1
|
Rios-Ibarra CP, Salinas-Santander M, Orozco-Nunnelly DA, Bravo-Madrigal J. Nanoparticle‑based antiviral strategies to combat the influenza virus (Review). Biomed Rep 2024; 20:65. [PMID: 38476608 PMCID: PMC10928480 DOI: 10.3892/br.2024.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid availability of effective antiviral treatments would be beneficial during the early phases of a pandemic, as they could reduce viral loads and control serious infections until antigenic vaccines become widely available. One promising alternative therapy to combat pandemics is nanotechnology, which has the potential to inhibit a wide variety of viruses, including the influenza virus. This review summarizes the recent progress using gold, copper, silver, silicone, zinc and selenium nanoparticles, since these materials have shown remarkable antiviral capacity against influenza A virus.
Collapse
Affiliation(s)
- Clara Patricia Rios-Ibarra
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco (CIATEJ), Guadalajara, Jalisco 44270, Mexico
| | - Mauricio Salinas-Santander
- Research Department, School of Medicine Saltillo, Universidad Autonoma de Coahuila, Unidad Saltillo, Coahuila 25000, Mexico
| | | | - Jorge Bravo-Madrigal
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of The State of Jalisco (CIATEJ), Guadalajara, Jalisco 44270, Mexico
| |
Collapse
|
2
|
Gerling-Driessen UIM, Hoffmann M, Schmidt S, Snyder NL, Hartmann L. Glycopolymers against pathogen infection. Chem Soc Rev 2023; 52:2617-2642. [PMID: 36820794 DOI: 10.1039/d2cs00912a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Pathogens including viruses, bacteria, fungi, and parasites continue to shape our lives in profound ways every day. As we have learned to live in parallel with pathogens, we have gained a better understanding of the rules of engagement for how they bind, adhere, and invade host cells. One such mechanism involves the exploitation of host cell surface glycans for attachment/adhesion, one of the first steps of infection. This knowledge has led to the development of glycan-based diagnostics and therapeutics for the treatment and prevention of infection. One class of compounds that has become increasingly important are the glycopolymers. Glycopolymers are macromolecules composed of a synthetic scaffold presenting carbohydrates as side chain motifs. Glycopolymers are particularly attractive because their properties can be tuned by careful choice of the scaffold, carbohydrate/glycan, and overall presentation. In this review, we highlight studies over the past ten years that have examined the role of glycopolymers in pathogen adhesion and host cell infection, biofilm formation and removal, and drug delivery with the aim of examining the direct effects of these macromolecules on pathogen engagement. In addition, we also examine the role of glycopolymers as diagnostics for the detection and monitoring of pathogens.
Collapse
Affiliation(s)
- Ulla I M Gerling-Driessen
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Miriam Hoffmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Stephan Schmidt
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany. .,Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, USA
| | - Laura Hartmann
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B, Singh R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. BIOSENSORS 2023; 13:85. [PMID: 36671920 PMCID: PMC9855722 DOI: 10.3390/bios13010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 05/17/2023]
Abstract
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader's benefit.
Collapse
Affiliation(s)
- Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Pyridoneimine-catalyzed anomeric aqueous oxa-Michael additions of native mono- and disaccharides. Carbohydr Res 2022; 520:108610. [PMID: 35863121 DOI: 10.1016/j.carres.2022.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022]
Abstract
A pyridoneimine-catalyzed oxa-Michael addition of protecting groups-free, native mono- and disaccharides with Michael acceptors in aq. solution is reported. Several mono- and disaccharides are reacted with acceptors, namely, methylvinyl ketone, acrylonitrile and tert-butyl acrylate in aq. solution, the addition catalyzed by n-pentylpyridone imine. The addition occurs site-selectively at the anomeric lactol and the remaining hydroxy functionalities are un-affected. The resulting keto-glycopyranoside products are explored in aldol, allylation and oxime product formation, occurring at either α-methyl moiety or at the keto-moiety, with appropriate synthons. In another direction, the keto-glycopyranoside is functionalized further with amino acids through reductive amination in aq. methanol solution. Formation of hemiacetal anion occurs in the presence of pyridoneimine in aq. Solution, enabling subsequent addition to occur with acceptors. Facile reductive amination of the resulting keto-glycoside provides an avenue for conjugations with amino acids in the present work.
Collapse
|
5
|
Hao Y, Li H, Zhao H, Liu Y, Ge X, Li X, Chen H, Yang A, Zou J, Li X, Sun X, Zhang X, Wang X, Li Z, Zhang Q, Wu H, Wang G, Zhang J, De Geest BG, Zhang Z. An Intelligent Nanovehicle Armed with Multifunctional Navigation for Precise Delivery of Toll-Like Receptor 7/8 Agonist and Immunogenic Cell Death Amplifiers to Eliminate Solid Tumors and Trigger Durable Antitumor Immunity. Adv Healthc Mater 2022; 11:e2102739. [PMID: 35306756 DOI: 10.1002/adhm.202102739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/22/2022] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is revolutionary in oncology and hematology. However, a low response rate restricts the clinical benefits of this therapy owing to inadequate T lymphocyte infiltration and low delivery efficiency of immunotherapeutic drugs. Herein, an intelligent nanovehicle (folic acid (FA)/1-(4-(aminomethyl) benzyl)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (IMDQ)-oxaliplatin (F/IMO)@CuS) armed with multifunctional navigation is designed for the accurate delivery of cargoes to tumor cells and dendritic cells (DCs), respectively. The nanovehicle is based on a near infrared-responsive inorganic CuS nanoparticles, acting as a photosensitizer and carrier of the chemotherapeutic agent oxaliplatin, and enters tumor cells owing to the presence of folic acid on the surface of CuS upon intratumoral injection. Furthermore, a toll-like receptor (TLR) 7/8 agonist-conjugated polymer, anchored on the surface of CuS, is modified with mannose to bind with DCs in the tumor microenvironment. Upon exposure to laser irradiation, nanovehicles disassemble, releasing oxaliplatin, to ablate tumor cells and amplify immunogenic cell death in combination with photothermal therapy. Mannose-modified polymer-TLR7/8 agonist conjugates are subsequently exposed, leading to the activation of DCs and proliferation of T cells. Collectively, these intelligent nanovehicles reduce tumor burden, exert a robust antitumor immune response, and generate long-term immune protection to prevent tumor recurrence.
Collapse
Affiliation(s)
- Yanyun Hao
- Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Hui Li
- Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Shandong University Jinan Shandong Province 250012 P. R. China
| | - Yutong Liu
- Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Xiaoyan Ge
- Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Xia Li
- Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Hongfei Chen
- Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Ailu Yang
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Shandong University Jinan Shandong Province 250012 P. R. China
| | - Jing Zou
- Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Xue Li
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Shandong University Jinan Shandong Province 250012 P. R. China
| | - Xuechun Sun
- Department of Nutrition and Food Hygiene School of Public Health Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education) NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate‐Based Medicine Department of Pharmacology School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University 44 Wenhuaxi Road Jinan Shandong Province 250012 P. R. China
| | - Xiao Wang
- School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University 44 Wenhuaxi Road Jinan Shandong Province 250012 P. R. China
| | - Zepeng Li
- State Key Laboratory for Mechanical Behaviour of Materials Shaanxi International Research Center for Soft Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Qilu Zhang
- State Key Laboratory for Mechanical Behaviour of Materials Shaanxi International Research Center for Soft Matter Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Hao Wu
- Department of Nutrition and Food Hygiene School of Public Health Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| | - Guan Wang
- Department of Immunology College of Basic Medical Science Dalian Medical University Dalian Liaoning Province 116044 P. R. China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences School of Pharmaceutical Sciences Shandong University Jinan Shandong Province 250012 P. R. China
| | - Bruno G. De Geest
- Department of Pharmaceutics Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium
| | - Zhiyue Zhang
- Department of Pharmaceutics Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences Cheeloo College of Medicine Shandong University Jinan Shandong Province 250012 P. R. China
| |
Collapse
|
6
|
Zhao T, Terracciano R, Becker J, Monaco A, Yilmaz G, Becer CR. Hierarchy of Complex Glycomacromolecules: From Controlled Topologies to Biomedical Applications. Biomacromolecules 2022; 23:543-575. [PMID: 34982551 DOI: 10.1021/acs.biomac.1c01294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbohydrates bearing a distinct complexity use a special code (Glycocode) to communicate with carbohydrate-binding proteins at a high precision to manipulate biological activities in complex biological environments. The level of complexity in carbohydrate-containing macromolecules controls the amount and specificity of information that can be stored in biomacromolecules. Therefore, a better understanding of the glycocode is crucial to open new areas of biomedical applications by controlling or manipulating the interaction between immune cells and pathogens in terms of trafficking and signaling, which would become a powerful tool to prevent infectious diseases. Even though a certain level of progress has been achieved over the past decade, synthetic glycomacromolecules are still lagging far behind naturally existing glycans in terms of complexity and precision because of insufficient and inefficient synthetic techniques. Currently, specific targeting at a cellular level using synthetic glycomacromolecules is still challenging. It is obvious that multidisciplinary collaborations are essential between different specialized disciplines to enhance the carbohydrate receptor-targeting paradigm for new biomedical applications. In this Perspective, recent developments in the synthesis of sophisticated glycomacromolecules are highlighted, and their biological and biomedical applications are also discussed in detail.
Collapse
Affiliation(s)
- Tieshuai Zhao
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Roberto Terracciano
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Jonas Becker
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Alessandra Monaco
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Gokhan Yilmaz
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - C Remzi Becer
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
7
|
Hernando PJ, Dedola S, Marín MJ, Field RA. Recent Developments in the Use of Glyconanoparticles and Related Quantum Dots for the Detection of Lectins, Viruses, Bacteria and Cancer Cells. Front Chem 2021; 9:668509. [PMID: 34350156 PMCID: PMC8326456 DOI: 10.3389/fchem.2021.668509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate-coated nanoparticles-glyconanoparticles-are finding increased interest as tools in biomedicine. This compilation, mainly covering the past five years, comprises the use of gold, silver and ferrite (magnetic) nanoparticles, silicon-based and cadmium-based quantum dots. Applications in the detection of lectins/protein toxins, viruses and bacteria are covered, as well as advances in detection of cancer cells. The role of the carbohydrate moieties in stabilising nanoparticles and providing selectivity in bioassays is discussed, the issue of cytotoxicity encountered in some systems, especially semiconductor quantum dots, is also considered. Efforts to overcome the latter problem by using other types of nanoparticles, based on gold or silicon, are also presented.
Collapse
Affiliation(s)
- Pedro J. Hernando
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simone Dedola
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
| | - María J. Marín
- School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Robert A. Field
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Richards SJ, Baker AN, Walker M, Gibson MI. Polymer-Stabilized Sialylated Nanoparticles: Synthesis, Optimization, and Differential Binding to Influenza Hemagglutinins. Biomacromolecules 2020; 21:1604-1612. [PMID: 32191036 PMCID: PMC7173702 DOI: 10.1021/acs.biomac.0c00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/19/2020] [Indexed: 12/31/2022]
Abstract
During influenza infection, hemagglutinins (HAs) on the viral surface bind to sialic acids on the host cell's surface. While all HAs bind sialic acids, human influenza targets terminal α2,6 sialic acids and avian influenza targets α2,3 sialic acids. For interspecies transmission (zoonosis), HA must mutate to adapt to these differences. Here, multivalent gold nanoparticles bearing either α2,6- or α2,3-sialyllactosamine have been developed to interrogate a panel of HAs from pathogenic human, low pathogenic avian, and other species' influenza. This method exploits the benefits of multivalent glycan presentation compared to monovalent presentation to increase affinity and investigate how multivalency affects selectivity. Using a library-orientated approach, parameters including polymer coating and core diameter were optimized for maximal binding and specificity were probed using galactosylated particles and a panel of biophysical techniques [ultraviolet-visible spectroscopy, dynamic light scattering, and biolayer interferometry]. The optimized particles were then functionalized with sialyllactosamine and their binding analyzed against a panel of HAs derived from pathogenic influenza strains including low pathogenic avian strains. This showed significant specificity crossover, which is not observed in monovalent formats, with binding of avian HAs to human sialic acids and vice versa in agreement with alternate assay formats. These results demonstrate that precise multivalent presentation is essential to dissect the interactions of HAs and may aid the discovery of tools for disease and zoonosis transmission.
Collapse
Affiliation(s)
| | | | - Marc Walker
- Department
of Physics, University of Warwick, Coventry CV4 7AL, U.K.
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
9
|
Matsubara T, Ujie M, Yamamoto T, Einaga Y, Daidoji T, Nakaya T, Sato T. Avian Influenza Virus Detection by Optimized Peptide Termination on a Boron-Doped Diamond Electrode. ACS Sens 2020; 5:431-439. [PMID: 32077684 DOI: 10.1021/acssensors.9b02126] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of a simple detection method with high sensitivity is essential for the diagnosis and surveillance of infectious diseases. Previously, we constructed a sensitive biosensor for the detection of pathological human influenza viruses using a boron-doped diamond electrode terminated with a sialyloligosaccharide receptor-mimic peptide that could bind to hemagglutinins involved in viral infection. Circulation of influenza induced by the avian virus in humans has become a major public health concern, and methods for the detection of avian viruses are urgently needed. Here, peptide density and dendrimer generation terminated on the electrode altered the efficiency of viral binding to the electrode surface, thus significantly enhancing charge-transfer resistance measured by electrochemical impedance spectroscopy. The peptide-terminated electrodes exhibited an excellent detection limit of less than one plaque-forming unit of seasonal H1N1 and H3N2 viruses. Furthermore, the improved electrode was detectable for avian viruses isolated from H5N3, H7N1, and H9N2, showing the potential for the detection of all subtypes of influenza A virus, including new subtypes. The peptide-based electrochemical architecture provided a promising approach to biosensors for ultrasensitive detection of pathogenic microorganisms.
Collapse
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Michiko Ujie
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- JST-ACCEL, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
10
|
Zhang Z, Li H, Kasmi S, Van Herck S, Deswarte K, Lambrecht BN, Hoogenboom R, Nuhn L, De Geest BG. A Synthetic, Transiently Thermoresponsive Homopolymer with UCST Behaviour within a Physiologically Relevant Window. Angew Chem Int Ed Engl 2019; 58:7866-7872. [DOI: 10.1002/anie.201900224] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiyue Zhang
- Department of PharmaceuticsGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University 44 Wenhua Xi Road Jinan, Shandong Province 250012 China
| | - Hui Li
- Department of PharmaceuticsGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University 44 Wenhua Xi Road Jinan, Shandong Province 250012 China
| | - Sabah Kasmi
- Department of PharmaceuticsGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Simon Van Herck
- Department of PharmaceuticsGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Kim Deswarte
- Department of Internal Medicine and PediatricsGhent UniversityVIB Center for Inflammation Research Technologiepark 71 Ghent Belgium
| | - Bart N. Lambrecht
- Department of Internal Medicine and PediatricsGhent UniversityVIB Center for Inflammation Research Technologiepark 71 Ghent Belgium
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry Krijgslaan 281 S4-bis 9000 Ghent Belgium
| | - Lutz Nuhn
- Department of PharmaceuticsGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Bruno G. De Geest
- Department of PharmaceuticsGhent University Ottergemsesteenweg 460 9000 Ghent Belgium
| |
Collapse
|
11
|
Zhang Z, Li H, Kasmi S, Van Herck S, Deswarte K, Lambrecht BN, Hoogenboom R, Nuhn L, De Geest BG. Synthetisch hergestellte, transient thermoresponsive Homopolymere mit einer oberen kritischen Lösungstemperatur für physiologisch relevante Anwendungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiyue Zhang
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University 44 Wenhua Xi Road Jinan, Shandong Province 250012 China
| | - Hui Li
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University 44 Wenhua Xi Road Jinan, Shandong Province 250012 China
| | - Sabah Kasmi
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
| | - Simon Van Herck
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
| | - Kim Deswarte
- Department of Internal Medicine and PediatricsGhent UniversityVIB Center for Inflammation Research Technologiepark 71 Ghent Belgien
| | - Bart N. Lambrecht
- Department of Internal Medicine and PediatricsGhent UniversityVIB Center for Inflammation Research Technologiepark 71 Ghent Belgien
| | - Richard Hoogenboom
- Vakgroep Organische en Macromoleculaire ChemieFaculteit WetenschappenUniversiteit Gent Krijgslaan 281 S4-bis 9000 Gent Belgien
| | - Lutz Nuhn
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
- Max-Planck-Institut für Polymerforschung Ackermannweg 10 55128 Mainz Deutschland
| | - Bruno G. De Geest
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Ottergemsesteenweg 460 9000 Gent Belgien
| |
Collapse
|
12
|
Zhang Y, Wen X, Shi Y, Yue R, Bai L, Liu Q, Ba X. Sulfur-Containing Polymer As a Platform for Synthesis of Size-Controlled Pd Nanoparticles for Selective Semihydrogenation of Alkynes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04913] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuangong Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Xin Wen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Yongqing Shi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Ru Yue
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Libin Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| | - Qingtao Liu
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, People’s Republic of China
| | - Xinwu Ba
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People’s Republic of China
| |
Collapse
|
13
|
Pereira SO, Barros-Timmons A, Trindade T. Polymer@gold Nanoparticles Prepared via RAFT Polymerization for Opto-Biodetection. Polymers (Basel) 2018; 10:E189. [PMID: 30966225 PMCID: PMC6415202 DOI: 10.3390/polym10020189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 11/17/2022] Open
Abstract
Colloidal gold nanoparticles (Au NPs) have been used in several biological applications, which include the exploitation of size- and shape-dependent Localized Surface Plasmon Resonance (LSPR) in biosensing devices. In order to obtain functional and stable Au NPs in a physiological medium, surface modification and functionalization are crucial steps in these endeavors. Reversible addition-fragmentation chain transfer (RAFT) polymerization meets this need offering the possibility of control over the composition and architecture of polymeric shells coating Au NPs. Furthermore, playing with a careful choice of monomers, RAFT polymerization allows the possibility to design a polymer shell with the desired functional groups aiming at Au based nanocomposites suitable for biorecognition and biotargeting. This review provides important aspects concerning the synthesis and optical properties of Au NPs as well as concepts of RAFT polymerization. Understanding these concepts is crucial to appreciate the chemical strategies available towards RAFT-polymer coated Au core-shell nanostructures, which are here reviewed. Finally, examples of applications in opto-biodetection devices are provided and the potential of responsive "smart" nanomaterials based on such structures can be applied to other biological applications.
Collapse
Affiliation(s)
- Sónia O Pereira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Barros-Timmons
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
14
|
Meng X, Yang M, Li Y, Li X, Jia T, He H, Yu Q, Guo N, He Y, Yu P, Yang Y. Multivalent neuraminidase hydrolysis resistant triazole-sialoside protein conjugates as influenza-adsorbents. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Bandlow V, Liese S, Lauster D, Ludwig K, Netz RR, Herrmann A, Seitz O. Spatial Screening of Hemagglutinin on Influenza A Virus Particles: Sialyl-LacNAc Displays on DNA and PEG Scaffolds Reveal the Requirements for Bivalency Enhanced Interactions with Weak Monovalent Binders. J Am Chem Soc 2017; 139:16389-16397. [DOI: 10.1021/jacs.7b09967] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Victor Bandlow
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Susanne Liese
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Daniel Lauster
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Kai Ludwig
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Roland R. Netz
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Andreas Herrmann
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Oliver Seitz
- Institute
of Chemistry, and ‡Institute of Biology, Humboldt-Universität zu Berlin, Berlin 10099, Germany
- Institute of Theoretical Physics, and ∥Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
16
|
Compostella F, Pitirollo O, Silvestri A, Polito L. Glyco-gold nanoparticles: synthesis and applications. Beilstein J Org Chem 2017; 13:1008-1021. [PMID: 28684980 PMCID: PMC5480336 DOI: 10.3762/bjoc.13.100] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/05/2017] [Indexed: 01/15/2023] Open
Abstract
Glyco-gold nanoparticles combine in a single entity the peculiar properties of gold nanoparticles with the biological activity of carbohydrates. The result is an exciting nanosystem, able to mimic the natural multivalent presentation of saccharide moieties and to exploit the peculiar optical properties of the metallic core. In this review, we present recent advances on glyco-gold nanoparticle applications in different biological fields, highlighting the key parameters which inspire the glyco nanoparticle design.
Collapse
Affiliation(s)
- Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Saldini 50, 20133 Milan, Italy
| | - Olimpia Pitirollo
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Alessandro Silvestri
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Laura Polito
- CNR – ISTM, Nanotechnology Lab., Via G. Fantoli 16/15, 20138 Milan, Italy
| |
Collapse
|
17
|
Mees MA, Effenberg C, Appelhans D, Hoogenboom R. Sweet Polymers: Poly(2-ethyl-2-oxazoline) Glycopolymers by Reductive Amination. Biomacromolecules 2016; 17:4027-4036. [DOI: 10.1021/acs.biomac.6b01451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maarten A. Mees
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | - Christiane Effenberg
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| |
Collapse
|