1
|
Wang YZ, Peng MZ, Xu YL, Ying Y, Tang LH, Xu HX, He JY, Liu L, Wang WQ. First reported advanced pancreatic cancer with hyperprogression treated with PD-1 blockade combined with chemotherapy: a case report and literature review. Discov Oncol 2024; 15:560. [PMID: 39404967 PMCID: PMC11480291 DOI: 10.1007/s12672-024-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic cancer is among the most immune-resistant tumor types due to its unique tumor microenvironment and low cancer immunogenicity. Single-agent immune modulators have thus far proven clinically ineffective. However, a growing body of evidence suggests that combination of these modulators with other strategies could unlock the potential of immunotherapy in pancreatic cancer. Herein, we describe the case of a 59-year-old male with metastatic pancreatic ductal adenocarcinoma, referred to our center to receive immunotherapy (serplulimab, a novel anti-PD-1 antibody) combined with chemotherapy (gemcitabine/nab-paclitaxel). During the initial three treatment cycles, the patient was assessed as having stable disease (SD) according to RECIST 1.1 criteria. However, following two additional cycles of combination therapy, the primary tumor mass increased from 4.9 cm to 13.2 cm, accompanied by the development of new lung lesions, ascites, and pelvic metastases. He succumbed to respiratory failure one month later. Retrospective analysis revealed that the patient had MDM4 amplification, identified as a high-risk factor for hyperprogressive disease (HPD). To our knowledge, this is the first reported case of HPD in pancreatic cancer with multiple metastases treated using combination therapy. We investigated the potential mechanisms and reviewed the latest literature on predictive factors for HPD. These findings suggest that while chemotherapy combined with immunotherapy may hold promise for treating pancreatic cancer, it is imperative to identify and closely monitor patients with high-risk factors for HPD when using immunotherapy.
Collapse
Affiliation(s)
- Ya-Zhou Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mao-Zhen Peng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yao-Lin Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin-Hui Tang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun-Yi He
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Schnaider L, Tan S, Singh PR, Capuano F, Scott AJ, Hambley R, Lu L, Yang H, Wallace EJ, Jo H, DeGrado WF. SuFEx Chemistry Enables Covalent Assembly of a 280-kDa 18-Subunit Pore-Forming Complex. J Am Chem Soc 2024; 146:25047-25057. [PMID: 39190920 DOI: 10.1021/jacs.4c07920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Proximity-enhanced chemical cross-linking is an invaluable tool for probing protein-protein interactions and enhancing the potency of potential peptide and protein drugs. Here, we extend this approach to covalently stabilize large macromolecular assemblies. We used SuFEx chemistry to covalently stabilize an 18-subunit pore-forming complex, CsgG:CsgF, consisting of nine CsgG membrane protein subunits that noncovalently associate with nine CsgF peptides. Derivatives of the CsgG:CsgF pore have been used for DNA sequencing, which places high demands on the structural stability and homogeneity of the complex. To increase the robustness of the pore, we designed and synthesized derivatives of CsgF-bearing sulfonyl fluorides, which react with CsgG in very high yield to form a covalently stabilized CsgG:CsgF complex. The resulting pores formed highly homogeneous channels when added to artificial membranes. The high yield and rapid reaction rate of the SuFEx reaction prompted molecular dynamics simulations, which revealed that the SO2F groups in the initially formed complex are poised for nucleophilic reaction with a targeted Tyr. These results demonstrate the utility of SuFEx chemistry to structurally stabilize very large (here, 280 kDa) assemblies.
Collapse
Affiliation(s)
- Lee Schnaider
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Sophia Tan
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | | | | | | | | | - Lei Lu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - Hyunjun Yang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | | | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94143, United States
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
3
|
Cao L, Yu B, Klauser PC, Zhang P, Li S, Wang L. Arginine Accelerates Sulfur Fluoride Exchange and Phosphorus Fluoride Exchange Reactions between Proteins. Angew Chem Int Ed Engl 2024:e202412843. [PMID: 39113386 DOI: 10.1002/anie.202412843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 10/17/2024]
Abstract
Sulfur fluoride exchange (SuFEx) and phosphorus fluoride exchange (PFEx) click chemistries are advancing research across multiple disciplines. By genetically incorporating latent bioreactive unnatural amino acids (Uaas), these chemistries have been integrated into proteins, enabling precise covalent linkages with biological macromolecules and paving the way for new applications. However, their suboptimal reaction rates in proteins limit effectiveness, and traditional catalytic methods for small molecules are often incompatible with biological systems or in vivo applications. We demonstrated that introducing an arginine adjacent to the latent bioreactive Uaa significantly boosts SuFEx and PFEx reaction rates between proteins. This method is effective across various Uaas, target residues, and protein environments. Notably, it also enables efficient SuFEx reactions in acidic conditions, common in certain cellular compartments and tumor microenvironments, which typically hinder SuFEx reactions. Furthermore, we developed the first covalent cell engager that substantially enhances natural killer cell activation through improved covalent interaction facilitated by arginine. These findings provide mechanistic insights and offer a biocompatible strategy to harness these robust chemistries for advancing biological research and developing new biotherapeutics.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the, Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 94158, San Francisco, California, United States
| |
Collapse
|
4
|
Ünsal Ö, Bacaksiz ZS, Khamraev V, Montanari V, Beinborn M, Kumar K. Prolonged Activation of the GLP-1 Receptor via Covalent Capture. ACS Chem Biol 2024; 19:1453-1465. [PMID: 38935975 DOI: 10.1021/acschembio.4c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The incretin gut hormone glucagon-like peptide-1 (GLP-1) has become a household name because of its ability to induce glucose-dependent insulin release with accompanying weight loss in patients. Indeed, derivatives of the peptide exert numerous pleiotropic actions that favorably affect other metabolic functions, and consequently, such compounds are being considered as treatments for a variety of ailments. The ability of native GLP-1 to function as a clinical drug is severely limited because of its short half-life in vivo. All of the beneficial effects of GLP-1 come from its agonism at the cognate receptor, GLP-1R. In our quest for long-lived activation of the receptor, we hypothesized that an agonist that had the ability to covalently cross-link with GLP-1R would prove useful. We here report the structure-guided design of peptide analogues containing an electrophilic warhead that could be covalently captured by a resident native nucleophile on the receptor. The compounds were evaluated using washout experiments, and resistance to such washing serves as an index of prolonged activation and covalent capture, which we use to tabulate longevity and robust long-lived GLP-1R agonism. The addition of SulF (cross-linkable warhead), an N-terminal trifluoroethyl group (for protease protection), and a C18 diacid lipid (protractor) all contributed to the increased wash resistance of GLP-1. The most effective compound based on the wash resistance metric, C2K26DAC18_K34SulF, has all three elements outlined and may serve as a blueprint and a proof-of-concept scaffold for the design of clinically useful molecules.
Collapse
Affiliation(s)
- Özge Ünsal
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Z Selin Bacaksiz
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vladislav Khamraev
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Martin Beinborn
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular Pharmacology Research Center, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
5
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Cao L, Yu B, Li S, Zhang P, Li Q, Wang L. Genetically Enabling Phosphorus Fluoride Exchange Click Chemistry in Proteins. Chem 2024; 10:1868-1884. [PMID: 38975291 PMCID: PMC11225796 DOI: 10.1016/j.chempr.2024.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Phosphorus Fluoride Exchange (PFEx), recently debuted in small molecules, represents the forefront of click chemistry. To explore PFEx's potential in biological settings, we developed amino acids PFY and PFK featuring phosphoramidofluoridates and incorporated them into proteins through genetic code expansion. PFY/PFK selectively reacted with nearby His, Tyr, Lys, or Cys in proteins, both in vitro and in living cells, demonstrating that proximity enabled PFEx reactivity without external reagents. The reaction with His showed unique pH-dependent properties and created thermally sensitive linkages. Additionally, Na2SiO3 enhanced PFEx reactions with Tyr and Cys. PFEx, by generating defined covalent P-N/O linkages, extends the utility of phosphorus linkages in proteins, aligning with nature's use of phosphate connectors in other biomolecules. More versatile and durable than SuFEx, PFEx in proteins expands the latent bioreactive arsenal for covalent protein engineering and will facilitate the broad application of this potent click chemistry in biological and biomedical fields.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qingke Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
7
|
Alboreggia G, Udompholkul P, Baggio C, Muzzarelli K, Assar Z, Pellecchia M. Histidine-Covalent Stapled Alpha-Helical Peptides Targeting hMcl-1. J Med Chem 2024; 67:8172-8185. [PMID: 38695666 PMCID: PMC11129181 DOI: 10.1021/acs.jmedchem.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024]
Abstract
Several novel and effective cysteine targeting (Cys) covalent drugs are in clinical use. However, the target area containing a druggable Cys residue is limited. Therefore, methods for creating covalent drugs that target different residues are being looked for; examples of such ligands include those that target the residues lysine (Lys) and tyrosine (Tyr). Though the histidine (His) side chain is more frequently found in protein binding locations and has higher desirable nucleophilicity, surprisingly limited research has been done to specifically target this residue, and there are not many examples of His-targeting ligands that have been rationally designed. In the current work, we created novel stapled peptides that are intended to target hMcl-1 His 252 covalently. We describe the in vitro (biochemical, NMR, and X-ray) and cellular design and characterization of such agents. Our findings further suggest that the use of electrophiles to specifically target His residues is warranted.
Collapse
Affiliation(s)
- Giulia Alboreggia
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Kendall Muzzarelli
- Cayman
Chemical Co., 1180 E. Ellsworth road, Ann Arbor, Michigan 48108, United States
| | - Zahra Assar
- Cayman
Chemical Co., 1180 E. Ellsworth road, Ann Arbor, Michigan 48108, United States
| | - Maurizio Pellecchia
- Division
of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
8
|
Cheng L, Wang Y, Guo Y, Zhang SS, Xiao H. Advancing protein therapeutics through proximity-induced chemistry. Cell Chem Biol 2024; 31:428-445. [PMID: 37802076 PMCID: PMC10960704 DOI: 10.1016/j.chembiol.2023.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Recent years have seen a remarkable growth in the field of protein-based medical treatments. Nevertheless, concerns have arisen regarding the cytotoxicity limitations, low affinity, potential immunogenicity, low stability, and challenges to modify these proteins. To overcome these obstacles, proximity-induced chemistry has emerged as a next-generation strategy for advancing protein therapeutics. This method allows site-specific modification of proteins with therapeutic agents, improving their effectiveness without extensive engineering. In addition, this innovative approach enables spatial control of the reaction based on proximity, facilitating the formation of irreversible covalent bonds between therapeutic proteins and their targets. This capability becomes particularly valuable in addressing challenges such as the low affinity frequently encountered between therapeutic proteins and their targets, as well as the limited availability of small molecules for specific protein targets. As a result, proximity-induced chemistry is reshaping the field of protein drug preparation and propelling the revolution in novel protein therapeutics.
Collapse
Affiliation(s)
- Linqi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yixian Wang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Yiming Guo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Sophie S Zhang
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Han Xiao
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Biosciences, Rice University, 6100 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
9
|
Gabizon R, Tivon B, Reddi RN, van den Oetelaar MCM, Amartely H, Cossar PJ, Ottmann C, London N. A simple method for developing lysine targeted covalent protein reagents. Nat Commun 2023; 14:7933. [PMID: 38040731 PMCID: PMC10692228 DOI: 10.1038/s41467-023-42632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/16/2023] [Indexed: 12/03/2023] Open
Abstract
Peptide-based covalent probes can target shallow protein surfaces not typically addressable using small molecules, yet there is a need for versatile approaches to convert native peptide sequences into covalent binders that can target a broad range of residues. Here we report protein-based thio-methacrylate esters-electrophiles that can be installed easily on unprotected peptides and proteins via cysteine side chains, and react efficiently and selectively with cysteine and lysine side chains on the target. Methacrylate phosphopeptides derived from 14-3-3-binding proteins irreversibly label 14-3-3σ via either lysine or cysteine residues, depending on the position of the electrophile. Methacrylate peptides targeting a conserved lysine residue exhibit pan-isoform binding of 14-3-3 proteins both in lysates and in extracellular media. Finally, we apply this approach to develop protein-based covalent binders. A methacrylate-modified variant of the colicin E9 immunity protein irreversibly binds to the E9 DNAse, resulting in significantly higher thermal stability relative to the non-covalent complex. Our approach offers a simple and versatile route to convert peptides and proteins into potent covalent binders.
Collapse
Affiliation(s)
- Ronen Gabizon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Barr Tivon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rambabu N Reddi
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maxime C M van den Oetelaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Hadar Amartely
- Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
10
|
Yu B, Cao L, Li S, Klauser PC, Wang L. The proximity-enabled sulfur fluoride exchange reaction in the protein context. Chem Sci 2023; 14:7913-7921. [PMID: 37502323 PMCID: PMC10370592 DOI: 10.1039/d3sc01921g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The proximity-enabled sulfur(vi) fluoride exchange (SuFEx) reaction generates specific covalent linkages between proteins in cells and in vivo, which opens innovative avenues for studying elusive protein-protein interactions and developing potent covalent protein drugs. To exploit the power and expand the applications of covalent proteins, covalent linkage formation between proteins is the critical step, for which fundamental kinetic and essential properties remain unexplored. Herein, we systematically studied SuFEx kinetics in different proteins and conditions. In contrast to in small molecules, SuFEx in interacting proteins conformed with a two-step mechanism involving noncovalent binding, followed by covalent bond formation, exhibiting nonlinear rate dependence on protein concentration. The protein SuFEx rate consistently changed with protein binding affinity as well as chemical reactivity of the functional group and was impacted by target residue identity and solution pH. In addition, kinetic analyses of nanobody SR4 binding with SARS-CoV-2 spike protein revealed that viral target mutations did not abolish covalent binding but decreased the SuFEx rate with affinity decrease. Moreover, off-target cross-linking of a SuFEx-capable nanobody in human serum was not detected, and the SuFEx-generated protein linkage was stable at cellular acidic pHs, suggesting SuFEx suitability for in vivo usage. These results advanced our understanding of SuFEx reactivity and kinetics in proteins, which is invaluable for ongoing exploration of SuFEx-enabled covalent proteins for basic biological research and creative biotherapeutics.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| |
Collapse
|
11
|
Klauser PC, Chopra S, Cao L, Bobba KN, Yu B, Seo Y, Chan E, Flavell RR, Evans MJ, Wang L. Covalent Proteins as Targeted Radionuclide Therapies Enhance Antitumor Effects. ACS CENTRAL SCIENCE 2023; 9:1241-1251. [PMID: 37396859 PMCID: PMC10311652 DOI: 10.1021/acscentsci.3c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 07/04/2023]
Abstract
Molecularly targeted radionuclide therapies (TRTs) struggle with balancing efficacy and safety, as current strategies to increase tumor absorption often alter drug pharmacokinetics to prolong circulation and normal tissue irradiation. Here we report the first covalent protein TRT, which, through reacting with the target irreversibly, increases radioactive dose to the tumor without altering the drug's pharmacokinetic profile or normal tissue biodistribution. Through genetic code expansion, we engineered a latent bioreactive amino acid into a nanobody, which binds to its target protein and forms a covalent linkage via the proximity-enabled reactivity, cross-linking the target irreversibly in vitro, on cancer cells, and on tumors in vivo. The radiolabeled covalent nanobody markedly increases radioisotope levels in tumors and extends tumor residence time while maintaining rapid systemic clearance. Furthermore, the covalent nanobody conjugated to the α-emitter actinium-225 inhibits tumor growth more effectively than the noncovalent nanobody without causing tissue toxicity. Shifting the protein-based TRT from noncovalent to covalent mode, this chemical strategy improves tumor responses to TRTs and can be readily scaled to diverse protein radiopharmaceuticals engaging broad tumor targets.
Collapse
Affiliation(s)
- Paul C. Klauser
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Shalini Chopra
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Li Cao
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Kondapa Naidu Bobba
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Bingchen Yu
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Youngho Seo
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Emily Chan
- Department
of Pathology, University of California San
Francisco, San Francisco, California 94158, United States
| | - Robert R. Flavell
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Michael J. Evans
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
- Department
of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department
of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
- Helen
Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
12
|
Udompholkul P, Garza-Granados A, Alboreggia G, Baggio C, McGuire J, Pegan SD, Pellecchia M. Characterization of a Potent and Orally Bioavailable Lys-Covalent Inhibitor of Apoptosis Protein (IAP) Antagonist. J Med Chem 2023. [PMID: 37262387 DOI: 10.1021/acs.jmedchem.3c00467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have recently reported on the use of aryl-fluorosulfates in designing water- and plasma-stable agents that covalently target Lys, Tyr, or His residues in the BIR3 domain of the inhibitor of the apoptosis protein (IAP) family. Here, we report further structural, cellular, and pharmacological characterizations of this agent, including the high-resolution structure of the complex between the Lys-covalent agent and its target, the BIR3 domain of X-linked IAP (XIAP). We also compared the cellular efficacy of the agent in two-dimensional (2D) and three-dimensional (3D) cell cultures, side by side with the clinical candidate reversible IAP inhibitor LCL161. Finally, in vivo pharmacokinetic studies indicated that the agent was long-lived and orally bioavailable. Collectively our data further corroborate that aryl-fluorosulfates, when incorporated correctly in a ligand, can result in Lys-covalent agents with pharmacodynamic and pharmacokinetic properties that warrant their use in the design of pharmacological probes or even therapeutics.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Ana Garza-Granados
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jack McGuire
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Scott D Pegan
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
13
|
Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023; 24:3525. [PMID: 36834935 PMCID: PMC9968108 DOI: 10.3390/ijms24043525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies. The fundamental limitation of short in vivo half-life has prevented the wide acceptance of these alternatives. Covalent drugs, also known as targeted covalent inhibitors (TCIs), form permanent bonds to target proteins and, in theory, eternally exert the drug action, circumventing the pharmacokinetic limitation of other antibody alternatives. The TCI drug platform, too, has been slow in gaining acceptance because of its potential prolonged side-effect from off-target covalent binding. To avoid the potential risks of irreversible adverse drug effects from off-target conjugation, the TCI modality is broadening from the conventional small molecules to larger biomolecules possessing desirable properties (e.g., hydrolysis resistance, drug-action reversal, unique pharmacokinetics, stringent target specificity, and inhibition of protein-protein interactions). Here, we review the historical development of the TCI made of bio-oligomers/polymers (i.e., peptide-, protein-, or nucleic-acid-type) obtained by rational design and combinatorial screening. The structural optimization of the reactive warheads and incorporation into the targeted biomolecules enabling a highly selective covalent interaction between the TCI and the target protein is discussed. Through this review, we hope to highlight the middle to macro-molecular TCI platform as a realistic replacement for the antibody.
Collapse
Affiliation(s)
- Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Riku Katsuki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| |
Collapse
|
14
|
Paulussen FM, Grossmann TN. Peptide-based covalent inhibitors of protein-protein interactions. J Pept Sci 2023; 29:e3457. [PMID: 36239115 PMCID: PMC10077911 DOI: 10.1002/psc.3457] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022]
Abstract
Protein-protein interactions (PPI) are involved in all cellular processes and many represent attractive therapeutic targets. However, the frequently rather flat and large interaction areas render the identification of small molecular PPI inhibitors very challenging. As an alternative, peptide interaction motifs derived from a PPI interface can serve as starting points for the development of inhibitors. However, certain proteins remain challenging targets when applying inhibitors with a competitive mode of action. For that reason, peptide-based ligands with an irreversible binding mode have gained attention in recent years. This review summarizes examples of covalent inhibitors that employ peptidic binders and have been tested in a biological context.
Collapse
Affiliation(s)
- Felix M Paulussen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Liu Y, He Z, Ma W, Bao G, Li Y, Yu C, Li J, E R, Xu Z, Wang R, Sun W. Copper(I)-Catalyzed Late-Stage Introduction of Oxime Ethers into Peptides at the Carboxylic Acid Site. Org Lett 2022; 24:9248-9253. [PMID: 36508502 DOI: 10.1021/acs.orglett.2c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed a method of introducing biological oxime ether fragments into peptides by CuI-catalyzed late-stage modification and functionalization of peptides, utilizing their acid moiety and varied 2H-azirines. As a result of its mild conditions, high atom economy, moderate yield, and excellent functional-group tolerance, the method can provide access to late-stage peptide modification and functionalization at their acid sites both in the homogeneous phase and on resins in SPPS, providing a new tool kit for peptide functionalization, diversification, and fluorescent labeling.
Collapse
Affiliation(s)
- Yuyang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Wen Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Jingyue Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
16
|
Cabalteja CC, Sachdev S, Cheloha RW. Rapid Covalent Labeling of Membrane Proteins on Living Cells Using a Nanobody-Epitope Tag Pair. Bioconjug Chem 2022; 33:1867-1875. [PMID: 36107739 PMCID: PMC10200341 DOI: 10.1021/acs.bioconjchem.2c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synthetic molecules that form a covalent bond upon binding to a targeted biomolecule (proximity-induced reactivity) are the subject of intense biomedical interest for the unique pharmacological properties imparted by irreversible binding. However, off-target covalent labeling and the lack of molecules with sufficient specificity limit more widespread applications. We describe the first example of a cross-linking platform that uses a synthetic peptide epitope and a single domain antibody (or nanobody) pair to form a covalent linkage rapidly and specifically. The rate of the cross-linking reaction between peptide and nanobody is faster than most other biocompatible cross-linking reactions, and it can be used to label live cells expressing receptor-nanobody fusions. The rapid kinetics of this system allowed us to probe the consequences on signaling for ligand cross-linking to the A2A-adenosine receptor. Our method may be generally useful to site-specifically link synthetic molecules to receptors on mammalian cell surfaces.
Collapse
Affiliation(s)
- Chino C. Cabalteja
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD USA 20894
| | - Shivani Sachdev
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD USA 20894
| | - Ross W. Cheloha
- Laboratory of Bioorganic Chemistry; National Institute of Diabetes, Digestive, and Kidney Diseases; National Institutes of Health. Bethesda, MD USA 20894
| |
Collapse
|
17
|
Paulussen FM, Schouten GK, Moertl C, Verheul J, Hoekstra I, Koningstein GM, Hutchins GH, Alkir A, Luirink RA, Geerke DP, van Ulsen P, den Blaauwen T, Luirink J, Grossmann TN. Covalent Proteomimetic Inhibitor of the Bacterial FtsQB Divisome Complex. J Am Chem Soc 2022; 144:15303-15313. [PMID: 35945166 PMCID: PMC9413201 DOI: 10.1021/jacs.2c06304] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The use of antibiotics is threatened by the emergence
and spread
of multidrug-resistant strains of bacteria. Thus, there is a need
to develop antibiotics that address new targets. In this respect,
the bacterial divisome, a multi-protein complex central to cell division,
represents a potentially attractive target. Of particular interest
is the FtsQB subcomplex that plays a decisive role in divisome assembly
and peptidoglycan biogenesis in E. coli. Here, we report the structure-based design of
a macrocyclic covalent inhibitor derived from a periplasmic region
of FtsB that mediates its binding to FtsQ. The bioactive conformation
of this motif was stabilized by a customized cross-link resulting
in a tertiary structure mimetic with increased affinity for FtsQ.
To increase activity, a covalent handle was incorporated, providing
an inhibitor that impedes the interaction between FtsQ and FtsB irreversibly. The covalent inhibitor reduced the growth of an outer
membrane-permeable E. coli strain,
concurrent with the expected loss of FtsB localization, and also affected
the infection of zebrafish larvae by a clinical E.
coli strain. This first-in-class inhibitor of a divisome
protein–protein interaction highlights the potential of proteomimetic
molecules as inhibitors of challenging targets. In particular, the
covalent mode-of-action can serve as an inspiration for future antibiotics
that target protein–protein interactions.
Collapse
Affiliation(s)
- Felix M Paulussen
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gina K Schouten
- Medical Microbiology and Infection Control (MMI), Amsterdam UMC Location VUmc, De Boelelaan 1108, Amsterdam 1081 HZ, Netherlands
| | - Carolin Moertl
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Jolanda Verheul
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Irma Hoekstra
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Gregory M Koningstein
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - George H Hutchins
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Aslihan Alkir
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Rosa A Luirink
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Daan P Geerke
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Peter van Ulsen
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tanneke den Blaauwen
- Department of Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, Netherlands
| | - Joen Luirink
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Department of Molecular Microbiology, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands.,Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1085, Amsterdam 1081 HV, Netherlands
| |
Collapse
|
18
|
A bifunctional vinyl-sulfonium tethered peptide induced by thio-Michael-type addition reaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Cao L, Wang L. New covalent bonding ability for proteins. Protein Sci 2022; 31:312-322. [PMID: 34761448 PMCID: PMC8819847 DOI: 10.1002/pro.4228] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
To expand protein's covalent bonding ability, latent bioreactive unnatural amino acids have been designed and genetically encoded into proteins, which react with specific natural amino acid residues through proximity-enabled bioreactivity. The resultant new covalent bonds can be selectively created within and between proteins in vitro, in cells, and in vivo. Offering diverse properties previously unattainable, these covalent linkages have been harnessed to enhance protein properties, to modulate protein function, to probe ligand-receptor binding, to identify elusive protein interactions, and to develop covalent protein drugs. Selective introduction of covalent bonds into proteins is affording novel avenues for biological studies, synthetic biology, and biotherapeutics.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry and the Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research InstituteUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
20
|
Udompholkul P, Baggio C, Gambini L, Alboreggia G, Pellecchia M. Lysine Covalent Antagonists of Melanoma Inhibitors of Apoptosis Protein. J Med Chem 2021; 64:16147-16158. [PMID: 34705456 DOI: 10.1021/acs.jmedchem.1c01459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently reported on Lys-covalent agents that, based on aryl-sulfonyl fluorides, were designed to target binding site Lys 311 in the X-linked inhibitor of apoptosis protein (XIAP). Similar to XIAP, melanoma-IAP (ML-IAP), a less well-characterized IAP family protein, also presents a lysine residue (Lys 135), which is in a position equivalent to that of Lys 311 of XIAP. On the contrary, two other members of the IAP family, namely, cellular-IAPs (cIAP1 and cIAP2), present a glutamic acid residue in that position. Hence, in the present work, we describe the derivation and characterization of the very first potent ML-IAP Lys-covalent inhibitor with cellular activity. The agent can be used as a pharmacological tool to further validate ML-IAP as a drug target and eventually for the development of ML-IAP-targeted therapeutics.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
21
|
Lian C, Li Y, Hou Z, Zhong W, Tian Y, Yin F, Li Z, Zhou D, Wang R. Proximity-induced amino-yne reaction for selective MDM4 conjugation via propargylated sulfonium. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Abstract
INTRODUCTION Undruggable targets refer to clinically meaningful therapeutic targets that are 'difficult to drug' or 'yet to be drugged' via traditional approaches. Featuring characteristics of lacking defined ligand-binding pockets, non-catalytic protein-protein interaction functional modes and less-investigated 3D structures, these undruggable targets have been targeted with novel therapeutic entities developed with the progress of unconventional drug discovery approaches, such as targeted degradation molecules and display technologies. AREA COVERED This review first presents the concept of 'undruggable' exemplified by RAS and other targets. Next, detailed strategies are illustrated in two aspects: innovation of therapeutic entities and development of unconventional drug discovery technologies. Finally, case studies covering typical undruggable targets (Bcl-2, p53, and RAS) are depicted to further demonstrate the feasibility of the strategies and entities above. EXPERT OPINION Targeting the undruggable expands the scope of therapeutically reachable targets. Consequently, it represents the drug discovery frontier. Biomedical studies are capable of dissecting disease mechanisms, thus broadening the list of undruggable targets. Encouraged by the recent approval of the KRAS inhibitor Sotorasib, we believe that merging multiple discovery approaches and exploiting various novel therapeutic entities would pave the way for dealing with more 'undruggable' targets in the future.
Collapse
Affiliation(s)
- Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Tivon B, Gabizon R, Somsen BA, Cossar PJ, Ottmann C, London N. Covalent flexible peptide docking in Rosetta. Chem Sci 2021; 12:10836-10847. [PMID: 34476063 PMCID: PMC8372624 DOI: 10.1039/d1sc02322e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
Electrophilic peptides that form an irreversible covalent bond with their target have great potential for binding targets that have been previously considered undruggable. However, the discovery of such peptides remains a challenge. Here, we present Rosetta CovPepDock, a computational pipeline for peptide docking that incorporates covalent binding between the peptide and a receptor cysteine. We applied CovPepDock retrospectively to a dataset of 115 disulfide-bound peptides and a dataset of 54 electrophilic peptides. It produced a top-five scoring, near-native model, in 89% and 100% of the cases when docking from the native conformation, and 20% and 90% when docking from an extended peptide conformation, respectively. In addition, we developed a protocol for designing electrophilic peptide binders based on known non-covalent binders or protein-protein interfaces. We identified 7154 peptide candidates in the PDB for application of this protocol. As a proof-of-concept we validated the protocol on the non-covalent complex of 14-3-3σ and YAP1 phosphopeptide. The protocol identified seven highly potent and selective irreversible peptide binders. The predicted binding mode of one of the peptides was validated using X-ray crystallography. This case-study demonstrates the utility and impact of CovPepDock. It suggests that many new electrophilic peptide binders can be rapidly discovered, with significant potential as therapeutic molecules and chemical probes.
Collapse
Affiliation(s)
- Barr Tivon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science Rehovot 7610001 Israel
| | - Ronen Gabizon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science Rehovot 7610001 Israel
| | - Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 5600MB Eindhoven The Netherlands
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
24
|
A CDR-based approach to generate covalent inhibitory antibody for human rhinovirus protease. Bioorg Med Chem 2021; 42:116219. [PMID: 34077853 DOI: 10.1016/j.bmc.2021.116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/21/2022]
Abstract
Covalent target modulation with small molecules has been emerging as a promising strategy for drug discovery. However, covalent inhibitory antibody remains unexplored due to the lack of efficient strategies to engineer antibody with desired bioactivity. Herein, we developed an intracellular selection method to generate covalent inhibitory antibody against human rhinovirus 14 (HRV14) 3C protease through unnatural amino acid mutagenesis along the heavy chain complementarity-determining region 3 (CDR-H3). A library of antibody mutants was thus constructed and screened in vivo through co-expression with the target protease. Using this screening strategy, six covalent antibodies with proximity-enabled bioactivity were identified, which were shown to covalently target HRV14-3C protease with high inhibitory potency and exquisite selectivity. Compared to structure-based rational design, this library-based screening method provides a simple and efficient way for the discovery and engineering of covalent antibody for enzyme inhibition.
Collapse
|
25
|
Zhou G, He L, Li KH, Pedroso CCS, Gochin M. A targeted covalent small molecule inhibitor of HIV-1 fusion. Chem Commun (Camb) 2021; 57:4528-4531. [PMID: 33956029 DOI: 10.1039/d1cc01013a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a low molecular weight covalent inhibitor targeting a conserved lysine residue within the hydrophobic pocket of HIV-1 glycoprotein-41. The inhibitor bound selectively to the hydrophobic pocket and exhibited an order of magnitude enhancement of anti-fusion activity against HIV-1 compared to its non-covalent counterpart. The findings represent a significant advance in the quest to obtain non-peptide fusion inhibitors.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA.
| | - Li He
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA.
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Cássio C S Pedroso
- Lawrence Berkeley National Laboratory, The Molecular Foundry, 1 Cyclotron Road, 67R5114, Berkeley, CA 94720, USA
| | - Miriam Gochin
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA. and Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| |
Collapse
|
26
|
van der Zouwen AJ, Witte MD. Modular Approaches to Synthesize Activity- and Affinity-Based Chemical Probes. Front Chem 2021; 9:644811. [PMID: 33937194 PMCID: PMC8082414 DOI: 10.3389/fchem.2021.644811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Combinatorial and modular methods to synthesize small molecule modulators of protein activity have proven to be powerful tools in the development of new drug-like molecules. Over the past decade, these methodologies have been adapted toward utilization in the development of activity- and affinity-based chemical probes, as well as in chemoproteomic profiling. In this review, we will discuss how methods like multicomponent reactions, DNA-encoded libraries, phage displays, and others provide new ways to rapidly screen novel chemical probes against proteins of interest.
Collapse
Affiliation(s)
- Antonie J van der Zouwen
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Martin D Witte
- Chemical Biology II, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Gambini L, Udompholkul P, Baggio C, Muralidharan A, Kenjić N, Assar Z, Perry JJP, Pellecchia M. Design, Synthesis, and Structural Characterization of Lysine Covalent BH3 Peptides Targeting Mcl-1. J Med Chem 2021; 64:4903-4912. [PMID: 33797903 DOI: 10.1021/acs.jmedchem.1c00005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Modulating disease-relevant protein-protein interactions (PPIs) using pharmacological tools is a critical step toward the design of novel therapeutic strategies. Over the years, however, targeting PPIs has proven a very challenging task owing to the large interfacial areas. Our recent efforts identified possible novel routes for the design of potent and selective inhibitors of PPIs using a structure-based design of covalent inhibitors targeting Lys residues. In this present study, we report on the design, synthesis, and characterizations of the first Lys-covalent BH3 peptide that has a remarkable affinity and selectivity for hMcl-1 over the closely related hBfl-1 protein. Our structural studies, aided by X-ray crystallography, provide atomic-level details of the inhibitor interactions that can be used to further translate these discoveries into novel generation, Lys-covalent pro-apoptotic agents.
Collapse
Affiliation(s)
- Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Aruljothi Muralidharan
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Nikola Kenjić
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Zahra Assar
- Cayman Chemical, 1180 East Ellsworth Road, Ann Arbor, Michigan 48108, United States
| | - J Jefferson P Perry
- Department of Biochemistry, College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
28
|
Ueda T, Tamura T, Kawano M, Shiono K, Hobor F, Wilson AJ, Hamachi I. Enhanced Suppression of a Protein–Protein Interaction in Cells Using Small-Molecule Covalent Inhibitors Based on an N-Acyl-N-alkyl Sulfonamide Warhead. J Am Chem Soc 2021; 143:4766-4774. [DOI: 10.1021/jacs.1c00703] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tsuyoshi Ueda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tomonori Tamura
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Kawano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Keiya Shiono
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan
| |
Collapse
|
29
|
Wu Y, Williams J, Calder EDD, Walport LJ. Strategies to expand peptide functionality through hybridisation with a small molecule component. RSC Chem Biol 2021; 2:151-165. [PMID: 34458778 PMCID: PMC8341444 DOI: 10.1039/d0cb00167h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/09/2020] [Indexed: 02/04/2023] Open
Abstract
Combining different compound classes gives molecular hybrids that can offer access to novel chemical space and unique properties. Peptides provide ideal starting points for such molecular hybrids, which can be easily modified with a variety of molecular entities. The addition of small molecules can improve the potency, stability and cell permeability of therapeutically relevant peptides. Furthermore, they are often applied to create peptide-based tools in chemical biology. In this review, we discuss general methods that allow the discovery of this compound class and highlight key examples of peptide-small molecule hybrids categorised by the application and function of the small molecule entity.
Collapse
Affiliation(s)
- Yuteng Wu
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Jack Williams
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Ewen D D Calder
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute London UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London London UK
| |
Collapse
|
30
|
Covalent peptides and proteins for therapeutics. Bioorg Med Chem 2021; 29:115896. [DOI: 10.1016/j.bmc.2020.115896] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/11/2022]
|
31
|
Gambini L, Udompholkul P, Salem AF, Baggio C, Pellecchia M. Stability and Cell Permeability of Sulfonyl Fluorides in the Design of Lys-Covalent Antagonists of Protein-Protein Interactions. ChemMedChem 2020; 15:2176-2184. [PMID: 32790900 PMCID: PMC7722097 DOI: 10.1002/cmdc.202000355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Recently we reported on aryl-fluorosulfates as possible stable and effective electrophiles for the design of lysine covalent, cell permeable antagonists of protein-protein interactions (PPIs). Here we revisit the use of aryl-sulfonyl fluorides as Lys-targeting moieties, incorporating these electrophiles in XIAP (X-linked inhibitor of apoptosis protein) targeting agents. We evaluated stability in buffer and reactivity with Lys311 of XIAP of various aryl-sulfonyl fluorides using biochemical and biophysical approaches, including displacement assays, mass spectrometry, SDS gel electrophoresis, and denaturation thermal shift measurements. To assess whether these modified electrophilic "warheads" can also react with Tyr, we repeated these evaluations with a Lys311Tyr XIAP mutant. Using a direct cellular assay, we could demonstrate that selected agents are cell permeable and interact covalently with their intended target in cell. These results suggest that certain substituted aryl-sulfonyl fluorides can be useful Lys- or Tyr-targeting electrophiles for the design of covalent pharmacological tools or even future therapeutics targeting protein-protein interactions.
Collapse
Affiliation(s)
- Luca Gambini
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Parima Udompholkul
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Ahmed F. Salem
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Carlo Baggio
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| | - Maurizio Pellecchia
- Biomedical sciences Division, School of Medicine, University of California, Riverside, 900 University Avenue, CA 92521 Riverside, USA
| |
Collapse
|
32
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
33
|
Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol 2020; 10:1389. [PMID: 32850448 PMCID: PMC7419686 DOI: 10.3389/fonc.2020.01389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The oncogene MDMX, also known as MDM4 is a critical negative regulator of the tumor suppressor p53 and has been implicated in the initiation and progression of human cancers. Increasing evidence indicates that MDMX is often amplified and highly expressed in human cancers, promotes cancer cell growth, and inhibits apoptosis by dampening p53-mediated transcription of its target genes. Inhibiting MDMX-p53 interaction has been found to be effective for restoring the tumor suppressor activity of p53. Therefore, MDMX is becoming one of the most promising molecular targets for developing anticancer therapeutics. In the present review, we mainly focus on the current MDMX-targeting strategies and known MDMX inhibitors, as well as their mechanisms of action and in vitro and in vivo anticancer activities. We also propose other potential targeting strategies for developing more specific and effective MDMX inhibitors for cancer therapy.
Collapse
Affiliation(s)
- De-Hua Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shaowei Mo
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
34
|
Li Y, Lian C, Hou Z, Wang D, Wang R, Wan C, Zhong W, Zhao R, Wang Y, Li S, Yin F, Li Z. Intramolecular methionine alkylation constructs sulfonium tethered peptides for protein conjugation. Chem Commun (Camb) 2020; 56:3741-3744. [DOI: 10.1039/d0cc00377h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Continuous efforts have been invested in the selective modification of proteins.
Collapse
|
35
|
Baggio C, Udompholkul P, Gambini L, Salem AF, Jossart J, Perry JJP, Pellecchia M. Aryl-fluorosulfate-based Lysine Covalent Pan-Inhibitors of Apoptosis Protein (IAP) Antagonists with Cellular Efficacy. J Med Chem 2019; 62:9188-9200. [PMID: 31550155 DOI: 10.1021/acs.jmedchem.9b01108] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have recently investigated the reactivity of aryl-fluorosulfates as warheads to form covalent adducts with Lys, Tyr, and His residues. However, the rate of reaction of aryl-fluorosulfates seemed relatively slow, putting into question their effectiveness to form covalent adducts in cell. Unlike the previously reported agents that targeted a relatively remote Lys residue with respect to the target's binding site, the current agents were designed to more directly juxtapose an aryl-fluorosulfate with a Lys residue that is located within the binding pocket of the BIR3 domain of X-linked inhibitor of apoptosis protein (XIAP). We found that such new agents can effectively and rapidly form a covalent adduct with XIAP-BIR3 in vitro and in cell, approaching the rate of reaction, cellular permeability, and stability that are similar to what attained by acrylamides when targeting Cys residues. Our studies further validate aryl-fluorosulfates as valuable Lys-targeting electrophiles, for the design of inhibitors of both enzymes and protein-protein interactions.
Collapse
|
36
|
SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc Natl Acad Sci U S A 2019; 116:18808-18814. [PMID: 31484779 DOI: 10.1073/pnas.1909972116] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Collapse
|
37
|
Charoenpattarapreeda J, Tan YS, Iegre J, Walsh SJ, Fowler E, Eapen RS, Wu Y, Sore HF, Verma CS, Itzhaki L, Spring DR. Targeted covalent inhibitors of MDM2 using electrophile-bearing stapled peptides. Chem Commun (Camb) 2019; 55:7914-7917. [PMID: 31225847 DOI: 10.1039/c9cc04022f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we describe the development of a novel staple with an electrophilic warhead to enable the generation of stapled peptide covalent inhibitors of the p53-MDM2 protein-protein interaction (PPI). The peptide developed showed complete and selective covalent binding resulting in potent inhibition of p53-MDM2 PPI.
Collapse
Affiliation(s)
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Elaine Fowler
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Rohan S Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Yuteng Wu
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore and Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore and School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 673551, Singapore
| | - Laura Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.
| |
Collapse
|
38
|
Liu F, Wang H, Li S, Bare GAL, Chen X, Wang C, Moses JE, Wu P, Sharpless KB. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF 4 )-Derived Connective Hubs for Bioconjugation to DNA and Proteins. Angew Chem Int Ed Engl 2019; 58:8029-8033. [PMID: 30998840 PMCID: PMC6546515 DOI: 10.1002/anie.201902489] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 11/08/2022]
Abstract
We report here the development of a suite of biocompatible SuFEx transformations from the SOF4 -derived iminosulfur oxydifluoride hub in aqueous buffer conditions. These biocompatible SuFEx reactions of iminosulfur oxydifluorides (R-N=SOF2 ) with primary amines give sulfamides (8 examples, up to 98 %), while the reaction with secondary amines furnish sulfuramidimidoyl fluoride products (8 examples, up to 97 %). Likewise, under mild buffered conditions, phenols react with the iminosulfur oxydifluorides (Ar-N=SOF2 ) to produce sulfurofluoridoimidates (13 examples, up to 99 %), which can themselves be further modified by nucleophiles. These transformations open the potential for asymmetric and trisubstituted linkages projecting from the sulfur(VI) center, including versatile S-N and S-O connectivity (9 examples, up to 94 %). Finally, the SuFEx bioconjugation of iminosulfur oxydifluorides to amine-tagged single-stranded DNA and to BSA protein demonstrate the potential of SOF4 -derived SuFEx click chemistry in biological applications.
Collapse
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Chemistry, Fudan University, Shanghai, 200438, P. R. China
| | - Hua Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Suhua Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Grant A L Bare
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Xuemin Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - John E Moses
- La Trobe Institute For Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - K Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
39
|
Liu J, Li S, Aslam NA, Zheng F, Yang B, Cheng R, Wang N, Rozovsky S, Wang PG, Wang Q, Wang L. Genetically Encoding Photocaged Quinone Methide to Multitarget Protein Residues Covalently in Vivo. J Am Chem Soc 2019; 141:9458-9462. [PMID: 31184146 DOI: 10.1021/jacs.9b01738] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically introducing covalent bonds into proteins in vivo with residue specificity is affording innovative ways for protein research and engineering, yet latent bioreactive unnatural amino acids (Uaas) genetically encoded to date react with one to few natural residues only, limiting the variety of proteins and the scope of applications amenable to this technology. Here we report the genetic encoding of (2 R)-2-amino-3-fluoro-3-(4-((2-nitrobenzyl)oxy) phenyl) propanoic acid (FnbY) in Escherichia coli and mammalian cells. Upon photoactivation, FnbY generated a reactive quinone methide (QM), which selectively reacted with nine natural amino acid residues placed in proximity in proteins directly in live cells. In addition to Cys, Lys, His, and Tyr, photoactivated FnbY also reacted with Trp, Met, Arg, Asn, and Gln, which are inaccessible with existing latent bioreactive Uaas. FnbY thus dramatically expanded the number of residues for covalent targeting in vivo. QM has longer half-life than the intermediates of conventional photo-cross-linking Uaas, and FnbY exhibited cross-linking efficiency higher than p-azido-phenylalanine. The photoactivatable and multitargeting reactivity of FnbY with selectivity toward nucleophilic residues will be valuable for addressing diverse proteins and broadening the scope of applications through exploiting covalent bonding in vivo for chemical biology, biotherapeutics, and protein engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Nayyar A Aslam
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Rujin Cheng
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| |
Collapse
|
40
|
Gambini L, Baggio C, Udompholkul P, Jossart J, Salem AF, Perry JJP, Pellecchia M. Covalent Inhibitors of Protein-Protein Interactions Targeting Lysine, Tyrosine, or Histidine Residues. J Med Chem 2019; 62:5616-5627. [PMID: 31095386 DOI: 10.1021/acs.jmedchem.9b00561] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have recently reported a series of Lys-covalent agents targeting the BIR3 domain of the X-linked inhibitor of apoptosis protein (XIAP) using a benzamide-sulfonyl fluoride warhead. Using XIAP as a model system, we further investigated a variety of additional warheads that can be easily incorporated into binding peptides and analyzed their ability to form covalent adducts with lysine and other amino acids, including tyrosine, histidine, serine, and threonine, using biochemical and biophysical assays. Moreover, we tested aqueous, plasma stability, cell permeability, and cellular efficacy of the most effective agents. These studies identified aryl-fluoro sulfates as likely the most suitable electrophiles to effectively form covalent adducts with Lys, Tyr, and His residues, given that these agents were cell permeable and stable in aqueous buffer and in plasma. Our studies contain a number of general findings that open new possible avenues for the design of potent covalent protein-protein interaction antagonists.
Collapse
|
41
|
Liu F, Wang H, Li S, Bare GAL, Chen X, Wang C, Moses JE, Wu P, Sharpless KB. Biocompatible SuFEx Click Chemistry: Thionyl Tetrafluoride (SOF
4
)‐Derived Connective Hubs for Bioconjugation to DNA and Proteins. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
- Department of Chemistry Fudan University Shanghai 200438 P. R. China
| | - Hua Wang
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Suhua Li
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
- School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Grant A. L. Bare
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| | - Xuemin Chen
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China
| | - John E. Moses
- La Trobe Institute For Molecular Science La Trobe University Melbourne VIC 3086 Australia
| | - Peng Wu
- Department of Molecular Medicine The Scripps Research Institute La Jolla CA 92037 USA
| | - K. Barry Sharpless
- Department of Chemistry The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
42
|
Wang D, Yu M, Liu N, Lian C, Hou Z, Wang R, Zhao R, Li W, Jiang Y, Shi X, Li S, Yin F, Li Z. A sulfonium tethered peptide ligand rapidly and selectively modifies protein cysteine in vicinity. Chem Sci 2019; 10:4966-4972. [PMID: 31183045 PMCID: PMC6530539 DOI: 10.1039/c9sc00034h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/24/2019] [Indexed: 01/06/2023] Open
Abstract
Significant efforts have been invested to develop site-specific protein modification methodologies in the past two decades. In most cases, a reactive moiety was installed onto ligands with the sole purpose of reacting with specific residues in proteins. Herein, we report a unique peptide macrocyclization method via the bis-alkylation between methionine and cysteine to generate cyclic peptides with significantly enhanced stability and cellular uptake. Notably, when the cyclized peptide ligand selectively recognizes its protein target with a proximate cysteine, a rapid nucleophilic substitution could occur between the protein Cys and the sulfonium center on the peptide to form a conjugate. The conjugation reaction is rapid, facile and selective, triggered solely by proximity. The high target specificity is further proved in cell lysate and hints at its further application in activity based protein profiling. This method enhances the peptide's biophysical properties and generates a selective ligand-directed reactive site for protein modification and fulfills multiple purposes by one modification. This proof-of-concept study reveals its potential for further broad biological applications.
Collapse
Affiliation(s)
- Dongyuan Wang
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Mengying Yu
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Na Liu
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Chenshan Lian
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Rui Wang
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong .
| | - Rongtong Zhao
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Wenjun Li
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Yixiang Jiang
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Xiaodong Shi
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Shuiming Li
- College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , 518055 , China .
| | - Feng Yin
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics , School of Chemical Biology and Biotechnology , Peking University Shenzhen Graduate School , Shenzhen , 518055 , China . ;
| |
Collapse
|
43
|
Abstract
Covalent inhibitors are widely used in drug discovery and chemical biology. Although covalent inhibitors are frequently designed to react with noncatalytic cysteines, many ligand binding sites lack an accessible cysteine. Here, we review recent advances in the chemical biology of lysine-targeted covalent inhibitors and chemoproteomic probes. By analyzing crystal structures of proteins bound to common metabolites and enzyme cofactors, we identify a large set of mostly unexplored lysines that are potentially targetable with covalent inhibitors. In addition, we describe mass spectrometry-based approaches for determining proteome-wide lysine ligandability and lysine-reactive chemoproteomic probes for assessing drug-target engagement. Finally, we discuss the design of amine-reactive inhibitors that form reversible covalent bonds with their protein targets.
Collapse
Affiliation(s)
- Adolfo Cuesta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA; ,
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA; ,
| |
Collapse
|
44
|
Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. Proc Natl Acad Sci U S A 2018; 115:11162-11167. [PMID: 30322930 DOI: 10.1073/pnas.1813574115] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemical cross-linking mass spectrometry (CXMS) is being increasingly used to study protein assemblies and complex protein interaction networks. Existing CXMS chemical cross-linkers target only Lys, Cys, Glu, and Asp residues, limiting the information measurable. Here we report a "plant-and-cast" cross-linking strategy that employs a heterobifunctional cross-linker that contains a highly reactive succinimide ester as well as a less reactive sulfonyl fluoride. The succinimide ester reacts rapidly with surface Lys residues "planting" the reagent at fixed locations on protein. The pendant aryl sulfonyl fluoride is then "cast" across a limited range of the protein surface, where it can react with multiple weakly nucleophilic amino acid sidechains in a proximity-enhanced sulfur-fluoride exchange (SuFEx) reaction. Using proteins of known structures, we demonstrated that the heterobifunctional agent formed cross-links between Lys residues and His, Ser, Thr, Tyr, and Lys sidechains. This geometric specificity contrasts with current bis-succinimide esters, which often generate nonspecific cross-links between lysines brought into proximity by rare thermal fluctuations. Thus, the current method can provide diverse and robust distance restraints to guide integrative modeling. This work provides a chemical cross-linker targeting unactivated Ser, Thr, His, and Tyr residues using sulfonyl fluorides. In addition, this methodology yielded a variety of cross-links when applied to the complex Escherichia coli cell lysate. Finally, in combination with genetically encoded chemical cross-linking, cross-linking using this reagent markedly increased the identification of weak and transient enzyme-substrate interactions in live cells. Proximity-dependent cross-linking will dramatically expand the scope and power of CXMS for defining the identities and structures of protein complexes.
Collapse
|
45
|
Iegre J, Gaynord JS, Robertson NS, Sore HF, Hyvönen M, Spring DR. Two-Component Stapling of Biologically Active and Conformationally Constrained Peptides: Past, Present, and Future. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jessica Iegre
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| | | | | | - Hannah F. Sore
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| | - Marko Hyvönen
- Department of Biochemistry; University of Cambridge; Cambridge CB2 1GA UK
| | - David R. Spring
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| |
Collapse
|
46
|
Design of Potent pan-IAP and Lys-Covalent XIAP Selective Inhibitors Using a Thermodynamics Driven Approach. J Med Chem 2018; 61:6350-6363. [PMID: 29940121 DOI: 10.1021/acs.jmedchem.8b00810] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently we reported that rapid determination of enthalpy of binding can be achieved for a large number of congeneric agents or in combinatorial libraries fairly efficiently. We show that using a thermodynamic Craig plot can be very useful in dissecting the enthalpy and entropy contribution of different substituents on a common scaffold, in order to design potent, selective, or pan-active compounds. In our implementation, the approach identified a critical Lys residue in the BIR3 domain of XIAP. We report for the first time that it is possible to target such residue covalently to attain potent and selective agents. Preliminary cellular studies in various models of leukemia, multiple myeloma, and pancreatic cancers suggest that the derived agents possess a potentially intriguing pattern of activity, especially for cell lines that are resistant to the pan-IAP antagonist and clinical candidate LCL161.
Collapse
|
47
|
Mukherjee H, Grimster NP. Beyond cysteine: recent developments in the area of targeted covalent inhibition. Curr Opin Chem Biol 2018; 44:30-38. [DOI: 10.1016/j.cbpa.2018.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
|
48
|
Abstract
Our understanding of the complex molecular processes of living organisms at the molecular level is growing exponentially. This knowledge, together with a powerful arsenal of tools for manipulating the structures of macromolecules, is allowing chemists to to harness and reprogram the cellular machinery in ways previously unimaged. Here we review one example in which the genetic code itself has been expanded with new building blocks that allow us to probe and manipulate the structures and functions of proteins with unprecedented precision.
Collapse
Affiliation(s)
- Douglas D. Young
- Department of Chemistry, College of William & Mary,
P.O. Box 8795, Williamsburg, VA 23187 (USA)
| | - Peter G. Schultz
- Department of Chemistry, The Scripps Research Institute,
La Jolla, CA 92037 (USA),
| |
Collapse
|
49
|
Wang N, Yang B, Fu C, Zhu H, Zheng F, Kobayashi T, Liu J, Li S, Ma C, Wang PG, Wang Q, Wang L. Genetically Encoding Fluorosulfate-l-tyrosine To React with Lysine, Histidine, and Tyrosine via SuFEx in Proteins in Vivo. J Am Chem Soc 2018; 140:4995-4999. [PMID: 29601199 DOI: 10.1021/jacs.8b01087] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introducing new chemical reactivity into proteins in living cells would endow innovative covalent bonding ability to proteins for research and engineering in vivo. Latent bioreactive unnatural amino acids (Uaas) can be incorporated into proteins to react with target natural amino acid residues via proximity-enabled reactivity. To expand the diversity of proteins amenable to such reactivity in vivo, a chemical functionality that is biocompatible and able to react with multiple natural residues under physiological conditions is highly desirable. Here we report the genetic encoding of fluorosulfate-l-tyrosine (FSY), the first latent bioreactive Uaa that undergoes sulfur-fluoride exchange (SuFEx) on proteins in vivo. FSY was found nontoxic to Escherichia coli and mammalian cells; after being incorporated into proteins, it selectively reacted with proximal lysine, histidine, and tyrosine via SuFEx, generating covalent intraprotein bridge and interprotein cross-link of interacting proteins directly in living cells. The proximity-activatable reactivity, multitargeting ability, and excellent biocompatibility of FSY will be invaluable for covalent manipulation of proteins in vivo. Moreover, genetically encoded FSY hereby empowers general proteins with the next generation of click chemistry, SuFEx, which will afford broad utilities in chemical biology, drug discovery, and biotherapeutics.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Caiyun Fu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,College of Life Sciences , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - He Zhu
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Cheng Ma
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| |
Collapse
|
50
|
Guo T, Meng G, Zhan X, Yang Q, Ma T, Xu L, Sharpless KB, Dong J. A New Portal to SuFEx Click Chemistry: A Stable Fluorosulfuryl Imidazolium Salt Emerging as an “F−SO2
+” Donor of Unprecedented Reactivity, Selectivity, and Scope. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712429] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Taijie Guo
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Genyi Meng
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Xiongjie Zhan
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Qian Yang
- No.187 Building; 1799 Yinchun Road Shanghai 200032 P. R. China
| | - Tiancheng Ma
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Long Xu
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - K. Barry Sharpless
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry; Center for Excellence in Molecular Synthesis; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; Chinese Academy of Sciences; 345 Ling-Ling Road Shanghai 200032 P. R. China
| |
Collapse
|