction accelerator to generate more oxidizing intermediate (SO4•-) to significantly self-promote the ECL emission of g-C3N4 NSs/S2O82- ECL system. Besides, Au nanoparticles not only accelerated electron transfer in the ECL process, but also provided massive active sites for biomolecules immobilization. The dual quenching labels of Ag nanocubes modified with vitamin B2 (AgNCs-VB2) were firstly proposed towards g-C3N4 NSs/S2O82- ECL system by ECL-RET, resulting in the remarkable ECL decrease for "signal off" state. Based on the sandwich immunoreaction, the "on-off" PIVKA-II ECL immunosensor gratifyingly possessed excellent detection sensitivity with the linear range of 0.4 pg mL-1-10 ng mL-1 and the low detection limit of 28.46 fg mL-1 (S/N = 3). This presented strategy might provide a potential alternative tool for PIVKA-II detection in medical research and early clinical diagnostics of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhujun Ai
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Daobin Han
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ke Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Dongmei Xiong
- Nursing Department, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
17
|
Zou R, Teng X, Lin Y, Lu C. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116054] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Mua Z, Huaa J, Yanga Y. N, S, I co-doped carbon dots for folic acid and temperature sensing and applied to cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117444. [PMID: 31394388 DOI: 10.1016/j.saa.2019.117444] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
The application of fluorescent carbon dots in bio-imaging has huge positive significance in the field of biomedicine. By taking this advantage, herein we prepared nitrogen, sulfur and iodine doped carbon dots (N,S,I-CDs) by a facile hydrothermal reaction using C3N3S3, potassium iodate (KIO3) and ethylenediamine (EDA), and the obtained N,S,I-CDs show bright blue fluorescence with a high fluorescence quantum yield of about 32.4%. The prepared N, S, I-CDs could interact with the folic acid (FA) with high selectivity, lead to development of a high sensitive method for the FA detection from 0.1 to 175 μM wide linear range with a detection limit of 84 nM (S/N = 3) and also applied them in U-2 OS cells imaging. Moreover, this sensor possessed a good sensitivity, linearity and reversibility in the temperature range of 10-80 °C, and successfully applied for the temperature sensing in cell HT-29 samples. This investigation illustrates that as-prepared N, S, I-CDs probe may have great potential as a high-performance platform for the accurate recognition of temperature in cells and could provide a new tool for the detection of FA in cells.
Collapse
Affiliation(s)
- Zhao Mua
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Jianhao Huaa
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Yaling Yanga
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
19
|
|
20
|
Wei J, Zhao P, Chen L, Tian L, Wu H, Dong Y, Chi Y, Zhou S. Electrochemiluminescence for Characterizing the Polymerization Process during Graphitic Carbon Nitride Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201900987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingjing Wei
- College of Chemical EngineeringHuaqiao University Xiamen 361021 P. R China
| | - Panpan Zhao
- College of Chemical EngineeringHuaqiao University Xiamen 361021 P. R China
| | - Lichan Chen
- College of Chemical EngineeringHuaqiao University Xiamen 361021 P. R China
| | - Libing Tian
- College of Chemical EngineeringHuaqiao University Xiamen 361021 P. R China
| | - Haishan Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of ChemistryFuzhou University Fuzhou Fujian 350108 P. R China
| | - Yongqiang Dong
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of ChemistryFuzhou University Fuzhou Fujian 350108 P. R China
| | - Yuwu Chi
- Key Laboratory for Analytical Science of Food Safety and Biology, Ministry of Education, College of ChemistryFuzhou University Fuzhou Fujian 350108 P. R China
| | - Shu‐Feng Zhou
- College of Chemical EngineeringHuaqiao University Xiamen 361021 P. R China
| |
Collapse
|
21
|
Black oxidized 3,3',5,5'-tetramethylbenzidine nanowires (oxTMB NWs) for enhancing Pt nanoparticle-based strip immunosensing. Anal Bioanal Chem 2019; 411:4063-4071. [PMID: 30972472 DOI: 10.1007/s00216-019-01745-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023]
Abstract
It is well known that 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized into blue or yellow oxidzed TMB (oxTMB) with the catalysis of peroxidase or mimetic enzyme of platinum nanoparticles (Pt NPs). In this work, we found that TMB could be oxidized into very stable black oxTMB with the catalysis of Pt NPs under certain chromogenic reaction conditions. For the first time, the black oxTMB was revealed to consist of nanowires (oxTMB NWs) with lengths of more than 100 μm and diameters of around 100 nm. The black oxTMB NWs showed very strong light absorption ability, thus could be used to greatly amplify the signal of Pt NP-based immunochromatography test strips (ICTSs). The Pt NP-based ICTSs with black oxTMB NW signal amplification have shown much better assay ability (linear response range and limit of detection) than those of gold nanoparticle (Au NP)-based ICTS, Pt NP-based ICTS, and Pt NP-based ICTS with blue or yellow oxTMB signal amplifications. The developed Pt NP-oxTMB NW-based ICTS has been demonstrated to be a new, accurate, sensitive, selective, and rapid immunosensor for quantitative detection of antigens such as human chorionic gonadotropin (HCG).
Collapse
|
22
|
You X, Wu J, Chi Y. Superhydrophobic Silica Aerogels Encapsulated Fluorescent Perovskite Quantum Dots for Reversible Sensing of SO2 in a 3D-Printed Gas Cell. Anal Chem 2019; 91:5058-5066. [DOI: 10.1021/acs.analchem.8b05253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xu You
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Junjie Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
23
|
Sun Y, Wang Y, Yang Y, Yang M. An Electrochemiluminescent Sensor for Epinephrine Detection Based on Graphitic Carbon Nitride Nanosheet/Multi-walled Carbon Nanotubes Nanohybrids. CHEM LETT 2019. [DOI: 10.1246/cl.180893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yanan Sun
- College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yan Wang
- College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yawen Yang
- College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Minli Yang
- College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
24
|
Tian L, Zhao P, Wei J, Chi Y, Zhou S, Chen L. Graphitic Carbon Nitride Nanosheets as Co‐reactants for Tris(2,2′‐bipyridine)ruthenium(II) Electrochemiluminescence. ChemElectroChem 2019. [DOI: 10.1002/celc.201801903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Libing Tian
- College of Chemical EngineeringHuaqiao University Xiamen Fujian 361021 P. R. China
| | - Panpan Zhao
- College of Chemical EngineeringHuaqiao University Xiamen Fujian 361021 P. R. China
| | - Jingjing Wei
- College of Chemical EngineeringHuaqiao University Xiamen Fujian 361021 P. R. China
| | - Yuwu Chi
- College of Chemistry Key Laboratory for Analytical Science of Food Safety and Biology Ministry of EducationFuzhou University Fuzhou Fujian 350108 P. R. China
| | - Shu‐Feng Zhou
- College of Chemical EngineeringHuaqiao University Xiamen Fujian 361021 P. R. China
| | - Lichan Chen
- College of Chemical EngineeringHuaqiao University Xiamen Fujian 361021 P. R. China
| |
Collapse
|
25
|
Xavier MM, Nair PR, Mathew S. Emerging trends in sensors based on carbon nitride materials. Analyst 2019; 144:1475-1491. [DOI: 10.1039/c8an02110d] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A new class of functional materials, carbon nitrides, has recently attracted the attention of researchers.
Collapse
Affiliation(s)
- Marilyn Mary Xavier
- Research Scholar
- Advanced Molecular Materials Research Centre
- Mahatma Gandhi University
- Kottayam
- India
| | - P. Radhakrishnan Nair
- Visiting Professor
- Advanced Molecular Materials Research Centre
- Mahatma Gandhi University
- Kottayam
- India
| | - Suresh Mathew
- Professor
- School of Chemical Sciences
- Advanced Molecular Materials Research Centre
- Mahatma Gandhi University
- Kottayam
| |
Collapse
|
26
|
Cao S, Chen H, Jiang F, Hu Z, Wang X. Construction of Acetaldehyde-Modified g-C 3N 4 Ultrathin Nanosheets via Ethylene Glycol-Assisted Liquid Exfoliation for Selective Fluorescence Sensing of Ag . ACS APPLIED MATERIALS & INTERFACES 2018; 10:44624-44633. [PMID: 30511564 DOI: 10.1021/acsami.8b15501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We successfully prepared acetaldehyde-modified graphitic carbon nitride (g-C3N4) ultrathin nanosheets (ACNNSs) by a simple ethylene glycol-assisted liquid exfoliation method. The introduction of acetaldehyde regulated the surface energy of g-C3N4 to better match with that of water, which improved the exfoliation efficiency. Moreover, acetaldehyde introduces defects into the g-C3N4 structure, which can act as excitation energy traps and cause considerable variation in the fluorescence emission. Benefiting from the stable photoluminescence emission, good water solubility, and biocompatibility, the obtained ACNNSs showed a selective fluorescent response to Ag+ in both aqueous solution and living cells. The strong absorption and intimate contact with Ag+ and its appropriate redox potential of ACNNSs contributed to this excellent fluorescent response. A simple and environmental friendly approach was proposed to simultaneously achieve modification and exfoliation of g-C3N4 in aqueous solution. These findings might lead to wider applications of carbon-based nanomaterials as active materials for fluorescence detection in the environment.
Collapse
Affiliation(s)
- Shihai Cao
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Huan Chen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Fang Jiang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Zhaoxia Hu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Xin Wang
- Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education , Nanjing University of Science and Technology , Nanjing 210094 , PR China
| |
Collapse
|
27
|
Jiang J, Lin X, Ding D, Diao G. Graphitic-phase carbon nitride-based electrochemiluminescence sensing analyses: recent advances and perspectives. RSC Adv 2018; 8:19369-19380. [PMID: 35540965 PMCID: PMC9080761 DOI: 10.1039/c8ra02221f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
This review describes the current trends in synthesis methods, signaling strategies, and sensing applications of g-C3N4-based ECL emitters.
Collapse
Affiliation(s)
- Jingjing Jiang
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Xinyi Lin
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Dong Ding
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| | - Guowang Diao
- School of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou
- P. R. China
| |
Collapse
|
28
|
Song H, Zhang L, Su Y, Lv Y. Recent Advances in Graphitic Carbon Nitride-Based Chemiluminescence, Cataluminescence and Electrochemiluminescence. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0024-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Affiliation(s)
- Jingwei Sun
- Department of Materials Chemistry; Huzhou University; Huzhou 313000 P.R. China
| | - Hao Sun
- Department of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 P.R. China
| | - Ziqi Liang
- Department of Materials Science; Fudan University; Shanghai 200433 P.R. China
| |
Collapse
|
30
|
Zhai Q, Li J, Wang E. Recent Advances Based on Nanomaterials as Electrochemiluminescence Probes for the Fabrication of Sensors. ChemElectroChem 2017. [DOI: 10.1002/celc.201600898] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qingfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 China
| |
Collapse
|
31
|
Xiao Y, Sheng Y, Zhou J, Chen M, Wen W, Zhang X, Wang S. A novel label-free strategy for pathogenic DNA detection based on metal ion binding-induced fluorescence quenching of graphitic carbon nitride nanosheets. Analyst 2017; 142:2617-2623. [DOI: 10.1039/c7an00553a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel label-free fluorescence sensing strategy based on g-C3N4 nanosheets and metal ions is designed for pathogenic DNA detection.
Collapse
Affiliation(s)
- Yan Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P.R. China
| | - Yuhao Sheng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P.R. China
| | - Jie Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P.R. China
| | - Miaomiao Chen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P.R. China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P.R. China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P.R. China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering
- Hubei University
- Wuhan
- P.R. China
| |
Collapse
|
32
|
Lin X, Zhu S, Wang Q, Xia Q, Ran P, Fu Y. Chiral recognition of penicillamine enantiomers using hemoglobin and gold nanoparticles functionalized graphite-like carbon nitride nanosheets via electrochemiluminescence. Colloids Surf B Biointerfaces 2016; 148:371-376. [DOI: 10.1016/j.colsurfb.2016.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/18/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
|
33
|
Fan X, Su Y, Deng D, Lv Y. Carbon nitride quantum dot-based chemiluminescence resonance energy transfer for iodide ion sensing. RSC Adv 2016. [DOI: 10.1039/c6ra15509j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Schematic illustration of the CL process and mechanism of Ce(iv)–sulfite and g-CNQDs–Ce(iv)–sulfite system.
Collapse
Affiliation(s)
- Xiaoqing Fan
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Yingying Su
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Dongyan Deng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|