1
|
Lyons AJ, Naimovičius L, Zhang SK, Pun AB. Optimizing Upconversion Quantum Yield via Structural Tuning of Dipyrrolonaphthyridinedione Annihilators. Angew Chem Int Ed Engl 2024; 63:e202411003. [PMID: 39031499 DOI: 10.1002/anie.202411003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Triplet-triplet annihilation upconversion (TTA-UC) is a photophysical process in which two low-energy photons are converted into one higher-energy photon. This type of upconversion requires two species: a sensitizer that absorbs low-energy light and transfers its energy to an annihilator, which emits higher-energy light after TTA. In spite of the multitude of applications of TTA-UC, few families of annihilators have been explored. In this work, we show dipyrrolonaphthyridinediones (DPNDs) can act as annihilators in TTA-UC. We found that structural changes to DPND dramatically increase its upconversion quantum yield (UCQY). Our optimized DPND annihilator demonstrates a high maximum internal UCQY of 9.4 %, outperforming the UCQY of commonly used near-infrared-to-visible annihilator rubrene by almost double.
Collapse
Affiliation(s)
- Alexandra J Lyons
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Lukas Naimovičius
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Simon K Zhang
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| | - Andrew B Pun
- Department of Chemistry and Biochemistry, University of California San Diego, 92093, La Jolla, CA, USA
| |
Collapse
|
2
|
Sadowski B, Gryko DT. Dipyrrolonaphthyridinedione - (still) a mysterious cross-conjugated chromophore. Chem Sci 2023; 14:14020-14038. [PMID: 38098709 PMCID: PMC10718078 DOI: 10.1039/d3sc05272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Dipyrrolonaphthyridinediones (DPNDs) entered the chemical world in 2016. This cross-conjugated donor-acceptor skeleton can be prepared in two steps from commercially available reagents in overall yield ≈15-20% (5 mmol scale). DPNDs can be easily and regioselectively halogenated which opens an avenue to numerous derivatives as well as to π-expansion. Although certain synthetic limitations exist, the current derivatization possibilities provided impetus for numerous explorations that use DPNDs. Structural modifications enable bathochromic shift of the emission to deep-red region and reaching the optical brightness 30 000 M-1 cm-1. Intense absorption and strong emission of greenish-yellow light attracted the interest which eventually led to the discovery of their strong two-photon absorption, singlet fission in the crystalline phase and triplet sensitization. Dipyrrolonaphthyridinedione-based twistacenes broadened our knowledge on the influence of twisting angle on the fate of the molecule in the excited state. Collectively, these findings highlight the compatibility of DPNDs with various applications within organic optoelectronics.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Centre of New Technologies, University of Warsaw S. Banacha 2c 02-097 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
3
|
Sadowski B, Kaliszewska M, Clermont G, Poronik YM, Blanchard-Desce M, Piątkowski P, Gryko DT. Realization of nitroaromatic chromophores with intense two-photon brightness. Chem Commun (Camb) 2023; 59:11708-11711. [PMID: 37700732 DOI: 10.1039/d3cc03347c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Strong fluorescence is a general feature of dipyrrolonaphthyridinediones bearing two nitrophenyl substituents. Methyl groups simultaneously being weakly electron-donating and inducing steric hindrance appear to be a key structural parameter that allows for significant emission enhancement, whereas Et2N groups cause fluorescence quenching. The magnitude of two-photon absorption increases if 4-nitrophenyl substituents are present while the contribution of Et2N groups is detrimental.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, Warsaw 02-097, Poland.
| | - Marzena Kaliszewska
- Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland.
| | - Guillaume Clermont
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France.
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | | | - Piotr Piątkowski
- Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
4
|
Wu Y, Lu L, Yu B, Zhang S, Luo P, Chen M, He J, Li Y, Zhang C, Zhu J, Yao J, Fu H. Dynamic Evolving Exothermicity Steers Ultrafast Formation of a Correlated Triplet Pair State. J Phys Chem Lett 2023; 14:4233-4240. [PMID: 37126526 DOI: 10.1021/acs.jpclett.3c00193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Singlet fission (SF) presents an attractive solution to overcome the Shockley-Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state 1(T1T1). Despite significant advancement on 1(T1T1) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear. Here, we study an unconventional SF system with excited-state aromaticity, i.e., cyano-substituted dipyrrolonaphtheridinedione derivative (DPND-CN), using time-resolved spectroscopy as a function of the temperature. We demonstrate that the population transfer from S1 to 1(T1T1) is driven by a time-dependent exothermicity resulting from the coherent coupling between electronic and spin degrees of freedom. This is followed by thermal-activated dissociation of 1(T1T1) to yield free triplets. Our results provide some new insight into the SF mechanism, which may guide the development of new efficient and stable SF materials for practical applications.
Collapse
Affiliation(s)
- Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Lina Lu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Buyang Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - San Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Pengdong Luo
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Mingxing Chen
- Analytical Instrumentation Center, Peking University, Beijing 100871, People's Republic of China
| | - Jingping He
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Yongyao Li
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jiannian Yao
- Beijing National Laboratory for Molecules Science (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
| |
Collapse
|
5
|
Morgan J, Yun YJ, Jamhawi AM, Islam SM, Ayitou AJL. Photophysical Insights of Halogenated Dipyrrolonaphthyridine-Diones as Potential Photodynamic Therapy Agents †. Photochem Photobiol 2023; 99:761-768. [PMID: 36479699 DOI: 10.1111/php.13757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
We report the synthesis and photophysical characterization of novel halogenated dipyrrolonaphthyridine-diones (X2 -DPNDs, X = Cl, Br, and I), as candidates for photodynamic therapy (PDT) application. Apart from the heavy atom-induced spin-orbit coupling (SOC) dynamics in the investigated X2 -DPNDs, it was found that the position of the halogen atom (relative to the nitrogen of the pyrrole ring) also influenced the triplet excited state behavior. Interestingly, the faster/efficiency sensitization of 3 O2 to 1 O2 using X2 -DPND correlates with the rate of triplet population, kISC >1.6 × 108 s-1 for I2 -DPND vs kISC >2.9 × 109 s-1 for Cl2 -DPND and Br2 -DPND (where τISC = 343 ± 3 ps for I2 -DPND and τISC = 5-6 ns for Cl2 -DPND and Br2 -DPND are the lowest time constants/values for ISC). Furthermore, the heavy atom-induced SOC in Cl2 -DPND and Br2 -DPND did not lead to a reduction of the corresponding fluorescence (ca 75% vs 67% for the parent DPND). The attractive photophysical characteristics of Cl2 /Br2 -DPND put them on the landscape as not only promising PDT agents but also as fluorescence probes. The present study is a stepping stone in the development of novel organic photosystems for synergistic photomedicinal applications.
Collapse
Affiliation(s)
- Jayla Morgan
- Contribution from the Department of Chemistry, Illinois Institute of Technology, Chicago, IL
| | - Young Ju Yun
- Contribution from the Department of Chemistry, Illinois Institute of Technology, Chicago, IL
- Department of Chemistry, University of Illinois Chicago, Chicago, IL
| | | | - Shahidul M Islam
- Department of Chemistry, University of Illinois Chicago, Chicago, IL
| | - A Jean-Luc Ayitou
- Contribution from the Department of Chemistry, Illinois Institute of Technology, Chicago, IL
- Department of Chemistry, University of Illinois Chicago, Chicago, IL
| |
Collapse
|
6
|
Feng S, Zhao Y, Liang W. Substituent Effect on Vibrationally Resolved Absorption Spectra and Exciton Dynamics of Dipyrrolonaphthyridinedione Aggregates. J Phys Chem A 2022; 126:6395-6406. [PMID: 36073236 DOI: 10.1021/acs.jpca.2c03907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dipyrrolonaphthyridinedione (DPND) thin films exhibit interesting photophysical properties and singlet fission (SF) processes. A recent experimental work found that the alkyl substitution in the DPND skeleton has the remarkable influence on the characteristics of electronic absorption spectra and SF rates. Here, we theoretically elucidate the microscopic mechanism of the substituent effect on the optical properties and exciton dynamics of materials by combining the electronic structure calculations and the quantum dynamics simulations. The results show that the alkyl substituent has a minor effect on the single molecular properties but dramatically changes those of DPND aggregates via varying the intermolecular interactions. The aggregates of DPND with and without alkyl side chains exhibit the more likely characters of H-type aggregations. In the former (DPND6), the weak degree of mixing of intramolecular localized excited (LE) states and intermolecular charge transfer (CT) states makes the low-energy absorption band possess the predominant optical absorption, while in the latter (DPND), the CT and LE states are close in energy, together with their strong interaction, resulting in the substantial state-mixing, so that its two low-energy absorption bands have nearly equal oscillator strengths and a wide energy spacing of more than 0.5 eV. The simulation of exciton dynamics elucidates that the photoinitiated states in both aggregates cannot generate the free charge carrier because of the lack of enough driving forces. However, the population exchanges between LE and CT states in DPND aggregates are much faster than in DPND6 aggregates, indicating the different SF behaviors, consistent with the experimental observation.
Collapse
Affiliation(s)
- Shishi Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yi Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
7
|
Sadowski B, Mierzwa D, Kang S, Grzybowski M, Poronik YM, Sobolewski AL, Kim D, Gryko DT. Tuning the aromatic backbone twist in dipyrrolonaphthyridinediones. Chem Commun (Camb) 2022; 58:3697-3700. [PMID: 35225999 DOI: 10.1039/d1cc06863f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication describes the photophysical behavior of three analogs of cyclophane bearing the dipyrrolonaphthyridinedione (DPND) core. In these molecules, intersystem crossing (ISC) can be successfully induced by distinct changes in the deviation from planarity within the DPND core, allowing at the same time the emission maximum to shift from the green to red region of the visible spectrum without any synthetic modifications of the chromophore structure. This finding may build the foundation for a new paradigm for inducing ISC-type transitions within other centrosymmetric and planar cross-conjugated chromophores.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Dominik Mierzwa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea.
| | - Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | | | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
8
|
Wang L, Cai W, Sun J, Wu Y, Zhang B, Tian X, Guo S, Liang W, Fu H, Yao J. H-Type-like Aggregation-Accelerated Singlet Fission Process in Dipyrrolonaphthyridinedione Thin Film: The Role of Charge Transfer/Excimer Mixed Intermediate State. J Phys Chem Lett 2021; 12:12276-12282. [PMID: 34931841 DOI: 10.1021/acs.jpclett.1c03265] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Through the combination of transient spectroscopy and theoretical simulations, an accelerated singlet fission (SF) process was evidently observed in the strongly coupled H-type-like aggregation thin films of a dipyrrolonaphthyridinedione skeleton. Results elucidate that in this H-type-like aggregation, the substantially stabilized charge transfer (CT) state is close in energy with singlet and excimer states, resulting in a CT/excimer mixed state, which could drive excited-state population escaping from excimer trap and promote an ultrafast and highly efficient SF process. Our results not only enrich the limited capacity of SF materials but also contribute to an in-depth understanding of SF dynamics in H-type aggregation, which is of fundamental importance for designing new SF sensitizers and implementing practical SF applications.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wanlin Cai
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Sun
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuling Wu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Bin Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangbin Tian
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shaoting Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - WanZhen Liang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Sadowski B, Kaliszewska M, Poronik YM, Czichy M, Janasik P, Banasiewicz M, Mierzwa D, Gadomski W, Lohrey TD, Clark JA, Łapkowski M, Kozankiewicz B, Vullev VI, Sobolewski AL, Piatkowski P, Gryko DT. Potent strategy towards strongly emissive nitroaromatics through a weakly electron-deficient core. Chem Sci 2021; 12:14039-14049. [PMID: 34760187 PMCID: PMC8565362 DOI: 10.1039/d1sc03670j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 01/16/2023] Open
Abstract
Nitroaromatics seldom fluoresce. The importance of electron-deficient (n-type) conjugates, however, has inspired a number of strategies for suppressing the emission-quenching effects of the strongly electron-withdrawing nitro group. Here, we demonstrate how such strategies yield fluorescent nitroaryl derivatives of dipyrrolonaphthyridinedione (DPND). Nitro groups near the DPND core quench its fluorescence. Conversely, nitro groups placed farther from the core allow some of the highest fluorescence quantum yields ever recorded for nitroaromatics. This strategy of preventing the known processes that compete with photoemission, however, leads to the emergence of unprecedented alternative mechanisms for fluorescence quenching, involving transitions to dark nπ* singlet states and aborted photochemistry. Forming nπ* triplet states from ππ* singlets is a classical pathway for fluorescence quenching. In nitro-DPNDs, however, these ππ* and nπ* excited states are both singlets, and they are common for nitroaryl conjugates. Understanding the excited-state dynamics of such nitroaromatics is crucial for designing strongly fluorescent electron-deficient conjugates.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Marzena Kaliszewska
- Faculty of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warsaw Poland
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Małgorzata Czichy
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland
| | - Patryk Janasik
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland
| | - Marzena Banasiewicz
- Institute of Physics, Polish Academy of Sciences Aleja Lotnikow 32/46 02-668 Warsaw Poland
| | - Dominik Mierzwa
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Wojciech Gadomski
- Faculty of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warsaw Poland
| | - Trevor D Lohrey
- Department of Chemistry, University of California Berkeley, 420 Latimer Hall Berkeley CA USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA USA
| | - John A Clark
- Department of Bioengineering, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
| | - Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology Strzody 9 44-100 Gliwice Poland
| | - Bolesław Kozankiewicz
- Institute of Physics, Polish Academy of Sciences Aleja Lotnikow 32/46 02-668 Warsaw Poland
| | - Valentine I Vullev
- Department of Bioengineering, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
- Department of Chemistry, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
- Department of Biochemistry, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
- Materials Science and Engineering Program, University of California Riverside, 900 University Ave. Riverside CA 92521 USA
| | - Andrzej L Sobolewski
- Institute of Physics, Polish Academy of Sciences Aleja Lotnikow 32/46 02-668 Warsaw Poland
| | - Piotr Piatkowski
- Faculty of Chemistry, University of Warsaw Zwirki i Wigury 101 02-089 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
10
|
Morgan J, Yun YJ, Ayitou AJL. Estimation of Singlet Oxygen Quantum Yield Using Novel Green-Absorbing Baird-type Aromatic Photosensitizers †. Photochem Photobiol 2021; 98:57-61. [PMID: 34228818 DOI: 10.1111/php.13483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/30/2021] [Accepted: 07/04/2021] [Indexed: 12/20/2022]
Abstract
We report two new organic green-absorbing singlet oxygen (1 O2 ) photosensitizers: Quinoidal naphthyl thioamide (QDM) and bis-iodol-dipyrrolonaphthyridine-dione (I2 -DPND), with triplet energies of 40.8 and 47.5 kcal mol-1 (at 77 K in a glassy matrix) , respectively. The UV-vis absorption and emission characteristics of QDM and I2 -DPND are similar to other commercially available organic 1 O2 photosensitizers such as Rose Bengal, which was used as standard/reference to estimate the 1 O2 quantum yield (Φ∆ ) of the chromophores under study. Using 9,10-diphenylanthracene (DPA) as an 1 O2 quencher, we estimated the Φ∆ ≈ 67-85% for QDM and Φ∆ ≈ 25-32% for I2 -DPND. The discrepancy in the Φ∆ values could be explained by the apparent photo-decomposition of the later dye. Nevertheless, the high Φ∆ value for QDM is unprecedented, as this chromophore exhibits relatively low structural complexity and could further be derivatized to create novel photodynamic agents.
Collapse
Affiliation(s)
- Jayla Morgan
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA
| | - Young Ju Yun
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA.,Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - A Jean-Luc Ayitou
- Department of Chemistry, Illinois Institute of Technology, Chicago, IL, USA.,Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Chithanna S, Yang DY. Construction of 2-pyridones via oxidative cyclization of enamides: access to Pechmann dye derivatives. Org Biomol Chem 2021; 19:1565-1574. [PMID: 33508055 DOI: 10.1039/d0ob02376k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient protocol for the construction of structurally diverse 2-pyridone derivatives from imines and α,β-unsaturated acid chlorides in a single operation is reported. The target compounds, including coumarin-8-oxoprotoberbine analogues and lamellarin G isomers, were prepared via thermal cyclization of the in situ generated enamides followed by thermal dehydrogenation. The cyclization of enamides was achieved by the introduction of an electron-withdrawing group on the α-carbon of acid chlorides. This methodology allows quick access to polycyclic Pechmann dyes via rare double oxidative cyclizations of dienamides under mild conditions.
Collapse
Affiliation(s)
- Sivanna Chithanna
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan.
| | - Ding-Yah Yang
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan. and Graduate Program for Biomedical and Materials Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 407224, Taiwan
| |
Collapse
|
12
|
Skonieczny K, Papadopoulos I, Thiel D, Gutkowski K, Haines P, McCosker PM, Laurent AD, Keller PA, Clark T, Jacquemin D, Guldi DM, Gryko DT. How To Make Nitroaromatic Compounds Glow: Next-Generation Large X-Shaped, Centrosymmetric Diketopyrrolopyrroles. Angew Chem Int Ed Engl 2020; 59:16104-16113. [PMID: 32492240 PMCID: PMC7689858 DOI: 10.1002/anie.202005244] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Red‐emissive π‐expanded diketopyrrolopyrroles (DPPs) with fluorescence reaching λ=750 nm can be easily synthesized by a three‐step strategy involving the preparation of diketopyrrolopyrrole followed by N‐arylation and subsequent intramolecular palladium‐catalyzed direct arylation. Comprehensive spectroscopic assays combined with first‐principles calculations corroborated that both N‐arylated and fused DPPs reach a locally excited (S1) state after excitation, followed by internal conversion to states with solvent and structural relaxation, before eventually undergoing intersystem crossing. Only the structurally relaxed state is fluorescent, with lifetimes in the range of several nanoseconds and tens of picoseconds in nonpolar and polar solvents, respectively. The lifetimes correlate with the fluorescence quantum yields, which range from 6 % to 88 % in nonpolar solvents and from 0.4 % and 3.2 % in polar solvents. A very inefficient (T1) population is responsible for fluorescence quantum yields as high as 88 % for the fully fused DPP in polar solvents.
Collapse
Affiliation(s)
- Kamil Skonieczny
- Institute of Organic Chemistry, PAS. 44/52 Kasprzaka, 01-224, Warsaw, Poland
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dominik Thiel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Krzysztof Gutkowski
- Institute of Organic Chemistry, PAS. 44/52 Kasprzaka, 01-224, Warsaw, Poland
| | - Philipp Haines
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Patrick M McCosker
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany.,School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Adèle D Laurent
- Université de Nantes, CNRS, CEISAM UMR, 6230, Nantes, France
| | - Paul A Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Health & Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR, 6230, Nantes, France
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Daniel T Gryko
- Institute of Organic Chemistry, PAS. 44/52 Kasprzaka, 01-224, Warsaw, Poland
| |
Collapse
|
13
|
Skonieczny K, Papadopoulos I, Thiel D, Gutkowski K, Haines P, McCosker PM, Laurent AD, Keller PA, Clark T, Jacquemin D, Guldi DM, Gryko DT. How To Make Nitroaromatic Compounds Glow: Next‐Generation Large X‐Shaped, Centrosymmetric Diketopyrrolopyrroles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kamil Skonieczny
- Institute of Organic Chemistry PAS. 44/52 Kasprzaka 01-224 Warsaw Poland
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 3 91058 Erlangen Germany
| | - Dominik Thiel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 3 91058 Erlangen Germany
| | | | - Philipp Haines
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 3 91058 Erlangen Germany
| | - Patrick M. McCosker
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstrasse 25 91052 Erlangen Germany
- School of Chemistry & Molecular Bioscience, Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health & Medical Research Institute Wollongong NSW 2522 Australia
| | | | - Paul A. Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons University of Wollongong Wollongong NSW 2522 Australia
- Illawarra Health & Medical Research Institute Wollongong NSW 2522 Australia
| | - Timothy Clark
- Department of Chemistry and Pharmacy & Computer-Chemie-Center (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstrasse 25 91052 Erlangen Germany
| | | | - Dirk M. Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 3 91058 Erlangen Germany
| | - Daniel T. Gryko
- Institute of Organic Chemistry PAS. 44/52 Kasprzaka 01-224 Warsaw Poland
| |
Collapse
|
14
|
Wang L, Lin L, Yang J, Wu Y, Wang H, Zhu J, Yao J, Fu H. Singlet Fission in a Pyrrole-Fused Cross-Conjugated Skeleton with Adaptive Aromaticity. J Am Chem Soc 2020; 142:10235-10239. [PMID: 32437140 DOI: 10.1021/jacs.0c00089] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Singlet fission (SF) materials hold the potential to increase the power conversion efficiency of solar cells by reducing the thermalization of high-energy excited states. The major hurdle in realizing this potential is the limited scope of SF-active materials with high fission efficiency, suitable energy levels, and sufficient chemical stability. Herein, using theoretical calculation and time-resolved spectroscopy, we developed a highly stable SF material based on dipyrrolonaphthyridinedione (DPND), a pyrrole-fused cross-conjugated skeleton with a distinctive adaptive aromaticity (dual aromaticity) character. The embedded pyrrole ring with 4n+2 π-electron features aromaticity in the ground state, while the dipole resonance of the amide bonds promotes a 4n π-electron Baird's aromaticity in the triplet state. Such an adaptive aromaticity renders the molecule efficient for the SF process [E(S1) ≥ 2E(T1)] without compromising its stability. Up to 173% triplet yield, strong blue-green light absorption, and suitable triplet energy of 1.2 eV, as well as excellent stability, make DPND a promising SF sensitizer toward practical applications.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jingjing Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hua Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jiannian Yao
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.,Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
15
|
Sadowski B, Stewart DJ, Phillips AT, Grusenmeyer TA, Haley JE, Cooper TM, Gryko DT. From Dipyrrolonaphthyridinediones to Quinazolinoindolizinoindolizinoquinazolines. J Org Chem 2019; 85:284-290. [DOI: 10.1021/acs.joc.9b00839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - David J. Stewart
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Functional Materials Division, Wright-Patterson AFB, Ohio 45433-7750, United States
- General Dynamics Information Technology, 5100 Springfield Pike, Dayton, Ohio 45431, United States
| | - Alexis T. Phillips
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Functional Materials Division, Wright-Patterson AFB, Ohio 45433-7750, United States
- Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Tod A. Grusenmeyer
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Functional Materials Division, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Joy E. Haley
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Functional Materials Division, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Thomas M. Cooper
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Functional Materials Division, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Daniel T. Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
16
|
Sadowski B, Loebnitz M, Dombrowski DR, Friese DH, Gryko DT. Electron-Rich Dipyrrolonaphthyridinediones: Synthesis and Optical Properties. J Org Chem 2018; 83:11645-11653. [PMID: 30179465 DOI: 10.1021/acs.joc.8b01615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This article describes the design rationale for highly electron-rich dipyrrolonaphthyridinedione (DPND) derivatives bearing substituted amino groups at the 3 and 9 positions, which exhibit absorption in the red and emission in the red/NIR region of the spectrum. These novel dyes are easily synthesized through a two-step protocol consisting of bromination of the DPND molecule followed by Buchwald-Hartwig amination. We demonstrated that the diamino-dipyrrolonaphthyridinediones have high ionization energies (∼4.7 eV) and that the spectroelectrochemical properties can be rationally tuned by altering the nature of the peripheral substituted amino groups. All amino-DPNDs exhibit solvatofluorochromism, which has not been previously reported for dyes possessing this core. Theoretical calculations reveal that in all cases, the strongest absorption is exhibited by the S1 states which clearly correlate with the HOMO-LUMO orbital transition. As all higher states have lower oscillator strengths, it is clear that fluorescence is completely dominated by the excitation/deexcitation sequence S0 → S1, S1 → S0 and that there are no contributions to the fluorescence from excitations to higher states.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Marcel Loebnitz
- Heinrich Heine-Universität Düsseldorf, Institut für Theoretische und Computerchemie , Universitätsstraße 1 , 40204 Düsseldorf , Germany
| | - Dennis R Dombrowski
- Heinrich Heine-Universität Düsseldorf, Institut für Theoretische und Computerchemie , Universitätsstraße 1 , 40204 Düsseldorf , Germany
| | - Daniel H Friese
- Heinrich Heine-Universität Düsseldorf, Institut für Theoretische und Computerchemie , Universitätsstraße 1 , 40204 Düsseldorf , Germany
| | - Daniel T Gryko
- Institute of Organic Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| |
Collapse
|
17
|
Sadowski B, Rode MF, Gryko DT. Direct Arylation of Dipyrrolonaphthyridinediones Leads to Red-Emitting Dyes with Conformational Freedom. Chemistry 2017; 24:855-864. [DOI: 10.1002/chem.201702306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| | - Michał F. Rode
- Institute of Physics; Polish Academy of Sciences; Aleja Lotnikow 32/46 02-668 Warsaw Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
18
|
Sadowski B, Kita H, Grzybowski M, Kamada K, Gryko DT. π-Expanded Dipyrrolonaphthyridinediones with Large Two-Photon Absorption Cross-Section Values. J Org Chem 2017; 82:7254-7264. [DOI: 10.1021/acs.joc.7b00831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bartłomiej Sadowski
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Hanayo Kita
- IFMRI, National Institute of Advanced Industrial Science and Technology (AIST), AIST Kansai Centre, Ikeda, Osaka 563-8577, Japan
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Marek Grzybowski
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Kenji Kamada
- IFMRI, National Institute of Advanced Industrial Science and Technology (AIST), AIST Kansai Centre, Ikeda, Osaka 563-8577, Japan
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Daniel T. Gryko
- Institute
of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
19
|
Shi X, Soulé JF, Doucet H. Synthesis of Phenanthrothiazoles and 1,2-Di(heteroaryl)benzenes through Successive Pd-Catalyzed Direct Arylations. J Org Chem 2017; 82:3886-3894. [DOI: 10.1021/acs.joc.6b03023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xinzhe Shi
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| | - Jean-François Soulé
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| | - Henri Doucet
- Institut
des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes “Organométalliques: Matériaux et Catalyse”, Campus de Beaulieu, 35042 Rennes, France
| |
Collapse
|
20
|
Vakuliuk O, Purc A, Clermont G, Blanchard-Desce M, Gryko DT. The Impact of the Interplay between Steric and Electronic Effects on the Synthesis and Optical Properties of Diketopyrrolopyrroles Bearing Pyridine Moieties. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201600047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Olena Vakuliuk
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52. 00-901 Warsaw Poland
| | - Anna Purc
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52. 00-901 Warsaw Poland
| | - Guillaume Clermont
- Université de Bordeaux; Institut des Sciences Moléculaires (CNRS UMR 5255); Bâtiment A12 33000 Talence cedex Bordeaux France
| | - Mireille Blanchard-Desce
- Université de Bordeaux; Institut des Sciences Moléculaires (CNRS UMR 5255); Bâtiment A12 33000 Talence cedex Bordeaux France
| | - Daniel T. Gryko
- Institute of Organic Chemistry; Polish Academy of Sciences; Kasprzaka 44/52. 00-901 Warsaw Poland
| |
Collapse
|