1
|
Murugesan V, Rathinam B. Curcumin-Assisted Synthesis of MoS 2 Nanoparticles as an Electron Transport Material in Perovskite Solar Cells. MICROMACHINES 2024; 15:840. [PMID: 39064351 PMCID: PMC11278733 DOI: 10.3390/mi15070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Recently, two-dimensional (2D) transition metal dichalcogenides (2D TMDs), such as molybdenum sulfide (MoS2) and molybdenum selenide (MoSe2), have been presented as effective materials for extracting the generated holes from perovskite layers. Thus, the work function of MoS2 can be tuned in a wide range from 3.5 to 4.8 eV by adjusting the number of layers, chemical composition, elemental doping, surface functionalization, and surface states, depending on the synthetic approach. In this proposed work, we attempt to synthesize MoS2 nanoparticles (NPs) from bulk MoS2 using two steps: (1) initial exfoliation of bulk MoS2 into few-layer MoS2 by using curcumin-cholesteryl-derived organogels (BCC-ED) and curcumin solution in ethylene diamine (C-ED) under sonication; (2) ultrasonication of the subsequently obtained few-layer MoS2 at 60-80 °C, followed by washing of the above chemicals. The initial treatment with the BCC-ED/C-ED undergoes exfoliation of bulk MoS2 resulted in few-layer MoS2, as evidenced by the morphological analysis using SEM. Further thinning or reduction of the size of the few-layer MoS2 by prolonged ultrasonication at 60-80 °C, followed by repeated washing with DMF, resulted in uniform nanoparticles (MoS2 NPs) with a size of ~10 nm, as evidenced by morphological analysis. Since BCC-ED and C-ED produced similar results, C-ED was utilized for further production of NPs over BCC-ED owing to the ease of removal of curcumin from the MoS2 NPs. Utilization of the above synthesized MoS2 NPs as an ETL layer in the cell structure FTO/ETL/perovskite absorber/spiro-OMeTAD/Ag enhanced the efficiency significantly. The results showed that MoS2 NPs as an ETL exhibited a power conversion efficiency (PEC) of 11.46%, a short-circuit current density of 18.65 mA/cm2, an open-circuit voltage of 1.05 V, and a fill factor of 58.66%, at the relative humidity of 70 ± 10% (open-air conditions) than that of the ED-treated MoS2 devices without curcumin. These results suggest that the synergistic effect of both curcumin and ED plays a critical role in obtaining high-quality MoS2 NPs, beneficial for efficient charge transport, lowering the crystal defect density/trap sites and reducing the charge recombination rate, thus, significantly enhancing the efficiency.
Collapse
Affiliation(s)
- Vajjiravel Murugesan
- Department of Chemistry, School of Physical and Chemical Sciences, B S Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliu, Yunlin 64002, Taiwan
| |
Collapse
|
2
|
Goswami N, Naithani S, Mangalam J, Goswami T, Dubey R, Kumar P, Kumar P, Kumar S. Fluorescent and chromogenic organic probes to detect group 10 metal ions: design strategies and sensing applications. Dalton Trans 2023; 52:14704-14732. [PMID: 37750386 DOI: 10.1039/d3dt01723k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Group 10 metals including Ni, Pd and Pt have been extensively applied in various essential aspects of human social life, material science, industrial manufactures, medicines and biology. The ionic forms of these metals are involved in several biologically important processes due to their strong binding capability towards different biomolecules. However, the mishandling or overuse of such metals has been linked to serious contamination of our ecological system, more specifically in soil and water bodies with acute consequences. Therefore, the detection of group 10 metal ions in biological as well as environmental samples is of huge significance from the human health point of view. Related to this, considerable efforts are underway to develop adequately efficient and facile methods to achieve their selective detection. Optical sensing of metal ions has gained increasing attention of researchers, particularly in the environmental and biological settings. Innovatively designed optical probes (fluorescent or colorimetric) are usually comprised of three basic components: an explicitly tailored receptor unit, a signalling unit and a clearly defined reporter unit. This review deals with the recent progress in the design and fabrication of fluorescent or colorimetric organic sensors for the detection of group 10 metal ions (Ni(II), Pd(II) and Pt(II)), with attention to the general aspects for design of such sensors.
Collapse
Affiliation(s)
- Nidhi Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sudhanshu Naithani
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Jimmy Mangalam
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Tapas Goswami
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Ritesh Dubey
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Pankaj Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| | - Sushil Kumar
- Department of Chemistry, Applied Science Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
3
|
Cheng Z, Jin X, Liu Y, Zhang X. A PET Fluorescent Probe for Dynamic Pd 2+ Tracking with Imaging Applications in the Nanofiber and Living Cells. Molecules 2023; 28:molecules28073065. [PMID: 37049828 PMCID: PMC10095779 DOI: 10.3390/molecules28073065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Constructed on the moiety of a lactam screw ring, a near-infrared fluorescent probe RCya for Pd2+ was designed under the PET mechanism and synthesized by incorporating 2,4-dihydroxybenzaldehyde as the recognition group. Dynamic detection of aqueous Pd2+ by the probe RCya could be accomplished through ion competition, linear response, fluorescence-pH/time stabilities, and other optical tests. Moreover, the high selectivity, low cytotoxicity, cell permeability, and lysosome accumulation properties of RCya enabled the imaging applications on solid-state RCya-PAN composite nanofibers and in living cells. The recognition mechanism of probe RCya toward Pd2+ was further studied through simulation calculation and MS analysis.
Collapse
Affiliation(s)
- Zhao Cheng
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China
| | - Yinggang Liu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China
| | - Xuejiao Zhang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| |
Collapse
|
4
|
A Highly Selective Supramolecular Fluorescent Probe for Detection of Au3+ Based on Supramolecular Complex of Pillar[5]arene with 3, 3'-Dihydroxybenzidine. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
|
6
|
Das B, Ghosh A, Dorairaj DP, Dolai M, Karvembu R, Mabhai S, Im H, Dey S, Jana A, Misra A. Multiple ion (Al3+, Cr3+, Fe3+, and Cu2+) sensing using a cell-compatible rhodamine-phenolphthalein-derived Schiff-base probe. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118824] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Fluorescent “OFF–ON” Sensors for the Detection of Sn2+ Ions Based on Amine-Functionalized Rhodamine 6G. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
These structurally isomeric rhodamine 6G-based amino derivatives are designed to detect Sn2+ ions. The receptors exhibit rapid fluorescent “turn-on” responses towards Sn2+. The absorption (530 nm) and fluorescent intensity (551 nm) of the receptors increase when increasing the concentration of Sn2+. The hydrazine derivative exhibits more rapid sensitivity towards Sn2+ than the ethylene diamine derivative, indicating that the presence of an alkyl chain in the diamine decreases the sensitivity of the receptors towards Sn2+. The presence of carbonyl groups and terminal amino groups strongly influences the sensitivity of the chemosensors toward Sn2+ by a spirolactam ring-opening mechanism. The receptors exhibit 1:1 complexation with Sn2+ as evidenced by Job plot, and the corresponding limit of detection was found to be 1.62 × 10−7 M. The fluorescence images of the receptors and their complexes reveal their potential applications for imaging of Sn2+ in real/online samples.
Collapse
|
8
|
Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Anal Bioanal Chem 2021; 414:2809-2839. [PMID: 34825272 DOI: 10.1007/s00216-021-03777-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically signaling molecule that mediates a wide range of physiological functions, which is frequently misregulated in numerous pathological processes. As such, measurement of H2S holds great attention due to its unique physiological and pathophysiological roles. Currently, a variety of methods based on the H2S-involved reactions have been reported for detection of endogenous H2S, bearing the advantages of good specificity and high sensitivity. This review describes in detail the types of reactions, their mechanisms, and their applications in biological research, thus hopefully providing some guidelines to the researchers in this field for further investigation.
Collapse
|
9
|
Panagiotakis S, Saridakis E, Malanga M, Mavridis IM, Yannakopoulou K. A Self-locked β-Cyclodextrin-rhodamine B Spirolactam with Photoswitching Properties. Chem Asian J 2021; 17:e202101282. [PMID: 34821479 DOI: 10.1002/asia.202101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/10/2022]
Abstract
Supramolecular organization and self-assembly are the pillars of functionality of many nanosystems. The covalent conjugate (6-spirolactam rhodamine B-6-monodeoxy)-β-cyclodextrin (Rho-βCD) is assembled as a self-included, rigid nanostructure, identical in the crystal and in aqueous solution, as revealed by detailed X-ray and NMR analyses. Rho-βCD self-assembly is the result of an interesting reaction pathway, which partially de-aggregates Rho and disturbs the zwitterion↔spirolactone equilibrium. Rho-βCD is stable at pH 4.6, but displays controllable photoswitching between the colored, fluorescent, zwitterionic and the colorless, non-fluorescent closed structures, during several iterative cycles. After an initial drop in absorbance, the on-off process continues without further changes under our irradiation conditions, a consequence of the specific self-locked arrangement of Rho in the cavity. Rho-βCD exemplifies a water soluble photoresponsive nanosystem with improved photostability suggesting promising applications in super resolution bioimaging.
Collapse
Affiliation(s)
- Stylianos Panagiotakis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patr. Grigoriou & 27 Neapoleos St., Aghia Paraskevi, 15341, Attiki, Greece
| | - Emmanuel Saridakis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patr. Grigoriou & 27 Neapoleos St., Aghia Paraskevi, 15341, Attiki, Greece
| | - Milo Malanga
- CycloLab, Cyclodextrin Research and Development Laboratory Ltd., llatos út 7, Budapest, H-1097, Hungary
| | - Irene M Mavridis
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patr. Grigoriou & 27 Neapoleos St., Aghia Paraskevi, 15341, Attiki, Greece
| | - Konstantina Yannakopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research "Demokritos", Patr. Grigoriou & 27 Neapoleos St., Aghia Paraskevi, 15341, Attiki, Greece
| |
Collapse
|
10
|
Rathinam B, Liu BT. Highly efficient probe of dinuclear zinc complex for selective detection of oxalic acid. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Khosravi M, Nouri M, Mohammadi A, Mosavari N, Constable PD. Preparation of immunomagnetic beads coupled with a rhodamine hydrazine immunosensor for the detection of Mycobacterium avium subspecies paratuberculosis in bovine feces, milk, and colostrum. J Dairy Sci 2021; 104:6944-6960. [PMID: 33814150 DOI: 10.3168/jds.2020-18819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022]
Abstract
The aim of this study was to develop and evaluate a method for detecting Mycobacterium avium ssp. paratuberculosis (MAP) bacteria in bovine fecal, milk, and colostrum samples using immunomagnetic beads (IMB) and a rhodamine hydrazone immunosensor. Immunomagnetic beads were prepared by using purified antibodies from hyperimmunized sera that were coupled to Fe nanoparticles with diethylene triamine pentaacetic acid (DTPA) or ethyl (dimethyl aminopropyl) carbodiimide (EDC)-N-hydroxy succinimide (NHS) as linkers. Rhodamine hydrazone particles were synthesized and coupled to IgY anti-MAP antibodies using DTPA or EDC-NHS linkers. Separation efficiency of the IMB was tested on bovine fecal, milk, and colostrum samples experimentally contaminated with MAP. The studied methods were evaluated on their ability to detect MAP and separate bacteria in complex mediums. The ELISA results indicated 95% efficacy in antibody coupling to IMB, with the DTPA-IMB method being more efficient than the EDC-NHS-IMB method. By using the DTPA-IMB method, MAP bacteria were successfully recovered from fecal, milk, and colostrum samples. The DTPA-IMB method used in combination with the rhodamine hydrazone immunosensor had a limit of detection equal to 30 and 30,000 MAP cells/mL using chromogenic and fluorescent properties, respectively. Combining the DTPA-IMB separation method with the rhodamine hydrazone immunosensor provides a fast, sensitive, and cost-beneficial method for detecting MAP in bovine feces, milk, and colostrum.
Collapse
Affiliation(s)
- M Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran.
| | - M Nouri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - A Mohammadi
- Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - N Mosavari
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 3197619751, Iran
| | - P D Constable
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana-Champaign 61802
| |
Collapse
|
12
|
Synthesis and physicochemical characterization of Schiff bases used as optical sensor for metals detection in water. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Wei Q, Bai L, Qin X, Hu C, Li L, Jiang W, Song F, Wang Y. Contrastive study on β-cyclodextrin polymers resulted from different cavity-modifying molecules as efficient bi-functional adsorbents. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Fang G, Zhan D, Wang R, Bian Z, Zhang G, Wu Z, Yao Q. A highly selective and sensitive boronic acid-based sensor for detecting Pd 2+ ion under mild conditions. Bioorg Med Chem Lett 2020; 30:127397. [PMID: 32738962 DOI: 10.1016/j.bmcl.2020.127397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/19/2022]
Abstract
Herein, a boronic acid-based sensor was reported selectively to recognize Pd2+ ion. The fluorescence intensity increased 36-fold after sensor binding with 2.47 × 10-5 M of Pd2+ ion. It was carried out in the 99% aqueous solution for binding tests, indicating sensor having good water solubility. In addition, it is discernible that Pd2+ ion turned on the blue fluorescence of sensor under a UV-lamp (365 nm), while other ions (Ag+, Al3+, Ba2+, Ca2+, Cr2+, Cd2+, Co2+, Cs2+, Cu2+, Fe2+, Fe3+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+ and Zn2+) did not show the similar change. Furthermore, sensor has a low limit of detection (38 nM) and high selectivity, which exhibits the potential for the development of Pd2+ recognition in practical environments.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Dongxue Zhan
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Ran Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250200, Shandong, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China
| | - Guimin Zhang
- Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Jinan, China; Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, Jinan, China
| | - Zhongyu Wu
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China.
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China; Key Laboratory for Biotech-Drugs Ministry of Health, Jinan 250062, Shandong, China; Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan 250062, Shandong, China.
| |
Collapse
|
15
|
Mishra SK, Dehuri S, Bag B. Effect of n-alkyl substitution on Cu(ii)-selective chemosensing of rhodamine B derivatives. Org Biomol Chem 2020; 18:316-332. [PMID: 31845711 DOI: 10.1039/c9ob02439e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rhodamine B hydrazide-based molecular probes (1-10) were synthesized by derivatization with n-alkyl chains of different lengths at the hydrazide amino end. These probes exhibited selective absorption (A∼557) and fluorescence (I∼580) 'off-on' signal transduction along with a colourless → magenta colour transition in the presence of Cu(ii) ions among all the competitive metal ions investigated. The effective coordination of these probes to Cu(ii) ions under the investigated environment forming [Cu·L]2+ (L = 1-5) and [Cu·L2]2+ (L = 6-10) complexes led to their spiro-ring opening, which in turn was expressed through signatory spectral peaks of ring-opened rhodamine. All these probes exhibited Cu(ii) selectivity in signalling despite structural modifications to the core receptor unit through variation of the nature of the alkyl substituents. However, the sensitivity of the signalling and kinetics of the spiro-ring opening varied and could be correlated with the number of carbon atoms present in the n-alkyl substituents. Structural elucidation with X-ray diffraction and X-ray photoemission spectroscopic analyses provided further insight into the structure-function correlation in their Cu(ii) complexes. These probes with Cu(ii) coordination showed selectivity in signalling, high complexation affinity (log Ka = 4.8-8.8), high sensitivity (LOD = 4.1-80 nM), fast response time (rate = 0.0017-0.0159 s-1) and reversibility with counter anions, which ascertained their potential utility as chemosensors for Cu(ii) ion detection.
Collapse
Affiliation(s)
- Santosh Kumar Mishra
- Materials Chemistry Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India.
| | | | | |
Collapse
|
16
|
Fang G, Wang H, Bian Z, Guo M, Wu Z, Yao Q. A novel boronic acid-based fluorescent sensor for selectively recognizing Fe 3+ ion in real time. RSC Adv 2019; 9:20306-20313. [PMID: 35514712 PMCID: PMC9065501 DOI: 10.1039/c9ra03978c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/23/2019] [Indexed: 11/21/2022] Open
Abstract
Boronic acid provides faster fluorescence response to Fe3+ compared to other reported sensors, which is critical for continuous dynamic detection. Herein, we reported a novel boronic acid-based sensor 4 that could recognize Fe3+ ion in real time. After 10 equiv. of Fe3+ ion (1 mM) was added, the fluorescence of sensor 4 was immediately quenched by 96%. While other ions, including Ba2+, Ca2+, Cr2+, Cd2+, Co2+, Cs2+, Cu2+, Fe2+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+ or Zn2+, respectively, did not change the fluorescence significantly. Further tests indicated that the high selectively sensing Fe3+ ion benefits from the two boronic acid functionalities in the structure. Moreover, interference experiments showed this sensor has an excellent anti-interference ability. In addition, we performed binding activity test in rabbit plasma and other real samples for practical applications, obtaining similar results. And the thin layer loading sensor 4 was also successfully applied to recognize Fe3+ ion among various ions. Therefore, 4 may serve as a potential sensor for continuous monitoring and detecting Fe3+ ion in real time.
Collapse
Affiliation(s)
- Guiqian Fang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Hao Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Zhancun Bian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Min Guo
- Shandong Leather Industrial Research Institute Jinan 250021 Shandong China
| | - Zhongyu Wu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Qingqiang Yao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of Materia Medica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
17
|
Wang Y, Guo R, Hou X, Lei M, Zhou Q, Xu Z. Highly Sensitive and Selective Fluorescent Probe for Detection of Fe3+ Based on Rhodamine Fluorophore. J Fluoresc 2019; 29:645-652. [DOI: 10.1007/s10895-019-02378-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
|
18
|
Wang Y, Hou X, Liu C, Lei M, Zhou Q, Hu S, Xu Z. Highly sensitive and selective ESIPT-based near-infrared fluorescent probe for detection of Pd2+. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Balamurugan R, Liu JH, Liu BT. A review of recent developments in fluorescent sensors for the selective detection of palladium ions. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Taweetanavanich T, Wanno B, Tuntulani T, Pulpoka B, Kaewtong C. A pH optical and fluorescent sensor based on rhodamine modified on activated cellulose paper. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Thianthan Taweetanavanich
- Nanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceMahasarakham University Mahasarakham Thailand
| | - Banchob Wanno
- Nanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceMahasarakham University Mahasarakham Thailand
| | - Thawatchai Tuntulani
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of ScienceChulalongkorn University Bangkok Thailand
| | - Buncha Pulpoka
- Supramolecular Chemistry Research Unit, Department of Chemistry, Faculty of ScienceChulalongkorn University Bangkok Thailand
| | - Chatthai Kaewtong
- Nanotechnology Research Unit and Supramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceMahasarakham University Mahasarakham Thailand
| |
Collapse
|
21
|
Jin X, Gao J, Xie P, Yu M, Wang T, Zhou H, Ma A, Wang Q, Leng X, Zhang X. Dual-functional probe based on rhodamine for sequential Cu 2+ and ATP detection in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:657-664. [PMID: 29982156 DOI: 10.1016/j.saa.2018.06.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 05/06/2023]
Abstract
A rhodamine-based fluorescent probe for Cu2+ and ATP has been designed. The fluorescence intensity/absorbance was significantly enhanced upon the addition of Cu2+ owning to the opening of the spiro-ring of rhodamine, which quickly returned to the original level due to the reconstruction of the probe by the reacting with ATP. Cu2+/ATP-induced fluorescent intensity/aborbance changes showed a good linear relationship with the concentration of Cu2+/ATP in the range of 2-20 μM/0-10 μM with a detection limit of 0.1 μM/1.0 μM. The proposed method is simple in design and fast in operation, and is suitable for the reversible monitoring of Cu2+ and ATP in bioanalytical applications.
Collapse
Affiliation(s)
- Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| | - Jingkai Gao
- School of Life Sciences and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Pu Xie
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Mengchen Yu
- State and Local Joint Engineering Lab. of Advanced Network and Monitoring Controls, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Ting Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| | - Aijie Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Qian Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xin Leng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xianghan Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
22
|
Kaikake K, Takada M, Soma D, Jin RH. Theophylline-bearing microspheres with dual features as a coordinative adsorbent and catalytic support for palladium ions. RSC Adv 2018; 8:34505-34513. [PMID: 35548628 PMCID: PMC9087375 DOI: 10.1039/c8ra06476h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/23/2018] [Indexed: 11/21/2022] Open
Abstract
Polystyrenic microspheres in the sub 5 micrometer size range (micro-gel) with –CH2Cl active sites were synthesized via the dispersion polymerization of 4-chloromethylstyrene, divinyl benzene and methoxy polyethylene glycol acrylate. Then, theophylline residues were introduced onto the polystyrenic microspheres via the substitution of the chloride in the –CH2Cl group to prepare chelate type microspheres of μ-T2. It was found that the microspheres have co-continuous structures, monodispersed particle sizes, and excellent solvent and water wettability. Using the μ-T2 microspheres possessing theophylline residues, adsorption experiments involving the adsorption of palladium(ii), copper(ii) and platinum(iv) from acidic chloride media under both individual and mixed conditions were carried out and it was found that the μ-T2 microspheres exhibited excellent adsorption selectivity for palladium(ii) over copper(ii) and platinum(iv). It was also revealed that thiourea or ammonia solutions are the most effective in desorbing palladium ions from the microspheres. Despite being used in four adsorption–desorption cycles, the μ-T2 microspheres were still able to strongly adsorb palladium ions, with an adsorption of over 85%. In addition, the μ-T2 microspheres also showed palladium capturing ability even in very dilute palladium solutions (below 1.0 ppm). Interestingly, the μ-T2 microsphere-adsorbed palladium ions exhibited excellent catalytic activity in the Suzuki–Miyaura coupling reaction of bromobenzene and phenylboronic acid, yielding biphenyl in 100% under the conditions within 1 hour at 50 °C in water. Sub 5 micrometer sized polystyrenic microspheres bearing theophylline residues were synthesized and used as adsorbent and catalytic support for palladium ions.![]()
Collapse
Affiliation(s)
- Katsuya Kaikake
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1, Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Masafumi Takada
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1, Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Daiki Soma
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1, Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University 3-27-1, Rokkakubashi, Kanagawa-ku Yokohama 221-8686 Japan
| |
Collapse
|
23
|
Bai CB, Qiao R, Liao JX, Xiong WZ, Zhang J, Chen SS, Yang S. A highly selective and reversible fluorescence "OFF-ON-OFF" chemosensor for Hg 2+ based on rhodamine-6G dyes derivative and its application as a molecular logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:252-259. [PMID: 29800888 DOI: 10.1016/j.saa.2018.05.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 05/14/2023]
Abstract
A new rhodamine-6G-based chemosensor X was designed and synthesized for the colorimetric and fluorometric detection of Hg2+. The chemosensor X responsed to Hg2+ had good sensitivity, high selectivity and excellent reversibility in HEPES buffer (10 mM, pH 7.4)/CH3CN (40:60, V/V). The recognition mechanism of X toward Hg2+ was evaluated by Job's plot, IR and MS. Meanwhile, X-Hg2+ fluorescence lifetime was also measured. It was interesting that X displayed favorable reversibility to form an "off-on-off" type signaling behavior with the Hg2+-induced emission spectra being quenched by I-. Furthermore, it could be applied as a molecular logic gate and test strips based on X exhibited a good reversibility selectivity to Hg2+.
Collapse
Affiliation(s)
- Cui-Bing Bai
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province 236037, China; Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, 236037, China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province 236037, China; Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, 236037, China.
| | - Jia-Xin Liao
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province 236037, China
| | - Wen-Zhang Xiong
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province 236037, China
| | - Jie Zhang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province 236037, China
| | - Shui-Sheng Chen
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province 236037, China; Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, 236037, China
| | - Song Yang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui Province 236037, China; Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, 236037, China
| |
Collapse
|
24
|
Purkait R, Dey S, Sinhaa C. A multi-analyte responsive chemosensor vanilinyl Schiff base: fluorogenic sensing of Zn(ii), Cd(ii) and I−. NEW J CHEM 2018. [DOI: 10.1039/c8nj03165g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single fluorescence probe recognizes multiple ions and grabs the great attention of scientists.
Collapse
Affiliation(s)
- Rakesh Purkait
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Sunanda Dey
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | | |
Collapse
|
25
|
A water-soluble near-infrared fluorescent probe for specific Pd 2+ detection. Bioorg Med Chem 2017; 26:931-937. [PMID: 29254898 DOI: 10.1016/j.bmc.2017.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 02/09/2023]
Abstract
Palladium (Pd) is widely used in chemistry, biology, environmental science etc., and Pd2+ is the most plenitudinous oxidation state of the Pd that can exist under physiological conditions or in living cells, which could have adverse effects on both our health and environment. Thus, it is of great significance to monitor the changes of Pd2+. Hence, a novel near-infrared fluorescent probe M-PD has been developed for selective detection of Pd2+ based on naphthofluorescein in this work. The result demonstrated that M-PD exhibited favorable properties for sensing Pd2+ such as excellent water solubility, high selectivity and sensitivity. And the limit of detection was estimated as 10.8 nM, much lower than the threshold in drugs (5-10 ppm) specified by European Directorate for the Quality Control of Medicines. More importantly, detection and recovery experiments of Pd2+ in aspirin aqoeous solution and soil are satisfactory. In addition, M-PD has also been successfully used for near-infrared fluorescence imaging of Pd2+ in living cells, indicating that the probe has better feasibility and application potential in the determination of Pd2+.
Collapse
|