1
|
Yoshida Y, Ida H, Mino T, Sakamoto M. Formal [3 + 2] Cycloaddition of α-Imino Esters with Azo Compounds: Facile Construction of Pentasubstituted 1,2,4-Triazoline Skeletons. Molecules 2023; 28:molecules28114339. [PMID: 37298816 DOI: 10.3390/molecules28114339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
1,2,4-Triazole and 1,2,4-triazoline are important components of bioactive molecules and catalysts employed in organic synthesis. Therefore, the efficient synthesis of these components has received significant research attention. However, studies on their structural diversity remain lacking. Previously, we developed chiral phase-transfer-catalyzed asymmetric reactions of α-imino carbonyl compounds with α,β-unsaturated carbonyl compounds and haloalkanes. In this study, we demonstrate the formal [3 + 2] cycloaddition reaction of α-imino esters with azo compounds under Brønsted base catalysis, resulting in the corresponding 1,2,4-triazolines in high yields. The results revealed that a wide range of substrates and reactants can be applied, irrespective of their steric and electronic characteristics. The present reaction made the general preparation of 3-aryl pentasubstituted 1,2,4-triazolines possible for the first time. Furthermore, a mechanistic study suggested that the reaction proceeds without isomerization into the aldimine form.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Hidetoshi Ida
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Takashi Mino
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| | - Masami Sakamoto
- Molecular Chirality Research Center, Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan
| |
Collapse
|
2
|
Panjacharam P, Ulabala V, Jayakumar J, Rajasekhara Reddy S. Emerging trends in the sustainable synthesis of N-N bond bearing organic scaffolds. Org Biomol Chem 2023; 21:2632-2652. [PMID: 36883312 DOI: 10.1039/d3ob00300k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
N-N bond bearing organic frameworks such as azos, hydrazines, indazoles, triazoles and their structural moieties have piqued the interest of organic chemists due to the intrinsic nitrogen electronegativity. Recent methodologies with atom efficacy and a greener approach have overcome the synthetic obstacles of N-N bond construction from N-H. As a result, a wide range of amine oxidation methods have been reported early on. This review's vision emphasizes the emerging methods of N-N bond formation, particularly photo, electro, organo and transition metal free chemical methods.
Collapse
Affiliation(s)
| | - Vijayasree Ulabala
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technology (RGUKT), Nuzvid 521202, India.
| | | | | |
Collapse
|
3
|
Jain S, Kumawat J, Jain P, Shruti, Malik P, Dwivedi J, Kishore D. Metal-catalyzed synthesis of triazine derivatives. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Gao Q, Wu M, Zhang L, Xu P, Wang H, Sun Z, Fang L, Duan Y, Bai S, Zhou X, Han M, Zhang J, Lv J. Open-Air Dual-Diamination of Aromatic Aldehydes: Direct Synthesis of Azolo-Fused 1,3,5-Triazines Facilitated by Ammonium Iodide. J Org Chem 2021; 86:17265-17273. [PMID: 34792363 DOI: 10.1021/acs.joc.1c02362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A new and practical protocol for the synthesis of medicinally privileged azolo[1,3,5]triazines by simply heating under air has been presented. The in situ generated N-azolo amidines from commercially available aromatic aldehydes and 3-aminoazoles with ammonium iodide undergo the second diamination to accomplish the [3 + 1 + 1 + 1] heteroannulation reaction. This convenient process is appreciated by high efficiency, broad substrate scope, gram-scale synthesis, and operational simplicity under reagent-free conditions.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Manman Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Le Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Pengju Xu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - He Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xiangyu Zhou
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Mingxin Han
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jixia Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Jieli Lv
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
5
|
Shang L, Feng Y, Gao X, Chen Z, Xia Y, Jin W, Liu C. DMAP‐Catalyzed
C—N Bond Formation for Diverse Synthesis of Imidazo[1,2‐
a
]pyrimidine and Pyrimido[1,2‐
a
]benzimidazole Derivatives. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Le‐Le Shang
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Yun Feng
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Xing‐Lian Gao
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Zi‐Ren Chen
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Yu Xia
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Wei‐Wei Jin
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| | - Chen‐Jiang Liu
- The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, School of Chemistry and Chemical Engineering, Xinjiang University Urumqi Xinjiang 830046 China
| |
Collapse
|
6
|
Wu J, Luo H, Wang T, Sun H, Zhang Q, Chai Y. Diverse synthesis of pyrimido[1,2-a]benzimidazoles and imidazo[2,1-b]benzothiazoles via CuI-catalyzed decarboxylic multicomponent reactions of heterocyclic azoles, aldehydes and alkynecarboxylic acids. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Wu F, Zhang J, Shang E, Zhang J, Li X, Zhu B, Lei X. Synthesis and Evaluation of a New Type of Small Molecule Epigenetic Modulator Containing Imidazo[1,2- b][1,2,4]triazole Motif. Front Chem 2019; 6:642. [PMID: 30627529 PMCID: PMC6309140 DOI: 10.3389/fchem.2018.00642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Epigenetic modifications such as DNA methylation is important for many cellular processes, such as cell differentiation and cell death. The disorder of epigenetic state is closely related to human diseases, especially cancers. DNA methylation is a well-characterized epigenetic modification which is related to gene silencing and is considered as a repressive epigenetic mark. DNA methylation caused gene repression can be derepressed by chemical agents. Small molecules targeting DNA methyltransferases, histone deacetylases, and other regulatory factors can activate genes silenced by DNA methylation. However, more and more studies have shown that histone deacetylation is not the only downstream event of DNA methylation. Some additional, unknown mechanisms that promote DNA methylation-mediated gene silencing may exist. Recently, through high-throughput screening using a 308,251-member chemical library to identify potent small molecules that derepress an EGFP reporter gene silenced by DNA methylation, we identified seven hit compounds that did not directly target bulk DNA methylation or histone acetylation. Three of them (LX-3, LX-4, LX-5) were proven to selectively activate the p38 MAPK pathway in multiple cell types. In order to identify the exact cellular targets of these compounds, we turn to work on the SAR study of LX-3 by constructing a structurally diverse chemical library based on the imidazo[1,2-b][1,2,4]triazole core structure via diversity-oriented synthesis. Our work provides a general approach to efficiently access diverse heterocyclic molecules with interesting epigenetic modulation activities.
Collapse
Affiliation(s)
- Fan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Erchang Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Junzhi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiang Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, Peking-Tsinghua Center for Life Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
8
|
Wang M, Meng Y, Wei W, Wu J, Yu W, Chang J. Iodine/Copper(I)-Catalyzed Direct Annulation of N
-Benzimidazolyl Amidines with Aldehydes for the Synthesis of Ortho
-Fused 1,3,5-Triazines. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Manman Wang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan Province 450001 People's Republic of China
| | - Yinggao Meng
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan Province 450001 People's Republic of China
| | - Wei Wei
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan Province 450001 People's Republic of China
| | - Jie Wu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan Province 450001 People's Republic of China
| | - Wenquan Yu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan Province 450001 People's Republic of China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou Henan Province 450001 People's Republic of China
| |
Collapse
|