1
|
Synergism effect between internal and surface cubic-large-pores in the enhancement of separation performance in hierarchically porous membranes. POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Gumirova V, Razumovskaya I, Apel P, Bedin S, Naumov A. The Influence of Mechanical Stress Micro Fields around Pores on the Strength of Elongated Etched Membrane. MEMBRANES 2022; 12:membranes12111168. [PMID: 36422160 PMCID: PMC9697086 DOI: 10.3390/membranes12111168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/12/2023]
Abstract
The investigation of the mechanical properties of polymer track-etched membranes (TMs) has attracted significant attention in connection with the extended region of their possible applications. In the present work, the mechanical stress fields around the pores of an elongated polyethylene terephthalate TM and around the 0.3 mm holes in model polymer specimens were studied in polarized light and with the finite element method. A break-up experiment showed the controlling role of stress field interaction in the forming of a microcrack system and the generation of a main crack with rupture of the TM (or model pattern). This interaction depended on the relative distance between the pores (holes) and their orientation. The results of the calculations of the pore distribution function over the surface of the TM via the net method and wavelet analysis are presented. The fractal character of pore distribution was established. The geometric characteristics of the TM pore system as initial defects are inherited by obtaining TM-based composites.
Collapse
Affiliation(s)
- Venera Gumirova
- Laboratory of Advanced Materials Physics, Moscow Pedagogical State University, 119991 Moscow, Russia
| | - Irina Razumovskaya
- Laboratory of Advanced Materials Physics, Moscow Pedagogical State University, 119991 Moscow, Russia
| | - Pavel Apel
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Sergey Bedin
- Laboratory of Advanced Materials Physics, Moscow Pedagogical State University, 119991 Moscow, Russia
- The Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch, Troitsk, 108840 Moscow, Russia
| | - Andrey Naumov
- Laboratory of Advanced Materials Physics, Moscow Pedagogical State University, 119991 Moscow, Russia
- The Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch, Troitsk, 108840 Moscow, Russia
- Laboratory for Spectroscopy of Electronic Spectra of Molecules, Institute for Spectroscopy RAS, Troitsk, 108840 Moscow, Russia
| |
Collapse
|
3
|
Hossain UH, Jantsen G, Muench F, Kunz U, Ensinger W. Increasing the structural and compositional diversity of ion-track templated 1D nanostructures through multistep etching, plastic deformation, and deposition. NANOTECHNOLOGY 2022; 33:245603. [PMID: 35235910 DOI: 10.1088/1361-6528/ac59e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Ion-track etching represents a highly versatile way of introducing artificial pores with diameters down into the nm-regime into polymers, which offers considerable synthetic flexibility in template-assisted nanofabrication schemes. While the mechanistic foundations of ion-track technology are well understood, its potential for creating structurally and compositionally complex nano-architectures is far from being fully tapped. In this study, we showcase different strategies to expand the synthetic repertoire of ion-track membrane templating by creating several new 1D nanostructures, namely metal nanotubes of elliptical cross-section, funnel-shaped nanotubes optionally overcoated with titania or nickel nanospike layers, and concentrical as well as stacked metal nanotube-nanowire heterostructures. These nano-architectures are obtained solely by applying different wet-chemical deposition methods (electroless plating, electrodeposition, and chemical bath deposition) to ion-track etched polycarbonate templates, whose pore geometry is modified through plastic deformation, consecutive etching steps under differing conditions, and etching steps intermitted by spatially confined deposition, providing new motifs for nanoscale replication.
Collapse
Affiliation(s)
- U H Hossain
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| | - G Jantsen
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| | - F Muench
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| | - U Kunz
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| | - W Ensinger
- Technische Universität Darmstadt, Department of Materials Science, Materials Analysis, Alarich-Weiss-Str.2, D-64287 Darmstadt, Germany
| |
Collapse
|
4
|
Froehlich K, Scheuerlein MC, Ali M, Nasir S, Ensinger W. Enhancement of heavy ion track-etching in polyimide membranes with organic solvents. NANOTECHNOLOGY 2021; 33:045301. [PMID: 34644697 DOI: 10.1088/1361-6528/ac2f5a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The effect of organic solvents on the ion track-etching of polyimide (PI) membranes is studied to enhance the nanopore fabrication process and the control over pore diameter growth. To this end, two approaches are employed to investigate the influence of organic solvents on the nanopore fabrication in PI membranes. In the first approach, the heavy ion irradiated PI samples are pretreated with organic solvents and then chemically etched with sodium hypochlorite (NaOCl) solution, resulting up to ∼4.4 times larger pore size compared to untreated ones. The second approach is based on a single-step track-etching process where the etchant (NaOCl) solution contains varying amounts of organic solvent (by vol%). The experimental data shows that a significant increase in both the bulk-etch and track-etch rates is observed by using the etchant mixture, which leads to ∼47% decrease in the nanopore fabrication time. This enhancement of nanopore fabrication process in PI membranes would open up new opportunities for their implementation in various potential applications.
Collapse
Affiliation(s)
- Kristina Froehlich
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, Alarich-Weiss-Str. 02, D-64287 Darmstadt, Germany
| | - Martin Christoph Scheuerlein
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, Alarich-Weiss-Str. 02, D-64287 Darmstadt, Germany
| | - Mubarak Ali
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, Alarich-Weiss-Str. 02, D-64287 Darmstadt, Germany
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, D-64291, Darmstadt, Germany
| | - Saima Nasir
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, Alarich-Weiss-Str. 02, D-64287 Darmstadt, Germany
- Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung, D-64291, Darmstadt, Germany
| | - Wolfgang Ensinger
- Department of Material- and Geo-Sciences, Materials Analysis, Technische Universität Darmstadt, Alarich-Weiss-Str. 02, D-64287 Darmstadt, Germany
| |
Collapse
|
5
|
Elele E, Shen Y, Tang J, Lei Q, Khusid B, Tkacik G, Carbrello C. Mechanical properties of polymeric microfiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117351] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Li Y, Stern D, Lock LL, Mills J, Ou SH, Morrow M, Xu X, Ghose S, Li ZJ, Cui H. Emerging biomaterials for downstream manufacturing of therapeutic proteins. Acta Biomater 2019; 95:73-90. [PMID: 30862553 DOI: 10.1016/j.actbio.2019.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/23/2022]
Abstract
Downstream processing is considered one of the most challenging phases of industrial manufacturing of therapeutic proteins, accounting for a large portion of the total production costs. The growing demand for therapeutic proteins in the biopharmaceutical market in addition to a significant rise in upstream titers have placed an increasing burden on the downstream purification process, which is often limited by high cost and insufficient capacities. To achieve efficient production and reduced costs, a variety of biomaterials have been exploited to improve the current techniques and also to develop superior alternatives. In this work, we discuss the significance of utilizing traditional biomaterials in downstream processing and review the recent progress in the development of new biomaterials for use in protein separation and purification. Several representative methods will be highlighted and discussed in detail, including affinity chromatography, non-affinity chromatography, membrane separations, magnetic separations, and precipitation/phase separations. STATEMENT OF SIGNIFICANCE: Nowadays, downstream processing of therapeutic proteins is facing great challenges created by the rapid increase of the market size and upstream titers, starving for significant improvements or innovations in current downstream unit operations. Biomaterials have been widely used in downstream manufacturing of proteins and efforts have been continuously devoted to developing more advanced biomaterials for the implementation of more efficient and economical purification methods. This review covers recent advances in the development and application of biomaterials specifically exploited for various chromatographic and non-chromatographic techniques, highlighting several promising alternative strategies.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Shih-Hao Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States.
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
7
|
Gradient nanoporous phenolics filled in macroporous substrates for highly permeable ultrafiltration. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Stepwise synthesis of oligoamide coating on a porous support: Fabrication of a membrane with controllable transport properties. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Shi X, Wang Z, Wang Y. Highly permeable nanoporous block copolymer membranes by machine-casting on nonwoven supports: An upscalable route. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|