1
|
Zhang C, Ma HM, Wu S, Shen JM, Zhang N, Xu YL, Li CX, He P, Ge MK, Chu XL, Zhang YX, Zheng JK, Chen GQ, Shen SM. Secreted PTEN binds PLXDC2 on macrophages to drive antitumor immunity and tumor suppression. Dev Cell 2024; 59:3072-3088.e8. [PMID: 39197453 DOI: 10.1016/j.devcel.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Loss of phosphatase and tensin homolog (PTEN) has been linked to an immunosuppressive tumor microenvironment, but its underlying mechanisms remain largely enigmatic. Here, we report that PTEN can be secreted by the transmembrane emp24 domain-containing protein 10 (TMED10)-channeled protein secretion pathway. Inhibiting PTEN secretion from tumor cells contributes to immunosuppression and impairs the tumor-suppressive role of PTEN, while intratumoral injection of PTEN protein promotes antitumor immunity and suppresses tumor growth in mice. Mechanistically, extracellular PTEN binds to the plexin domain-containing protein 2 (PLXDC2) on macrophages, triggering subsequent activation of JAK2-STAT1 signaling, which switches tumor-associated macrophages (TAMs) from the immunosuppressive to inflammatory phenotype, leading to enhanced activation of CD8+ T and natural killer cells. Importantly, PTEN treatment also enhances the therapeutic efficacy of anti-PD-1 treatment in mice and reverses the immune-suppressive phenotype of patient-derived primary TAMs. These data identify a cytokine-like role of PTEN in immune activation and tumor suppression and demonstrate the therapeutic potential for extracellular administration of PTEN in cancer immunotherapy.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan 571199, China
| | - Hong-Ming Ma
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Shuai Wu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jia-Ming Shen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Na Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yi-Lu Xu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Cheng-Xiao Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Ping He
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China
| | - Meng-Kai Ge
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Xi-Li Chu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Yu-Xue Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Jun-Ke Zheng
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Shao-Ming Shen
- Institute of Aging & Tissue Regeneration, Stress and Cancer Research Unit of Chinese Academy of Medical Sciences (No.2019RU043), State Key Laboratory of Systems Medicine for Cancer, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200127, China; Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, SJTU-SM, Shanghai 200025, China.
| |
Collapse
|
2
|
Papi RM, Tasioulis KS, Kechagioglou PV, Papaioannou MA, Andriotis EG, Kyriakidis DA. Carbon Nanotube-Mediated Delivery of PTEN Variants: In Vitro Antitumor Activity in Breast Cancer Cells. Molecules 2024; 29:2785. [PMID: 38930850 PMCID: PMC11206347 DOI: 10.3390/molecules29122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a crucial tumor suppressor protein with frequent mutations and alterations. Although protein therapeutics are already integral to numerous medical fields, their potential remains nascent. This study aimed to investigate the impact of stable, unphosphorylated recombinant human full-length PTEN and its truncated variants, regarding their tumor suppression activity with multiwalled-carbon nanotubes (MW-CNTs) as vehicles for their delivery in breast cancer cells (T-47D, ZR-75-1, and MCF-7). The cloning, overexpression, and purification of PTEN variants were achieved from E. coli, followed by successful binding to CNTs. Cell incubation with protein-functionalized CNTs revealed that the full-length PTEN-CNTs significantly inhibited cancer cell growth and stimulated apoptosis in ZR-75-1 and MCF-7 cells, while truncated PTEN fragments on CNTs had a lesser effect. The N-terminal fragment, despite possessing the active site, did not have the same effect as the full length PTEN, emphasizing the necessity of interaction with the C2 domain in the C-terminal tail. Our findings highlight the efficacy of full-length PTEN in inhibiting cancer growth and inducing apoptosis through the alteration of the expression levels of key apoptotic markers. In addition, the utilization of carbon nanotubes as a potent PTEN protein delivery system provides valuable insights for future applications in in vivo models and clinical studies.
Collapse
Affiliation(s)
- Rigini M. Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.S.T.); (P.V.K.); (D.A.K.)
| | - Konstantinos S. Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.S.T.); (P.V.K.); (D.A.K.)
| | - Petros V. Kechagioglou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.S.T.); (P.V.K.); (D.A.K.)
| | - Maria A. Papaioannou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Eleftherios G. Andriotis
- Laboratory of Organic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Dimitrios A. Kyriakidis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.S.T.); (P.V.K.); (D.A.K.)
| |
Collapse
|
3
|
Kim Y, Choi J, Kim EH, Park W, Jang H, Jang Y, Chi S, Kweon D, Lee K, Kim SH, Yang Y. Design of PD-L1-Targeted Lipid Nanoparticles to Turn on PTEN for Efficient Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309917. [PMID: 38520717 PMCID: PMC11165541 DOI: 10.1002/advs.202309917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Lipid nanoparticles (LNPs) exhibit remarkable mRNA delivery efficiency, yet their majority accumulate in the liver or spleen after injection. Tissue-specific mRNA delivery can be achieved through modulating LNP properties, such as tuning PEGylation or varying lipid components systematically. In this paper, a streamlined method is used for incorporating tumor-targeting peptides into the LNPs; the programmed death ligand 1 (PD-L1) binding peptides are conjugated to PEGylated lipids via a copper-free click reaction, and directly incorporated into the LNP composition (Pep LNPs). Notably, Pep LNPs display robust interaction with PD-L1 proteins, which leads to the uptake of LNPs into PD-L1 overexpressing cancer cells both in vitro and in vivo. To evaluate anticancer immunotherapy mediated by restoring tumor suppressor, mRNA encoding phosphatase and tensin homolog (PTEN) is delivered via Pep LNPs to PTEN-deficient triple-negative breast cancers (TNBCs). Pep LNPs loaded with PTEN mRNA specifically promotes autophagy-mediated immunogenic cell death in 4T1 tumors, resulting in effective anticancer immune responses. This study highlights the potential of tumor-targeted LNPs for mRNA-based cancer therapy.
Collapse
Affiliation(s)
- Yelee Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Jiwoong Choi
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Eun Hye Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Wonbeom Park
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Hochung Jang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| | - Yeongji Jang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Sung‐Gil Chi
- Department of Life SciencesKorea UniversitySeoul02841Republic of Korea
| | - Dae‐Hyuk Kweon
- Department of Integrative BiotechnologySungkyunkwan UniversitySuwon16419Republic of Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical SciencesGyeongsang National UniversityJinju52828Republic of Korea
| | - Sun Hwa Kim
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Yoosoo Yang
- Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Division of Bio‐Medical Science and TechnologyKIST SchoolKorea University of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
4
|
Wang J, Zhang S, Li Y, Xu Q, Kritzer JA. Investigating the Cytosolic Delivery of Proteins by Lipid Nanoparticles Using the Chloroalkane Penetration Assay. Biochemistry 2024. [PMID: 38334719 DOI: 10.1021/acs.biochem.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein therapeutics are an expanding area for research and drug development, and lipid nanoparticles (LNPs) are the most prominent nonviral vehicles for protein delivery. The most common methods for assessing protein delivery by LNPs include assays that measure the total amount of protein taken up by cells and assays that measure the phenotypic changes associated with protein delivery. However, assays for total cellular uptake include large amounts of protein that are trapped in endosomes or are otherwise nonfunctional. Assays for functional delivery are important, but the readouts are indirect and amplified, limiting the quantitative interpretation. Here, we apply an assay for cytosolic delivery, the chloroalkane penetration assay (CAPA), to measure the cytosolic delivery of a (-30) green fluorescent protein (GFP) fused to Cre recombinase (Cre(-30)GFP) fusion protein by LNPs. We compare these data to the data from total cellular uptake and functional delivery assays to provide a richer analysis of uptake and endosomal escape for LNP-mediated protein delivery. We also use CAPA for a screen of a small library of lipidoids, identifying those with a promising ability to deliver Cre(-30)GFP to the cytosol of mammalian cells. With careful controls and optimized conditions, we expect that CAPA will be a useful tool for investigating the rate, efficiency, and mechanisms of LNP-mediated delivery of therapeutic proteins.
Collapse
Affiliation(s)
- Jing Wang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Shiying Zhang
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Shree Harini K, Ezhilarasan D, Elumalai P. Restoring the anti-tumor property of PTEN: A promising oral cancer treatment. Oral Oncol 2022; 134:106113. [PMID: 36099799 DOI: 10.1016/j.oraloncology.2022.106113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| | - Perumal Elumalai
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| |
Collapse
|
6
|
Lu L, Fang T, Pang T, Chen Z, Cheng L, Ma D, Xi Z. The potential application of branch-PCR assembled PTEN gene nanovector in lung cancer gene therapy. Chembiochem 2022; 23:e202200387. [PMID: 36073901 DOI: 10.1002/cbic.202200387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/08/2022] [Indexed: 11/12/2022]
Abstract
Gene therapy offers an alternative and promising avenue to lung cancer treatment. Here, we used dibenzocyclooctyne (DBCO)-branched primers to construct a kind of PTEN gene nanovector (NP-PTEN) through branch-PCR. NP-PTEN showed the nanoscale structure with the biocompatible size (84.7 ± 11.2 nm) and retained the improved serum stability compared to linear DNA. When transfected into NCI-H1299 cancer cells, NP-PTEN could overexpress PTEN protein to restore PTEN function through the deactivation of PI3K-AKT-mTOR signaling pathway to inhibit cell proliferation and induce cell apoptosis. The apoptosis rate of NCI-H1299 cancer cells could reach up to 54.5% ± 4.6% when the transfection concentration of NP-PTEN was 4.0 μg/mL. In mice bearing NCI-H1299 tumor xenograft intratumorally administrated with NP-PTEN, the average tumor volume and tumor weight was separately reduced by 61.7% and 63.9% compared with the PBS group on the 18 th day of administration. The anticancer efficacy of NP-PTEN in NCI-H1299 tumor xenograft suggested the promising therapeutic potential of this branch-PCR assembled PTEN gene nanovectors in lung cancer gene therapy and also provided more opportunities to introduce two or more tumor suppressor genes as the all-in-one gene nanovectors for multiple gene-based cancer gene therapy.
Collapse
Affiliation(s)
- Liqing Lu
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tian Fang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Tuo Pang
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Ziyi Chen
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Longhuai Cheng
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Dejun Ma
- Nankai University College of Chemistry, Department of Chemical Biology, CHINA
| | - Zhen Xi
- Nankai University, State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Bi, 94 weijin road, 300071, Tianjin, CHINA
| |
Collapse
|
7
|
Li Y, Ye Z, Yang H, Xu Q. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm Sin B 2022; 12:2624-2639. [PMID: 35755280 PMCID: PMC9214058 DOI: 10.1016/j.apsb.2022.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Lipid nanoparticle (LNP)-based drug delivery systems have become the most clinically advanced non-viral delivery technology. LNPs can encapsulate and deliver a wide variety of bioactive agents, including the small molecule drugs, proteins and peptides, and nucleic acids. However, as the physicochemical properties of small- and macromolecular cargos can vary drastically, every LNP carrier system needs to be carefully tailored in order to deliver the cargo molecules in a safe and efficient manner. Our group applied the combinatorial library synthesis approach and in vitro and in vivo screening strategy for the development of LNP delivery systems for drug delivery. In this Review, we highlight our recent progress in the design, synthesis, characterization, evaluation, and optimization of combinatorial LNPs with novel structures and properties for the delivery of small- and macromolecular therapeutics both in vitro and in vivo. These delivery systems have enormous potentials for cancer therapy, antimicrobial applications, gene silencing, genome editing, and more. We also discuss the key challenges to the mechanistic study and clinical translation of new LNP-enabled therapeutics.
Collapse
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Hanyi Yang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
8
|
Pinho JD, Silva GEB, Teixeira-Júnior AAL, Rocha TMS, Batista LL, de Sousa AM, Calixto JDRR, Burbano RR, de Souza CRT, Khayat AS. Non-Coding RNA in Penile Cancer. Front Oncol 2022; 12:812008. [PMID: 35651809 PMCID: PMC9150447 DOI: 10.3389/fonc.2022.812008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Penile cancer (PC) still presents a health threat for developing countries, in particular Brazil. Despite this, little progress has been made on the study of markers, including molecular ones, that can aid in the correct management of the patient, especially concerning lymphadenectomy. As in other neoplasms, non-coding RNAs (ncRNAs) have been investigated for penile cancer, with emphasis on microRNAs, piRNAs (PIWI-interacting small RNAs), and long non-coding RNAs (LncRNAs). In this context, this review aims to assemble the available knowledge on non-coding RNA linked in PC, contributing to our understanding of the penile carcinogenesis process and addressing their clinical relevance. ncRNAs are part of the novel generation of biomarkers, with high potential for diagnosis and prognosis, orientating the type of treatment. Furthermore, its versatility regarding the use of paraffin samples makes it possible to carry out retrospective studies.
Collapse
Affiliation(s)
- Jaqueline Diniz Pinho
- Zé Doca Center for Higher Studies, State University of Maranhão, Zé Doca, Brazil
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- *Correspondence: Jaqueline Diniz Pinho,
| | - Gyl Eanes Barros Silva
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Antonio Augusto Lima Teixeira-Júnior
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
- Department of Genetics, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thalita Moura Silva Rocha
- Laboratory of Immunofluorescence and Electron Microscopy, University Hospital of the Federal University of Maranhão, São Luís, Brazil
| | - Lecildo Lira Batista
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
- Coordination of Medicine, Federal University of Amapá, Macapá, Brazil
| | - Amanda Marques de Sousa
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| | | | | | | | - André Salim Khayat
- Oncology Research Center, João de Barros Barreto University Hospital, Federal University of Pará, Belém, Brazil
| |
Collapse
|
9
|
Fu L, Hua X, Jiang X, Shi J. Multistage Systemic and Cytosolic Protein Delivery for Effective Cancer Treatment. NANO LETTERS 2022; 22:111-118. [PMID: 34962818 DOI: 10.1021/acs.nanolett.1c03293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current clinical applications of protein therapy are largely limited to systemically accessible targets in vascular or extracellular areas. Major obstacles to the widespread application of protein therapeutics in cancer treatment include low membrane permeability and endosomal entrapment. Herein, we report a multistage nanoparticle (NP) strategy for systemic and cytosolic protein delivery to tumor cells, by encapsulating a protein conjugate, tetra-guanidinium (TG)-modified saporin, into tumor microenvironment (TME) pH-responsive polymeric NPs. Upon reaching the tumor site after systemic circulation, the polymeric NPs respond rapidly to the acidic tumor microenvironment and release the TG-saporin conjugates, which penetrate the tumor tissue and enter into tumor cells via TG-mediated cytosolic transportation. The TG-saproin NPs showed potent inhibition of lung cancer cell growth in vitro and in vivo. We expect that this multistage NP delivery strategy with long blood circulation, deep tumor penetration, and efficient cytosolic transport may be applicable to various therapeutic proteins for effective cancer treatment.
Collapse
Affiliation(s)
- Liyi Fu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xianwu Hua
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Li Y, Shen C, Liang X, Deng K, Zeng Z, Xu X. Dynamic-Responsive Virus-Mimetic Nanocapsules Facilitate Protein Drug Penetration and Extracellular-Specific Unpacking for Antitumor Treatment. Biomater Sci 2022; 10:3447-3453. [DOI: 10.1039/d2bm00500j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein-based drugs have been demonstrating great potential on the treatment of various diseases, but most of them encounter many difficulties in clinical trials or uses, such as instability, low bioavailability,...
Collapse
|
11
|
Xia S, Zhang Z. Circular RNA hsa_circ_0000317 inhibits non-small cell lung cancer progression through regulating microRNA-494-3p/phosphatase and tensin homolog deleted on chromosome 10 axis. Clinics (Sao Paulo) 2022; 77:100086. [PMID: 35917658 PMCID: PMC9344349 DOI: 10.1016/j.clinsp.2022.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNA (circRNA), a group of non-coding RNA, is pivotal in the progression of various cancers, including Non-Small Cell Lung Cancer (NSCLC). Some circRNAs have been reported to be implicated in the progression of NSCLC, however, the function and molecular mechanism of hsa_circ_0000317 (circ_0000317) in NSCLC have not been fully understood. METHODS The significantly differentially expressed circRNA in NSCLC tissues, circ_0000317, was screened out by microarray. Circ_0000317, microRNA(miR)-494-3p and Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) expressions in NSCLC tissues were respectively probed by quantitative real-time polymerase chain reaction and western blot assay. MTT and Transwell assays were adopted to examine the growth, migration, and invasion of NSCLC cells. Bioinformatics, luciferase reporter gene assay, RNA immunoprecipitation, and RNA pull-down assay were conducted to probe the relationships among circ_0000317, miR-494-3p, and PTEN. RESULTS Circ_0000317 expression level was reduced in NSCLC tissues and cell lines. Circ_0000317 expression in NSCLC patients was associated with TNM stage and lymphatic metastasis. Circ_0000317 overexpression restrained the proliferation, migration, and invasion of NSCLC cells, but co-transfection of miR-494-3p mimics partially reversed this effect. In addition, circ_0000317, was identified as a competitive endogenous RNA, which could sponge miR-494-3p to increase PTEN expression and activate PI3K/AKT pathway. CONCLUSION Circ_0000317, inhibits NSCLC progression via modulating miR-494-3p/PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Shihui Xia
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, China
| | - Zengwang Zhang
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, China.
| |
Collapse
|
12
|
Hershman RL, Li Y, Ma F, Xu Q, Van Deventer J. Intracellular Delivery of Antibodies for Selective Cell Signaling Interference. ChemMedChem 2021; 17:e202100678. [PMID: 34890114 DOI: 10.1002/cmdc.202100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Many intracellular signaling events remain poorly characterized due to a general lack of tools to interfere with "undruggable" targets. Antibodies have the potential to elucidate intracellular mechanisms via targeted disruption of cell signaling cascades because of their ability to bind to a target with high specificity and affinity. However, due to their size and chemical composition, antibodies cannot innately cross the cell membrane, and thus access to the cytosol with these macromolecules has been limited. Here, we describe strategies for accessing the intracellular space with recombinant antibodies mediated by cationic lipid nanoparticles to selectively disrupt intracellular signaling events. Together, our results demonstrate the use of recombinantly produced antibodies, delivered at concentrations of 10 nM, to selectively interfere with signaling driven by a single posttranslational modification. Efficient intracellular delivery of engineered antibodies opens up possibilities for modulation of previously "undruggable" targets, including for potential therapeutic applications.
Collapse
Affiliation(s)
| | - Yamin Li
- Tufts University, Biomedical Engineering, UNITED STATES
| | - Feihe Ma
- Tufts University, Biomedical Engineering, UNITED STATES
| | - Qioabing Xu
- Tufts University, Biomedical Engineering, UNITED STATES
| | - James Van Deventer
- Tufts University, Chemical and Biological Engineering, 4 Colby St. Room 148, 02155, Medford, UNITED STATES
| |
Collapse
|
13
|
Le Saux S, Aubert-Pouëssel A, Mohamed KE, Martineau P, Guglielmi L, Devoisselle JM, Legrand P, Chopineau J, Morille M. Interest of extracellular vesicles in regards to lipid nanoparticle based systems for intracellular protein delivery. Adv Drug Deliv Rev 2021; 176:113837. [PMID: 34144089 DOI: 10.1016/j.addr.2021.113837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022]
Abstract
Compared to chemicals that continue to dominate the overall pharmaceutical market, protein therapeutics offer the advantages of higher specificity, greater activity, and reduced toxicity. While nearly all existing therapeutic proteins were developed against soluble or extracellular targets, the ability for proteins to enter cells and target intracellular compartments can significantly broaden their utility for a myriad of exiting targets. Given their physical, chemical, biological instability that could induce adverse effects, and their limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential. In this context, as natural protein nanocarriers, extracellular vesicles (EVs) hold great promise. Nevertheless, if not present naturally, bringing an interest protein into EV is not an easy task. In this review, we will explore methods used to load extrinsic protein into EVs and compare these natural vectors to their close synthetic counterparts, liposomes/lipid nanoparticles, to induce intracellular protein delivery.
Collapse
|
14
|
Yang T, Han H, Chen Y, Yang L, Parker R, Li Y, Kaplan DL, Xu Q. Study the lipidoid nanoparticle mediated genome editing protein delivery using 3D intestinal tissue model. Bioact Mater 2021; 6:3671-3677. [PMID: 33898871 PMCID: PMC8056182 DOI: 10.1016/j.bioactmat.2021.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Lipid nanoparticles are promising carriers for oral drug delivery. For bioactive cargos with intracellular targets, e.g. gene-editing proteins, it is essential for the cargo and carrier to remain complexed after crossing the epithelial layer of intestine in order for the delivery system to transport the cargos inside targeted cells. However, limited studies have been conducted to verify the integrity of cargo/carrier nanocomplexes and their capability in facilitating cargo delivery intracellularly after the nanocomplex crossing the epithelial barrier. Herein, we used a traditional 2D transwell system and a recently developed 3D tissue engineered intestine model and demonstrated the synthetic lipid nanoparticle (carrier) and protein (cargo) nanocomplexes are able to cross the epithelial layer and deliver the protein cargo inside the underneath cells. We found that the EC16-63 LNP efficiently encapsulated the GFP-Cre recombinase, penetrated the intestinal monolayer cells in both the 2D cell culture and 3D tissue models through temporarily interrupting the tight junctions between epithelial layer. After transporting across the intestinal epithelia, the EC16-63 and GFP-Cre recombinase nanocomplexes can enter the underneath cells to induce gene recombination. These results suggest that the in vitro 3D intestinal tissue model is useful for identifying effective lipid nanoparticles for potential oral drug delivery. Employed a 3D intestine model for nanodrug screening. Developed lipidoid nanoparticles for genome engineering protein delivery. Used 3D tissue model to test lipidoid nanoparticles for potential oral drug delivery.
Collapse
Affiliation(s)
- Tao Yang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.,Department of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Haobo Han
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Liu Yang
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Rachael Parker
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
15
|
Le Saux S, Aubert‐Pouëssel A, Ouchait L, Mohamed KE, Martineau P, Guglielmi L, Devoisselle J, Legrand P, Chopineau J, Morille M. Nanotechnologies for Intracellular Protein Delivery: Recent Progress in Inorganic and Organic Nanocarriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah Le Saux
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | - Lyria Ouchait
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | | | | | | | | | - Joël Chopineau
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | - Marie Morille
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| |
Collapse
|
16
|
Zhao X, Glass Z, Chen J, Yang L, Kaplan DL, Xu Q. mRNA Delivery Using Bioreducible Lipidoid Nanoparticles Facilitates Neural Differentiation of Human Mesenchymal Stem Cells. Adv Healthc Mater 2021; 10:e2000938. [PMID: 32815325 DOI: 10.1002/adhm.202000938] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) are widely used in regenerative medicine and tissue engineering and delivering biological molecules into MSCs has been used to control stem cell behavior. However, the efficient delivery of large biomolecules such as DNA, RNA, and proteins into MSCs using nonviral delivery strategies remains an ongoing challenge. Herein, nanoparticles composed of cationic bioreducible lipid-like materials (lipidoids) are developed to intracellularly deliver mRNA into human mesenchymal stem cells (hMSCs). The delivery efficacy to hMSCs is improved by adding three excipients including cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol (DSPE-PEG) during lipidoid nanoparticle formulation. Using an optimized lipidoid formulation, Cas9 mRNA and single guide RNA (sgRNA) targeting neuron restrictive silencing factor (NRSF) are delivered to hMSCs, leading to successful neural-like differentiation as demonstrated by the expression of synaptophysin (SYP), brain-derived neurotrophic factor (BDNF), neuron-specific enolase (NSE), and neuron-specific growth-associated protein (SCG10). Overall, a synthetic lipid formulation that can efficiently deliver mRNA to hMSCs is identified, leading to CRISPR-based gene knockdown to facilitate hMSCs transdifferentiation into neural-like lineage.
Collapse
Affiliation(s)
- Xuewei Zhao
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| | - Zachary Glass
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| | - Jinjin Chen
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| | - Liu Yang
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| | - David L. Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University 4 Colby Street Medford MA 02155 USA
| |
Collapse
|
17
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
18
|
The interaction of interleukin-8 and PTEN inactivation promotes the malignant progression of head and neck squamous cell carcinoma via the STAT3 pathway. Cell Death Dis 2020; 11:405. [PMID: 32471980 PMCID: PMC7260373 DOI: 10.1038/s41419-020-2627-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Interleukin-8 (IL-8) expression correlates with poor prognosis in many cancers, including head and neck squamous cell carcinoma (HNSCC), but the underlying mechanism is poorly understood. In this study, we found that overexpression of IL-8 correlated with poor outcome in HNSCC patients. IL-8 significantly increased cellular proliferation, migration, and invasion ability both in vitro and in vivo, which could be blocked by a CXCR1/2 inhibitor. IL-8 promoted the expression of MMP2, MMP9, snail, and vimentin in HNSCC cells. Furthermore, IL-8 could inactivate PTEN via phosphorylation, and then inactivated PTEN affected the phosphorylation of STAT3. Recombinant PTEN that internalized in cytoplasm decreased the expression of phosphorylated STAT3, while knockdown of PTEN led to the increased expression of phosphorylated STAT3. A STAT3 inhibitor could reverse the upregulation of invasion-associated proteins mediated by IL-8 stimulation. Furthermore, overexpression of snail and inactivated PTEN jointly promoted the autocrine effect of IL-8 on tumor cells. Last, there were positive correlations between IL-8 and snail, vimentin expression in HNSCC tissues. In summary, our study demonstrates that PTEN acts as a novel "molecular switch" to regulate IL-8/STAT3 signaling, promoting the progression of HNSCC, and indicating that this pathway may be a potential therapeutic target for HNSCC.
Collapse
|
19
|
Chen F, Alphonse M, Liu Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1609. [PMID: 31797562 DOI: 10.1002/wnan.1609] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/26/2022]
Abstract
CRISPR-based genome editing technology has become an important potential therapeutic tool for various diseases. A vital challenge is to reach a safe, efficient, and clinically suitable delivery of a CRISPR-associated protein and a single-guide RNA. A possible translational approach to applying CRISPR-based technology is the use of viral vectors such as adeno-associated virus. However, such vectors give long-term exposure in vivo that may increase potential off-target effects as well as the risk of immunogenicity. Therefore, limitations to clinical applications are addressed using nonviral delivery systems such as nanoparticle-based delivery strategies. Today, the nanoparticle-based delivery approach is becoming more and more attractive in gene therapeutics because of its specific targeting, scale-up efficiency, efficacy of customization, minor stimulation of immune response, and minimal exposure to nucleases. In this review, we will present the most recent advances in developing innovations and potential advantages of the nanoparticle delivery system in CRISPR genome editing. We will also propose potential strategies of CRISPR-based technology for therapeutic and industrial applications. Our review will differ in focus from previous reviews and advance the literature on the subject by (a) focusing on the challenges of the CRISPR/Cas9 delivery system; (b) focusing on the application of nanoparticle-based delivery of CRISPR components (Cas9 and sgRNA), such as lipids and polymeric vectors; (c) discussing the potential nanoparticle-based delivery approaches for CRISPR/Cas9 application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, Texas
| | - Martin Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
20
|
Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Semin Cancer Biol 2019; 68:59-74. [PMID: 31562957 DOI: 10.1016/j.semcancer.2019.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Despite huge efforts made in academic and pharmaceutical worldwide research, current anticancer therapies achieve effective treatment in a limited number of neoplasia cases only. Oncology terms such as big killers - to identify tumours with yet a high mortality rate - or undruggable cancer targets, and chemoresistance, represent the current therapeutic debacle of cancer treatments. In addition, metastases, tumour microenvironments, tumour heterogeneity, metabolic adaptations, and immunotherapy resistance are essential features controlling tumour response to therapies, but still, lack effective therapeutics or modulators. In this scenario, where the pharmaceutical productivity and drug efficacy in oncology seem to have reached a plateau, the so-called drug repurposing - i.e. the use of old drugs, already in clinical use, for a different therapeutic indication - is an appealing strategy to improve cancer therapy. Opportunities for drug repurposing are often based on occasional observations or on time-consuming pre-clinical drug screenings that are often not hypothesis-driven. In contrast, in-silico drug repurposing is an emerging, hypothesis-driven approach that takes advantage of the use of big-data. Indeed, the extensive use of -omics technologies, improved data storage, data meaning, machine learning algorithms, and computational modeling all offer unprecedented knowledge of the biological mechanisms of cancers and drugs' modes of action, providing extensive availability for both disease-related data and drugs-related data. This offers the opportunity to generate, with time and cost-effective approaches, computational drug networks to predict, in-silico, the efficacy of approved drugs against relevant cancer targets, as well as to select better responder patients or disease' biomarkers. Here, we will review selected disease-related data together with computational tools to be exploited for the in-silico repurposing of drugs against validated targets in cancer therapies, focusing on the oncogenic signaling pathways activation in cancer. We will discuss how in-silico drug repurposing has the promise to shortly improve our arsenal of anticancer drugs and, likely, overcome certain limitations of modern cancer therapies against old and new therapeutic targets in oncology.
Collapse
|
21
|
Liang X, Tang X, Yang J, Zhang J, Han H, Li Q. A genipin-crosslinked protein-polymer hybrid system for the intracellular delivery of ribonuclease A. Int J Nanomedicine 2019; 14:7389-7398. [PMID: 31571857 PMCID: PMC6749988 DOI: 10.2147/ijn.s210486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/27/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Therapeutic proteins have been widely used in the treatment of various diseases, and effective carriers are highly required for achieving protein delivery to obtain favorable treatment potency. MATERIALS AND METHODS A protein-polymer hybrid system was constructed through the genipin-mediated crosslinking of polyethyleneimine with a weight-average molecular weight of 25,000 g/mol (PEI25K) and ribonuclease A (RNase A), namely RGP. RESULTS The RGP nanoparticles were observed to be easily internationalized in HeLa cells owing to the introduction of positively charged PEI25K, thereby triggering the antiproliferative effects by cleaving RNA molecules in the tumor cells. Moreover, red fluorescence could be obviously visualized in the tumor cells after RGP delivery, which was attributed to the intrinsic characteristics of genipin. CONCLUSION The protein-polymer hybrid system prepared via the genipin-mediated crosslinking has exhibited potential to be used as a theranostic platform for both in vivo imaging and delivering diverse therapeutic proteins.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Jiayuan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun130012, People’s Republic of China
| |
Collapse
|
22
|
Tang Q, Wang J, Jiang Y, Zhang M, Chang J, Xu Q, Mao L, Wang M. Developing chemically modified redox-responsive proteins as smart therapeutics. Chem Commun (Camb) 2019; 55:5163-5166. [PMID: 30984934 DOI: 10.1039/c9cc00519f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The conditional control of protein function in response to the physiological changes of diseased cells is essential to develop smart protein therapeutics. Herein, we report a redox-responsive chemical modification of a protein by conjugating an intracellular glutathione (GSH)-cleavable ligand, NSA, onto a protein residue. We demonstrated that the NSA conjugation of Ribonuclease A (RNase A) enabled the control of the protein function by GSH in an aqueous solution and living cells, with extended applications for targeted cancer therapy using a lipid nanoparticle-based intracellular protein delivery strategy.
Collapse
Affiliation(s)
- Qiao Tang
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chang J, Chen X, Glass Z, Gao F, Mao L, Wang M, Xu Q. Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing. Acc Chem Res 2019; 52:665-675. [PMID: 30586281 DOI: 10.1021/acs.accounts.8b00493] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of protein to precisely manipulate cell signaling is an effective approach for controlling cell fate and developing precision medicine. More recently, programmable nucleases, such as CRISPR/Cas9, have shown extremely high potency for editing genetic flow of mammalian cells, and for treating genetic disorders. The therapeutic potential of proteins with an intracellular target, however, is mostly challenged by their low cell impermeability. Therefore, a developing delivery system to transport protein to the site of action in a spatiotemporal controlled manner is of great importance to expand the therapeutic index of the protein. In this Account, we first summarize our most recent advances in designing combinatorial lipid nanoparticles with diverse chemical structures for intracellular protein delivery. By designing parallel Michael addition or ring-opening reaction of aliphatic amines, we have generated a combinatorial library of cationic lipids, and identified several leading nanoparticle formulations for intracellular protein delivery both in vitro and in vivo. Moreover, we optimized the chemical structure of lipids to control lipid degradation and protein release inside cells for CRISPR/Cas9 genome-editing protein delivery. In the second part of this Account, we survey our recent endeavor in developing a chemical approach to modify protein, in particular, coupled with the nanoparticle delivery platform, to improve protein delivery for targeted diseases treatment and genome editing. Chemical modification of protein is a useful tool to modulate protein function and to improve the therapeutic index of protein drugs. Herein, we mostly summarize our recent advances on designing chemical approaches to modify protein with following unique findings: (1) chemically modified protein shows selective turn-on activity based on the specific intracellular microenvironment, with which we were able to protein-based targeted cancer therapy; (2) the conjugation of hyaluronic acid (HA) to protein allows cancer cell surface receptor-targeted delivery of protein; (3) the introduction of nonpeptidic boronic acid into protein enabled cell nucleus targeted delivery; this is the first report that a nonpeptidic signal can direct protein to subcellular compartment; and (4) the fusion of protein with negatively supercharged green fluorescent protein (GFP) facilitates the self-assembly of protein with lipid nanoparticle for genome-editing protein delivery. At the end of the Account, we give a perspective of expanding the chemistry that could be integrated to design biocompatible lipid nanocarriers for protein delivery and genome editing in vitro and in vivo, as well as the chemical approaches that we can harness to modulate protein activity in live cells for targeted diseases treatment.
Collapse
Affiliation(s)
- Jin Chang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Xianghan Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Feng Gao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
24
|
Affiliation(s)
- Xun Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Fan Wu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yong Ji
- Department of Cardiothoracic Surgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Alazzo A, Lovato T, Collins H, Taresco V, Stolnik S, Soliman M, Spriggs K, Alexander C. Structural variations in hyperbranched polymers prepared via thermal polycondensation of lysine and histidine and their effects on DNA delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/jin2.36] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ali Alazzo
- School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
- Department of Pharmaceutics; University of Mosul; Mosul Iraq
| | - Tatiana Lovato
- School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | - Hilary Collins
- School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | - Vincenzo Taresco
- School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | - Snjezana Stolnik
- School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | - Mahmoud Soliman
- Department of Pharmaceutics; Ain Shams University; Cairo Egypt
| | - Keith Spriggs
- School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | | |
Collapse
|
26
|
Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19:547-562. [DOI: 10.1038/s41580-018-0015-0] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Chiper M, Niederreither K, Zuber G. Transduction Methods for Cytosolic Delivery of Proteins and Bioconjugates into Living Cells. Adv Healthc Mater 2018; 7:e1701040. [PMID: 29205903 DOI: 10.1002/adhm.201701040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/13/2017] [Indexed: 01/05/2023]
Abstract
The human organism and its constituting cells rely on interplay between multiple proteins exerting specific functions. Progress in molecular biotechnologies has facilitated the production of recombinant proteins. When administrated to patients, recombinant proteins can provide important healthcare benefits. To date, most therapeutic proteins must act from the extracellular environment, with their targets being secreted modulators or extracellular receptors. This is because proteins cannot passively diffuse across the plasma membrane into the cytosol. To expand the scope of action of proteins for cytosolic targets (representing more than 40% of the genome) effective methods assisting protein cytosolic entry are being developed. To date, direct protein delivery is extremely tedious and inefficient in cultured cells, even more so in animal models of pathology. Novel techniques are changing this limitation, as recently developed in vitro methods can robustly convey large amount of proteins into cell cultures. Moreover, advances in protein formulation or protein conjugates are slowly, but surely demonstrating efficiency for targeted cytosolic entry of functional protein in vivo in tumor xenograft models. In this review, various methods and recently developed techniques for protein transport into cells are summarized. They are put into perspective to address the challenges encountered during delivery.
Collapse
Affiliation(s)
- Manuela Chiper
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
- Faculté de Pharmacie—Université de Strasbourg 74 Route du Rhin F‐67400 Illkirch France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department Institute of Genetics and Molecular and Cellular Biology (IGBMC) F‐67412 Illkirch France
- Faculté de Chirurgie Dentaire Université de Strasbourg CNRS UMR 7104, INSERM U 964 F‐67000 Strasbourg France
| | - Guy Zuber
- Molecular and Pharmaceutical Engineering of Biologics CNRS—Université de Strasbourg UMR 7242 Boulevard Sebastien Brant F‐67412 Illkirch France
| |
Collapse
|
28
|
Haddadi N, Lin Y, Travis G, Simpson AM, McGowan EM, Nassif NT. PTEN/PTENP1: 'Regulating the regulator of RTK-dependent PI3K/Akt signalling', new targets for cancer therapy. Mol Cancer 2018; 17:37. [PMID: 29455665 PMCID: PMC5817727 DOI: 10.1186/s12943-018-0803-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Regulation of the PI-3 kinase (PI3K)/Akt signalling pathway is essential for maintaining the integrity of fundamental cellular processes, cell growth, survival, death and metabolism, and dysregulation of this pathway is implicated in the development and progression of cancers. Receptor tyrosine kinases (RTKs) are major upstream regulators of PI3K/Akt signalling. The phosphatase and tensin homologue (PTEN), a well characterised tumour suppressor, is a prime antagonist of PI3K and therefore a negative regulator of this pathway. Loss or inactivation of PTEN, which occurs in many tumour types, leads to overactivation of RTK/PI3K/Akt signalling driving tumourigenesis. Cellular PTEN levels are tightly regulated by a number of transcriptional, post-transcriptional and post-translational regulatory mechanisms. Of particular interest, transcription of the PTEN pseudogene, PTENP1, produces sense and antisense transcripts that exhibit post-transcriptional and transcriptional modulation of PTEN expression respectively. These additional levels of regulatory complexity governing PTEN expression add to the overall intricacies of the regulation of RTK/PI-3 K/Akt signalling. This review will discuss the regulation of oncogenic PI3K signalling by PTEN (the regulator) with a focus on the modulatory effects of the sense and antisense transcripts of PTENP1 on PTEN expression, and will further explore the potential for new therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Nahal Haddadi
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Yiguang Lin
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Glena Travis
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Ann M. Simpson
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| | - Eileen M. McGowan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Najah T. Nassif
- School of Life Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, Sydney, NSW 2007 Australia
| |
Collapse
|
29
|
Glass Z, Lee M, Li Y, Xu Q. Engineering the Delivery System for CRISPR-Based Genome Editing. Trends Biotechnol 2018; 36:173-185. [PMID: 29305085 PMCID: PMC5801045 DOI: 10.1016/j.tibtech.2017.11.006] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeat-CRISPR-associated protein (CRISPR-Cas) systems, found in nature as microbial adaptive immune systems, have been repurposed into an important tool in biological engineering and genome editing, providing a programmable platform for precision gene targeting. These tools have immense promise as therapeutics that could potentially correct disease-causing mutations. However, CRISPR-Cas gene editing components must be transported directly to the nucleus of targeted cells to exert a therapeutic effect. Thus, efficient methods of delivery will be critical to the success of therapeutic genome editing applications. Here, we review current strategies available for in vivo delivery of CRISPR-Cas gene editing components and outline challenges that need to be addressed before this powerful tool can be deployed in the clinic.
Collapse
Affiliation(s)
- Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Matthew Lee
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
30
|
McLoughlin NM, Mueller C, Grossmann TN. The Therapeutic Potential of PTEN Modulation: Targeting Strategies from Gene to Protein. Cell Chem Biol 2018; 25:19-29. [PMID: 29153852 DOI: 10.1016/j.chembiol.2017.10.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
|
31
|
Wang X, Li Y, Li Q, Neufeld CI, Pouli D, Sun S, Yang L, Deng P, Wang M, Georgakoudi I, Tang S, Xu Q. Hyaluronic acid modification of RNase A and its intracellular delivery using lipid-like nanoparticles. J Control Release 2017; 263:39-45. [DOI: 10.1016/j.jconrel.2017.01.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 11/28/2022]
|
32
|
Chen J, Jiang W, Han H, Yang J, Chen W, Wang Y, Tang J, Li Q. Chemoenzymatic Synthesis of Cholesterol- g-Poly(amine- co-ester) Amphiphilic Copolymer as a Carrier for miR-23b Delivery. ACS Macro Lett 2017; 6:523-528. [PMID: 35610880 DOI: 10.1021/acsmacrolett.7b00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lipase-catalyzed polymerization of N-methyldiethanolamine, diethyl sebacate and ω-pentadecanolide was performed to construct a cationic poly(amine-co-ester), and a hydrophobic N-(2-bromoethyl)carbamoyl cholesterol was then grafted onto its main chain through a quaternization reaction to prepare the amphiphilic copolymer Chol-g-PMSC-PPDL. The copolymer efficiently bound and condensed miR-23b to form stable nanocomplexes, which showed favorable cellular uptake and miR-23b transfection efficacy due to the introduction of the hydrophobic segment. After miR-23b delivery, an obvious inhibition of cell proliferation could be induced, which was attributed to the induction of cell apoptosis and cell cycle arrest. Moreover, the carrier-mediated miR-23b delivery could inhibit the migration and invasion of tumor cells. Overall, the work provides a novel chemoenzymatic strategy for constructing biodegradable and biocompatible poly(amine-co-ester) derivatives, which are promising carriers for oligonucleotide delivery to achieve tumor gene therapy.
Collapse
Affiliation(s)
- Jiawen Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Wei Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Yudi Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Jun Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry
of Education, School of Life Sciences, and ‡Department of Polymer Science, College
of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
33
|
Kim WJ, Islam R, Kim BS, Cho YD, Yoon WJ, Baek JH, Woo KM, Ryoo HM. Direct Delivery of Recombinant Pin1 Protein Rescued Osteoblast Differentiation of Pin1-Deficient Cells. J Cell Physiol 2017; 232:2798-2805. [PMID: 27800612 DOI: 10.1002/jcp.25673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/06/2022]
Abstract
Pin1 is a peptidyl prolyl cis-trans isomerase that specifically binds to the phosphoserine-proline or phosphothreonine-proline motifs of several proteins. We reported that Pin1 plays a critical role in the fate determination of Smad1/5, Runx2, and β-catenin that are indispensable nuclear proteins for osteoblast differentiation. Though several chemical inhibitors has been discovered for Pin1, no activator has been reported as of yet. In this study, we directly introduced recombinant Pin1 protein successfully into the cytoplasm via fibroin nanoparticle encapsulated in cationic lipid. This nanoparticle-lipid complex delivered its cargo with a high efficiency and a low cytotoxicity. Direct delivery of Pin1 leads to increased Runx2 and Smad signaling and resulted in recovery of the osteogenic marker genes expression and the deposition of mineral in Pin1-deficient cells. These result indicated that a direct Pin1 protein delivery method could be a potential therapeutics for the osteopenic diseases. J. Cell. Physiol. 232: 2798-2805, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Rabia Islam
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Bong-Soo Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Young-Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|