1
|
Bar Ziv N, Chen C, da Camara B, Julian RR, Hooley RJ. Selective aqueous anion recognition in an anionic host. iScience 2024; 27:111348. [PMID: 39640565 PMCID: PMC11617965 DOI: 10.1016/j.isci.2024.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Water-soluble Fe4L4 4- cages can be synthesized in a multicomponent self-assembly process exploiting functionalized trigonal ligands, FeII salts, and water-soluble sulfonated formylpyridine components. The cages are soluble in purely aqueous solution and display an overall 4- charge, but are capable of binding suitably sized non-coordinating anions in the host cavity despite their anionic nature. Anions such as PF6 - or AsF6 - occupy the internal cavity, whereas anions that are too small (BF4 -) or too large (NTf2 -) are not encapsulated. The external anionic charge and sterically blocked ligand cores limit the exchange rate of bound anions, as no exchange is seen over a period of weeks with the anion-filled cages, and internalization of added PF6 - by an empty cage takes multiple weeks, despite the strong affinity of the cavity for PF6 - ions. In the future, this recognition mechanism could be used to control release of anions for environmental applications.
Collapse
Affiliation(s)
- Noa Bar Ziv
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Chengwei Chen
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Bryce da Camara
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Ryan R. Julian
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| | - Richard J. Hooley
- Department of Chemistry and the UCR Center for Catalysis, University of California - Riverside, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Stauber JM. Tailoring Metallosupramolecular Glycoassemblies for Enhancing Lectin Recognition. Angew Chem Int Ed Engl 2024; 63:e202408751. [PMID: 38829965 DOI: 10.1002/anie.202408751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Multivalency is a fundamental principle in nature that leads to high-affinity intermolecular recognition through multiple cooperative interactions that overcome the weak binding of individual constituents. For example, multivalency plays a critical role in lectin-carbohydrate interactions that participate in many essential biological processes. Designing high-affinity multivalent glycoconjugates that engage lectins results in systems with the potential to disrupt these biological processes, offering promising applications in therapeutic design and bioengineering. Here, a versatile and tunable synthetic platform for the synthesis of metallosupramolecular glycoassemblies is presented that leverages subcomponent self-assembly, which employs metal ion templates to generate complex supramolecular architectures from simple precursors in one pot. Through ligand design, this approach provides precise control over molecular parameters such as size, shape, flexibility, valency, and charge, which afforded a diverse family of well-defined hybrid glyconanoassemblies. Evaluation of these complexes as multivalent binders to Concanavalin A (Con A) by isothermal titration calorimetry (ITC) demonstrates the optimal saccharide tether length and the effect of electrostatics on protein affinity, revealing insights into the impact of synthetic design on molecular recognition. The presented studies offer an enhanced understanding of structure-function relationships governing lectin-saccharide interactions at the molecular level and guide a systematic approach towards optimizing glyconanoassembly binding parameters.
Collapse
Affiliation(s)
- Julia M Stauber
- Department of Chemistry and Biochemistry, University of California, La Jolla, 92092, San Diego, California, United States
| |
Collapse
|
3
|
Huang B, Zhou M, Hong QY, Wu MX, Zhao XL, Xu L, Gao EQ, Yang HB, Shi X. A Redox-Active Phenothiazine-based Pd 2L 4-Type Coordination Cage and Its Isolable Crystalline Polyradical Cations. Angew Chem Int Ed Engl 2024; 63:e202407279. [PMID: 38872356 DOI: 10.1002/anie.202407279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Polyradical cages are of great interest because they show very fascinating physical and chemical properties, but many challenges remain, especially for their synthesis and characterization. Herein, we present the synthesis of a polyradical cation cage 14⋅+ through post-synthetic oxidation of a redox-active phenothiazine-based Pd2L4-type coordination cage 1. It's worth noting that 1 exhibits excellent reversible electrochemical and chemical redox activity due to the introduction of a bulky 3,5-di-tert-butyl-4-methoxyphenyl substituent. The generation of 14⋅+ through reversible electrochemical oxidation is investigated by in situ UV/Vis-NIR and EPR spectroelectrochemistry. Meanwhile, chemical oxidation of 1 can also produce 14⋅+ which can be reversibly reduced back to the original cage 1, and the process is monitored by EPR and NMR spectroscopies. Eventually, we succeed in the isolation and single crystal X-ray diffraction analysis of 14⋅+, whose electronic structure and conformation are distinct to original 1. The magnetic susceptibility measurements indicate the predominantly antiferromagnetic interactions between the four phenothiazine radical cations in 14⋅+. We believe that our study including the facile synthesis methodology and in situ spectroelectrochemistry will shed some light on the synthesis and characterization of novel polyradical systems, opening more perspectives for developing functional supramolecular cages.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Manfei Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qiong-Yan Hong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Meng-Xiang Wu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiao-Li Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - En-Qing Gao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
4
|
Schwab JH, Bailey JB, Gembicky M, Stauber JM. Programmable synthesis of well-defined, glycosylated iron(ii) supramolecular assemblies with multivalent protein-binding capabilities. Chem Sci 2023; 14:1018-1026. [PMID: 36755719 PMCID: PMC9890585 DOI: 10.1039/d2sc05689e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multivalency plays a key role in achieving strong, yet reversible interactions in nature, and provides critical chemical organization in biological recognition processes. Chemists have taken an interest in designing multivalent synthetic assemblies to both better understand the underlying principles governing these interactions, and to build chemical tools that either enhance or prevent such recognition events from occurring in biology. Rationally tailoring synthetic strategies to achieve the high level of chemical control and tunability required to mimic these interactions, however, is challenging. Here, we introduce a systematic and modular synthetic approach to the design of well-defined molecular multivalent protein-binding constructs that allows for control over size, morphology, and valency. A series of supramolecular mono-, bi-, and tetrametallic Fe(ii) complexes featuring a precise display of peripheral saccharides was prepared through coordination-driven self-assembly from simple building blocks. The molecular assemblies are fully characterized, and we present the structural determination of one complex in the series. The mannose and maltose-appended assemblies display strong multivalent binding to model lectin, Concanavalin A (K d values in μM), where the strength of the binding is a direct consequence of the number of saccharide units decorating the molecular periphery. This versatile synthetic strategy provides chemical control while offering an easily accessible approach to examine important design principles governing structure-function relationships germane to biological recognition and binding properties.
Collapse
Affiliation(s)
- Jake H. Schwab
- Department of Chemistry and Biochemistry, University of California9500 Gilman Dr, La JollaSan DiegoCAUSA
| | - Jake B. Bailey
- Department of Chemistry and Biochemistry, University of California9500 Gilman Dr, La JollaSan DiegoCAUSA
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California 9500 Gilman Dr, La Jolla San Diego CA USA
| | - Julia M. Stauber
- Department of Chemistry and Biochemistry, University of California9500 Gilman Dr, La JollaSan DiegoCAUSA
| |
Collapse
|
5
|
Metal Organic Polygons and Polyhedra: Instabilities and Remedies. INORGANICS 2023. [DOI: 10.3390/inorganics11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The field of coordination chemistry has undergone rapid transformation from preparation of monometallic complexes to multimetallic complexes. So far numerous multimetallic coordination complexes have been synthesized. Multimetallic coordination complexes with well-defined architectures are often called as metal organic polygons and polyhedra (MOPs). In recent past, MOPs have received tremendous attention due to their potential applicability in various emerging fields. However, the field of coordination chemistry of MOPs often suffer set back due to the instability of coordination complexes particularly in aqueous environment-mostly by aqueous solvent and atmospheric moisture. Accordingly, the fate of the field does not rely only on the water solubilities of newly synthesized MOPs but very much dependent on their stabilities both in solution and solid state. The present review discusses several methodologies to prepare MOPs and investigates their stabilities under various circumstances. Considering the potential applicability of MOPs in sustainable way, several methodologies (remedies) to enhance the stabilities of MOPs are discussed here.
Collapse
|
6
|
Wang LJ, Bai S, Han YF. Water-Soluble Self-Assembled Cage with Triangular Metal-Metal-Bonded Units Enabling the Sequential Selective Separation of Alkanes and Isomeric Molecules. J Am Chem Soc 2022; 144:16191-16198. [PMID: 35972889 DOI: 10.1021/jacs.2c07586] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The selective separation of structurally similar aliphatic/aromatic hydrocarbons is an essential goal in industrial processes. In this study, we report the synthesis of a water-soluble (Tr2M3)4L4 (Tr = cycloheptatrienyl ring; M = metal; L = organosulfur ligand) molecular cage (1) via self-assembly of the water-soluble acceptor tripalladium sandwich species [(Tr2Pd3)(CH3CN)][NO3]2 and the attachment onto L of solubilizing methoxyethoxy appendants to be utilized in an energy-friendly alternative approach to the separation of structurally similar molecules under ambient conditions. Cage 1, comprising a hydrophobic inner cavity, exhibited good solubility and stability in aqueous media. It also demonstrated excellent performance in the sequential separation of alkanes (C6-C9), xylene, and other disubstituted benzene isomers and cis/trans-decalin.
Collapse
Affiliation(s)
- Li-Juan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
7
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Self-assembly of Mn(I)-based oxamidato-bridged dinuclear molecular tweezers and tetranuclear molecular rectangles. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Valencia-Loza SDJ, López-Olvera A, Martínez-Ahumada E, Martínez-Otero D, Ibarra IA, Jancik V, Percástegui EG. SO 2 Capture and Oxidation in a Pd6L8 Metal-Organic Cage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18658-18665. [PMID: 33871959 DOI: 10.1021/acsami.1c00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The facile and green preparation of novel materials that capture sulfur dioxide (SO2) with significant uptake at room temperature remains challenging, but it is crucial for public health and the environment. Herein, we explored for the first time the SO2 adsorption within microporous metal-organic cages using the palladium(II)-based [Pd6L8](NO3)36 tetragonal prism 1, assembled in water under mild conditions. Notably and despite the low BET surface area of 1 (111 m2 g-1), sulfur dioxide was found to be irreversibly and strongly adsorbed within the activated cage at 298 K (up to 6.07 mmol g-1). The measured values for the molar enthalpy of adsorption (ΔHads) coupled to the FTIR analyses imply a chemisorption process that involves the direct interaction of SO2 with Pd(II) sites and the subsequent oxidation of this toxic chemical by the action of the nitrate anions in 1. To the best of our knowledge, this is the first reported metal-organic cage that proves useful for SO2 adsorption. Metallosupramolecular adsorbents such as 1 could enable new detection applications and suggest that the integration of soft metal ions and self-assembly of molecular cages are a potential means for the easy tuning of SO2 adsorption capabilities and behavior.
Collapse
Affiliation(s)
- Sergio de Jesús Valencia-Loza
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510 México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM. Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| | - Alfredo López-Olvera
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, México D.F. 04510, México
| | - Eva Martínez-Ahumada
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, México D.F. 04510, México
| | - Diego Martínez-Otero
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510 México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM. Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Del Coyoacán, México D.F. 04510, México
| | - Vojtech Jancik
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510 México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM. Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| | - Edmundo G Percástegui
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México 04510 México
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM. Carretera Toluca-Atlacomulco Km 14.5, Toluca, Estado de México 50200, México
| |
Collapse
|
10
|
Percástegui E, Ronson TK, Nitschke JR. Design and Applications of Water-Soluble Coordination Cages. Chem Rev 2020; 120:13480-13544. [PMID: 33238092 PMCID: PMC7760102 DOI: 10.1021/acs.chemrev.0c00672] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.
Collapse
Affiliation(s)
- Edmundo
G. Percástegui
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Química, Ciudad UniversitariaUniversidad
Nacional Autónoma de México, Ciudad de México 04510, México
- Centro
Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, 50200 Estado de México, México
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
11
|
Bhattacharyya S, Ali SR, Venkateswarulu M, Howlader P, Zangrando E, De M, Mukherjee PS. Self-Assembled Pd12 Coordination Cage as Photoregulated Oxidase-Like Nanozyme. J Am Chem Soc 2020; 142:18981-18989. [DOI: 10.1021/jacs.0c09567] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Prodip Howlader
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Dekhtiarenko M, Krykun S, Carré V, Aubriet F, Canevet D, Allain M, Voitenko Z, Sallé M, Goeb S. Tuning the structure and the properties of dithiafulvene metalla-assembled tweezers. Org Chem Front 2020. [DOI: 10.1039/d0qo00641f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An electroactive M2L2 metalla-macrocycle constructed through coordination driven self-assembly dimerizes upon oxidation and binds an electro-deficient substrate with a high association constant.
Collapse
Affiliation(s)
- Maksym Dekhtiarenko
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Serhii Krykun
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Vincent Carré
- LCP-A2MC
- FR 3624
- Université de Lorraine
- ICPM
- 57078 Metz Cedex 03
| | | | - David Canevet
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Magali Allain
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv
- Kyiv 01033
- Ukraine
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| |
Collapse
|
13
|
Wang H, Liu CH, Wang K, Wang M, Yu H, Kandapal S, Brzozowski R, Xu B, Wang M, Lu S, Hao XQ, Eswara P, Nieh MP, Cai J, Li X. Assembling Pentatopic Terpyridine Ligands with Three Types of Coordination Moieties into a Giant Supramolecular Hexagonal Prism: Synthesis, Self-Assembly, Characterization, and Antimicrobial Study. J Am Chem Soc 2019; 141:16108-16116. [PMID: 31509694 DOI: 10.1021/jacs.9b08484] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three dimensional (3D) supramolecules with giant cavities are attractive due to their wide range of applications. Herein, we used pentatopic terpyridine ligands with three types of coordination moieties to assemble two giant supramolecular hexagonal prisms with a molecular weight up to 42 608 and 43 569 Da, respectively. Within the prisms, two double-rimmed Kandinsky Circles serve as the base surfaces as well as the templates for assisting the self-sorting during the self-assembly. Additionally, hierarchical self-assembly of these supramolecular prisms into tubular-like nanostructures was fully studied by scanning tunneling microscopy (STM) and small-angle X-ray scattering (SAXS). Finally, these supramolecular prisms show good antimicrobial activities against Gram-positive pathogen methicillin-resistant Staphylococcus aureus (MRSA) and Bacillus subtilis (B. subtilis).
Collapse
Affiliation(s)
- Heng Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Chung-Hao Liu
- Polymer Program, Institute Materials Science, Department of Chemical & Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Kun Wang
- Department of Mechanical Engineering , University of Michigan , Ann Arbor , Michigan 48109 , United States.,Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Minghui Wang
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Robert Brzozowski
- Department of Cell Biology, Microbiology and Molecular Biology , University of South Florida , Tampa , Florida 33620 , United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center , University of Georgia , Athens , Georgia 30602 , United States
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun , Jilin 130012 , China
| | - Shuai Lu
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States.,College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Xin-Qi Hao
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , China
| | - Prahathees Eswara
- Department of Cell Biology, Microbiology and Molecular Biology , University of South Florida , Tampa , Florida 33620 , United States
| | - Mu-Ping Nieh
- Polymer Program, Institute Materials Science, Department of Chemical & Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Jianfeng Cai
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
14
|
Indira S, Vinoth G, Bharathi M, Bharathi S, Kalilur Rahiman A, Shanmuga Bharathi K. Catechol oxidase and phenoxazinone synthase mimicking activities of mononuclear Fe(III) and Co(III) complexes of amino-bis(phenolate)-based mixed ligands: Synthesis, spectral and electrochemical studies. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Debata NB, Tripathy D, Sahoo HS. Development of coordination driven self-assembled discrete spherical ensembles. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Percástegui EG, Mosquera J, Ronson TK, Plajer AJ, Kieffer M, Nitschke JR. Waterproof architectures through subcomponent self-assembly. Chem Sci 2018; 10:2006-2018. [PMID: 30881630 PMCID: PMC6385555 DOI: 10.1039/c8sc05085f] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/12/2018] [Indexed: 11/21/2022] Open
Abstract
Construction of metal–organic containers that are soluble and stable in water can be challenging – we present diverse strategies that allow the synthesis of kinetically robust water-soluble architectures via subcomponent self-assembly.
Metal–organic containers are readily prepared through self-assembly, but achieving solubility and stability in water remains challenging due to ligand insolubility and the reversible nature of the self-assembly process. Here we have developed conditions for preparing a broad range of architectures that are both soluble and kinetically stable in water through metal(ii)-templated (MII = CoII, NiII, ZnII, CdII) subcomponent self-assembly. Although these structures are composed of hydrophobic and poorly-soluble subcomponents, sulfate counterions render them water-soluble, and they remain intact indefinitely in aqueous solution. Two strategies are presented. Firstly, stability increased with metal–ligand bond strength, maximising when NiII was used as a template. Architectures that disassembled when CoII, ZnII and CdII templates were employed could be directly prepared from NiSO4 in water. Secondly, a higher density of connections between metals and ligands within a structure, considering both ligand topicity and degree of metal chelation, led to increased stability. When tritopic amines were used to build highly chelating ligands around ZnII and CdII templates, cryptate-like water-soluble structures were formed using these labile ions. Our synthetic platform provides a unified understanding of the elements of aqueous stability, allowing predictions of the stability of metal–organic cages that have not yet been prepared.
Collapse
Affiliation(s)
| | - Jesús Mosquera
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Tanya K Ronson
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Alex J Plajer
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Marion Kieffer
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| | - Jonathan R Nitschke
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , UK .
| |
Collapse
|
17
|
Jansze SM, Ortiz D, Fadaei Tirani F, Scopelliti R, Menin L, Severin K. Inflating face-capped Pd 6L 8 coordination cages. Chem Commun (Camb) 2018; 54:9529-9532. [PMID: 30094441 DOI: 10.1039/c8cc04870c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tritopic metalloligands were used to form two Pd6L8-type coordination cages. With molecular weights of more than 15 kDa and PdPd distances of up to 4.2 nm, these complexes are among the largest palladium cages described to date.
Collapse
Affiliation(s)
- Suzanne M Jansze
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
18
|
Cai LX, Li SC, Yan DN, Zhou LP, Guo F, Sun QF. Water-Soluble Redox-Active Cage Hosting Polyoxometalates for Selective Desulfurization Catalysis. J Am Chem Soc 2018. [DOI: 10.1021/jacs.8b00394] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Shao-Chuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
- University of Chinese
Academy of Sciences, Beijing 100049, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| |
Collapse
|
19
|
Sun Y, Li S, Zhou Z, Saha ML, Datta S, Zhang M, Yan X, Tian D, Wang H, Wang L, Li X, Liu M, Li H, Stang PJ. Alanine-Based Chiral Metallogels via Supramolecular Coordination Complex Platforms: Metallogelation Induced Chirality Transfer. J Am Chem Soc 2018; 140:3257-3263. [PMID: 29290113 PMCID: PMC5842145 DOI: 10.1021/jacs.7b10769] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chiral self-assemblies constantly attract great interest because of their potential to provide insight into biological systems and materials science. Herein we report on the efficient preparation of alanine-based chiral metallacycles, rhomboids 1D and 1L and hexagons 2D and 2L using a Pt(II) ← pyridyl directional bonding approach. The metallacycles are subsequently assembled into nanospheres at low concentration, that generate chiral metallogels at high concentration driven by hydrogen bonding, hydrophobic and π-π interactions. The gels consist of microscopic chiral nanofibers with well-defined helicity, as confirmed by circular dichroism (CD) and scanning (SEM) and transmission electron (TEM) microscopies. Given these results, we expect this technique will not only unlock interesting new approaches to understand homochirality in nature but also allow the design of versatile soft materials containing chiral supramolecular cores.
Collapse
Affiliation(s)
- Yue Sun
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112
| | - Shuai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112
| | - Manik Lal Saha
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112
| | - Sougata Datta
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112
| | - Mingming Zhang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112
| | - Xuzhou Yan
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112
| | - Heng Wang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Lei Wang
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112
| |
Collapse
|
20
|
Tateishi T, Kojima T, Hiraoka S. Multiple Pathways in the Self-Assembly Process of a Pd 4L 8 Coordination Tetrahedron. Inorg Chem 2018; 57:2686-2694. [PMID: 29469572 DOI: 10.1021/acs.inorgchem.7b03085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The self-assembly of a Pd418 coordination tetrahedron (Tet) from a ditopic ligand, 1, and palladium(II) ions, [PdPy*4]2+ (Py* = 3-chloropyridine), was investigated by a 1H NMR-based quantitative approach (quantitative analysis of self-assembly process, QASAP), which allows one to monitor the average composition of the intermediates not observed by NMR spectroscopy. The self-assembly of Tet takes place mainly through three pathways and about half of the Tet structures were produced through the reaction of a kinetically produced Pd3L6 double-walled triangle (DWT) and 200-nm-sized large intermediates (IntL). In two of the three pathways, the leaving ligand (Py*), which is not a component of Tet, catalytically assisted the self-assembly. Such a multiplicity of the self-assembly process of Tet suggests that molecular self-assembly takes place on an energy landscape like a protein-folding funnel.
Collapse
Affiliation(s)
- Tomoki Tateishi
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba, Meguro-ku , Tokyo 153-8902 , Japan
| | - Tatsuo Kojima
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba, Meguro-ku , Tokyo 153-8902 , Japan
| | - Shuichi Hiraoka
- Department of Basic Science, Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba, Meguro-ku , Tokyo 153-8902 , Japan
| |
Collapse
|
21
|
Roy B, Devaraj A, Saha R, Jharimune S, Chi KW, Mukherjee PS. Catalytic Intramolecular Cycloaddition Reactions by Using a Discrete Molecular Architecture. Chemistry 2017; 23:15704-15712. [DOI: 10.1002/chem.201702507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Bijan Roy
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore- 560012 India
| | - Anthonisamy Devaraj
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore- 560012 India
| | - Rupak Saha
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore- 560012 India
| | - Suprita Jharimune
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore- 560012 India
| | - Ki-Whan Chi
- Department of Chemistry; University of Ulsan; Ulsan 680-749 Republic of Korea
| | - Partha Sarathi Mukherjee
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore- 560012 India
| |
Collapse
|
22
|
Abstract
A pentanuclear coordination complex assembled from any palladium(II) component and non-chelating ligands is hitherto unreported. The pentanuclear complex [Pd5 (L1)5 (L2)5 ](BF4 )10 , 1 reported here was prepared by the spontaneous complexation of [Pd(DMSO)4 ](BF4 )2 with the non-chelating bidentate ligands 1,4-phenylenebis(methylene) diisonicotinate, L1 and 4,4'-bipyridine, L2 in a one-pot method at room temperature. The planar polycyclic complex 1 with outer diameters of ≈3 nm is termed as a "molecular star" owing to its resemblance with a pentagram shape. Interim paths leading to the star were also probed to decipher related dynamics of the system.
Collapse
Affiliation(s)
- Soumyakanta Prusty
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Kohei Yazaki
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
23
|
Percástegui EG, Mosquera J, Nitschke JR. Anion Exchange Renders Hydrophobic Capsules and Cargoes Water-Soluble. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Jesús Mosquera
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R. Nitschke
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
24
|
Percástegui EG, Mosquera J, Nitschke JR. Anion Exchange Renders Hydrophobic Capsules and Cargoes Water-Soluble. Angew Chem Int Ed Engl 2017; 56:9136-9140. [DOI: 10.1002/anie.201705093] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Indexed: 01/08/2023]
Affiliation(s)
| | - Jesús Mosquera
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan R. Nitschke
- Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
25
|
Bhat IA, Jain R, Siddiqui MM, Saini DK, Mukherjee PS. Water-Soluble Pd 8L 4 Self-assembled Molecular Barrel as an Aqueous Carrier for Hydrophobic Curcumin. Inorg Chem 2017; 56:5352-5360. [PMID: 28394128 DOI: 10.1021/acs.inorgchem.7b00449] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A tetrafacial water-soluble molecular barrel (1) was synthesized by coordination driven self-assembly of a symmetrical tetrapyridyl donor (L) with a cis-blocked 90° acceptor [cis-(en)Pd(NO3)2] (en = ethane-1,2-diamine). The open barrel structure of (1) was confirmed by single crystal X-ray diffraction. The presence of a hydrophobic cavity with large windows makes it an ideal candidate for encapsulation and carrying hydrophobic drug like curcumin in an aqueous medium. The barrel (1) encapsulates curcumin inside its molecular cavity and protects highly photosensitive curcumin from photodegradation. The photostability of encapsulated curcumin is due to the absorption of a high proportion of the incident photons by the aromatic walls of 1 with a high absorption cross-sectional area, which helps the walls to shield the guest even against sunlight/UV radiations. As compared to free curcumin in water, we noticed a significant increase in solubility as well as cellular uptake of curcumin upon encapsulation inside the water-soluble molecular barrel (1) in aqueous medium. Fluorescence imaging confirmed that curcumin was delivered into HeLa cancer cells by the aqueous barrel (1) with the retention of its potential anticancer activity. While free curcumin is inactive toward cancer cells in aqueous medium at room temperature due to negligible solubility, the determined IC50 value of ∼14 μM for curcumin in aqueous medium in the presence of the barrel (1) reflects the efficiency of the barrel as a potential curcumin carrier in aqueous medium without any other additives. Thus, two major challenges of increasing the bioavailability and stability of curcumin in aqueous medium even in the presence of UV light have been addressed by using a new supramolecular water-soluble barrel (1) as a drug carrier.
Collapse
Affiliation(s)
- Imtiyaz Ahmad Bhat
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| | - Ruchi Jain
- Department of Molecular Reproduction, Development and Genetics and Centre for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Mujahuddin M Siddiqui
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| | - Deepak K Saini
- Department of Molecular Reproduction, Development and Genetics and Centre for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
26
|
Roy B, Saha R, Ghosh AK, Patil Y, Mukherjee PS. Versatility of Two Diimidazole Building Blocks in Coordination-Driven Self-Assembly. Inorg Chem 2017; 56:3579-3588. [DOI: 10.1021/acs.inorgchem.7b00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bijan Roy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Aloke Kumar Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Yogesh Patil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
27
|
Marcos I, Domarco O, Peinador C, Fenández A, Fernández JJ, Vázquez-García D, García MD. Self-assembly of dinuclear Pd(ii)/Pt(ii) metallacyclic receptors incorporating N-heterocyclic carbene complexes as corners. Dalton Trans 2017; 46:4182-4190. [DOI: 10.1039/c6dt04476j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of new Pd(ii)/Pt(ii) metallacycles were self-assembled in water, using bipyridinium-based ligands and kinetically-labile metal centers having chelating N-heterocyclic carbenes.
Collapse
Affiliation(s)
- Ismael Marcos
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- E-15071 A Coruña
- Spain
| | - Olaya Domarco
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- E-15071 A Coruña
- Spain
| | - Carlos Peinador
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- E-15071 A Coruña
- Spain
| | - Alberto Fenández
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- E-15071 A Coruña
- Spain
| | - Jesús J. Fernández
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- E-15071 A Coruña
- Spain
| | - Digna Vázquez-García
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- E-15071 A Coruña
- Spain
| | - Marcos D. García
- Departamento de Química Fundamental and Centro de Investigacións Científicas Avanzadas (CICA)
- Facultade de Ciencias
- Universidade da Coruña
- E-15071 A Coruña
- Spain
| |
Collapse
|
28
|
Wang L, Chen LJ, Ma JQ, Wang CH, Tan H, Huang J, Xiao F, Xu L. Construction of multiferrocenes end-capped metallodendrimers via coordination-driven self-assembly and their electrochemical behavior. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Yazaki K, Sei Y, Akita M, Yoshizawa M. Polycationic-Shelled Capsular and Tubular Nanostructures and Their Anionic-Guest Binding Properties. Chemistry 2016; 22:17557-17561. [DOI: 10.1002/chem.201604384] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Kohei Yazaki
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Michito Yoshizawa
- Laboratory for Chemistry and Life Science; Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
30
|
Wang M, Wang K, Wang C, Huang M, Hao XQ, Shen MZ, Shi GQ, Zhang Z, Song B, Cisneros A, Song MP, Xu B, Li X. Self-Assembly of Concentric Hexagons and Hierarchical Self-Assembly of Supramolecular Metal–Organic Nanoribbons at the Solid/Liquid Interface. J Am Chem Soc 2016; 138:9258-68. [DOI: 10.1021/jacs.6b04959] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming Wang
- Department of Chemistry and Biochemistry & Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun, Jilin 130012, People’s Republic of China
| | - Kun Wang
- Single
Molecule Study Laboratory, College of Engineering and Nanoscale Science
and Engineering Center, University of Georgia, Athens, Georgia 30602, United States
| | - Chao Wang
- Department of Chemistry and Biochemistry & Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Mingjun Huang
- Department
of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Xin-Qi Hao
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Ming-Zhan Shen
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Guo-Qing Shi
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
- College of
Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People’s Republic of China
| | - Zhe Zhang
- Department of Chemistry and Biochemistry & Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
- College
of Chemistry, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Bo Song
- Department of Chemistry and Biochemistry & Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Alejandro Cisneros
- Department of Chemistry and Biochemistry & Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| | - Mao-Ping Song
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| | - Bingqian Xu
- Single
Molecule Study Laboratory, College of Engineering and Nanoscale Science
and Engineering Center, University of Georgia, Athens, Georgia 30602, United States
| | - Xiaopeng Li
- Department of Chemistry and Biochemistry & Materials Science, Engineering, and Commercialization Program, Texas State University, San Marcos, Texas 78666, United States
| |
Collapse
|
31
|
Saha ML, Zhou Z, Stang PJ. A Four-Component Heterometallic Cu-Pt Quadrilateral via Self-Sorting. Chem Asian J 2016; 11:2662-2666. [PMID: 27124365 DOI: 10.1002/asia.201600399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 01/17/2023]
Abstract
Herein we combine the subcomponent self-assembly and integrative self-sorting techniques with the well-established platinum(II)-pyridine coordination-driven self-assembly to report the quantitative synthesis and spectroscopic characterization of a heterometallic CuI -PtII quadrilateral QL that is formed from a total of twelve molecular components from four unique species, including 5-(pyridin-4-ylethynyl)picolinaldehyde (1), p-toluidine (2), [Cu(CH3 CN4 ](PF6 ) (3), and cis-Pt(PEt3 )2 (OTf)2 (4), in a 4:4:2:2 ratio. Despite the many different entities potentially forming from these four precursor units, the clean formation of QL is mainly guided by the different coordination preferences of the metal ions 3 and 4, and the design criteria inherent in compounds 1 and 2.
Collapse
Affiliation(s)
- Manik Lal Saha
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States.
| | - Zhixuan Zhou
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States
| | - Peter J Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah, 84112, United States.
| |
Collapse
|
32
|
Noh TH, Lee H, Kim D, Moon D, Lee YA, Jung OS. Photoreaction of adsorbed diiodomethane: halide effects of a series of neutral palladium(ii) coordination cages. Dalton Trans 2016; 45:9574-81. [DOI: 10.1039/c6dt01278g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthetic aspect of a series of [Pd6X12L4] (X− = Cl−, Br−, I−) cages, including Br/I replacement reaction and halide effects on physicochemical properties, adsorption of CH2I2, and photo-cyclopropanation, has been investigated.
Collapse
Affiliation(s)
- Tae Hwan Noh
- Department of Chemistry
- Pusan National University
- Pusan 46241
- Korea
| | - Haeri Lee
- Department of Chemistry
- Pusan National University
- Pusan 46241
- Korea
| | - Doeon Kim
- Department of Chemistry
- Pusan National University
- Pusan 46241
- Korea
| | - Dohyun Moon
- Beamline Department
- Pohang Accelerator Laboratory/POSTECH
- Pohang 37673
- Korea
| | - Young-A Lee
- Department of Chemistry
- Chonbuk National University
- Jeonju 54896
- Korea
| | - Ok-Sang Jung
- Department of Chemistry
- Pusan National University
- Pusan 46241
- Korea
| |
Collapse
|