1
|
Khamrui R, Mukherjee A, Ghosh S. Hydrogen-Bonding-Regulated Morphology Control and the Impact on the Antibacterial Activity of Cationic π-Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13870-13878. [PMID: 38917360 DOI: 10.1021/acs.langmuir.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This manuscript describes the synthesis, self-assembly, and antibacterial properties of naphthalene-diimide (NDI)-derived cationic π-amphiphiles. Three such asymmetric NDI derivatives with a nonionic hydrophilic wedge and a guanidine group in the two opposite sides of the NDI chromophore were considered. They differ by a single functional group (hydrazide, amide, and ester for NDI-1, NDI-2, and NDI-3, respectively), located in the linker between the NDI and the hydrophilic wedge. For NDI-1, the H-bonding among the hydrazides regulated unilateral stacking and a preferential direction of curvature of the resulting supramolecular polymer, producing an unsymmetric polymersome with the guanidinium groups displayed at the outer surface. NDI-3, lacking any H-bonding group, exhibits π-stacking without any preferential orientation and generates spherical particles with a relatively poor display of the guanidium groups. In sharp contrast to NDI-1, NDI-2 exhibits an entangled one-dimensional (1D) fibrillar morphology, indicating the prominent role of the H-bonding motif of the amide group and flexibility of the linker. The antibacterial activity of these assemblies was probed against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). NDI-1 showed the most promising antibacterial activity with a minimum inhibitory concentration (MIC) of ∼7.8 μg/mL against S. aureus and moderate activity (MIC ∼ 125 μg/mL) against E. coli. In sharp contrast, NDI-3 did not show any significant activity against the bacteria, suggesting a strong impact of the H-bonding-regulated directional assembly. NDI-2, forming a fibrillar network, showed moderate activity against S. aureus and negligible activity against E. coli, highlighting a significant impact of the morphology. All of these three molecules were found to be compatible with mammalian cells from the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) and hemolysis assay. The mechanistic investigation by membrane polarization assay, live/dead fluorescence assay, and microscopy studies confirmed the membrane disruption mechanism of cell killing for the lead candidate NDI-1.
Collapse
Affiliation(s)
- Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Arunima Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
2
|
Cappelletti D, Barbieri M, Aliprandi A, Maggini M, Đorđević L. Self-assembled π-conjugated chromophores: preparation of one- and two-dimensional nanostructures and their use in photocatalysis. NANOSCALE 2024; 16:9153-9168. [PMID: 38639760 PMCID: PMC11097008 DOI: 10.1039/d4nr00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Photocatalytic systems have attracted research interest as a clean approach to generate energy from abundant sunlight. In this context, developing efficient and robust photocatalytic structures is crucial. Recently, self-assembled organic chromophores have entered the stage as alternatives to both molecular systems and (in)organic semiconductors. Nanostructures made of self-assembled π-conjugated dyes offer, on the one hand, molecular customizability to tune their optoelectronic properties and activities and on the other hand, provide benefits from heterogeneous catalysis that include ease of separation, recyclability and improved photophysical properties. In this contribution, we present recent achievements in constructing supramolecular photocatalytic systems made of chromophores for applications in water splitting, H2O2 evolution, CO2 reduction, or environmental remediation. We discuss strategies that can be used to prepare ordered photocatalytic systems with an emphasis on the effect of packing between the dyes and the resulting photocatalytic activity. We further showcase supramolecular strategies that allow interfacing the organic nanostructures with co-catalysts, molecules, polymers, and (in)organic materials. The principles discussed here are the foundation for the utilization of these self-assembled materials in photocatalysis.
Collapse
Affiliation(s)
- David Cappelletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Marianna Barbieri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Alessandro Aliprandi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
3
|
Bhardwaj A, Mudasar Hussain C, Dewangan P, Mukhopadhyay P. Naphthalene diimide-Annulated Heterocyclic Acenes: Synthesis, Electrochemical and Semiconductor Properties and their Multifaceted Applications. Chemistry 2024; 30:e202400208. [PMID: 38454793 DOI: 10.1002/chem.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024]
Abstract
Acenes and Naphthalene Diimides (NDIs) stand as distinguished classes of organic compounds, each possessing unique and intriguing properties that have garnered significant attention across various scientific disciplines. Acenes, characterized by linearly fused aromatic rings, have captivated researchers due to their diverse electronic structures and promising applications in materials science. On the other hand, NDIs, known for their distinctive electron-accepting properties, exhibit remarkable versatility in fields ranging from organic electronics, supramolecular to spin chemistry. In this review, we navigate through the fascinating realms of both acenes and NDIs before converging our focus on the highly diverse and distinctive subgroup of NDI-annulated heterocyclic acenes. This potentially important subgroup, has emerged as a subject of intense investigation, encapsulating their fascinating synthesis, optical and electrochemical characteristics, and multifaceted applications that span the realms of chemistry, physics, and biology. Through the exploration of their synthetic strategies, unique properties, and diverse applications, this review aims to offer a comprehensive understanding of the pivotal role played by NDI-based heterocyclic acenes in contemporary multidisciplinary research and technological innovation.
Collapse
Affiliation(s)
- Abhishek Bhardwaj
- Supramolecular and Material Chemistry Lab, School of Physical sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ch Mudasar Hussain
- Supramolecular and Material Chemistry Lab, School of Physical sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pratik Dewangan
- Supramolecular and Material Chemistry Lab, School of Physical sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
4
|
Corbet CHWA, van den Bersselaar BWL, de Waal BFM, Reynaerts R, Mali KS, De Feyter S, Jonas AM, Meijer EW, Vantomme G. Self-Assembly of Discrete Oligomers of Naphthalenediimides in Bulk and on Surfaces. Chemistry 2024; 30:e202303107. [PMID: 38009432 DOI: 10.1002/chem.202303107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Here, we report on the synthesis of discrete oligomers of alkyl-bridged naphthalenediimides (NDIs) and study their molecular nanostructures both in bulk, in solution, and at the liquid-solid interface. Via an iterative synthesis method, multiple NDI cores were bridged with short and saturated alkyl-diamines (C3 and C12 ) or long and unsaturated alkyl-diamines (u2 C33 to u8 C100 ) at their imide termini. The strong intermolecular interaction between the NDI cores was observed by probing their photophysical properties in solution. In bulk, the discrete NDI oligomers preferentially ordered in lamellar morphologies, irrespective of whether a saturated or unsaturated spacer was employed. Moreover, both the molecular architecture as well as the crystallization conditions play a significant role in the nanoscale ordering. The long unsaturated alkyl chains lead preferably to folded-chain conformations while their saturated analogues form stretched arrangements. At the solution-solid interface, well-defined lamellar regions were observed. These results show that precision in chemical structure alone is not sufficient to reach well-defined structures of discrete oligomers, but that it must be combined with precision in processing conditions.
Collapse
Affiliation(s)
- Christiaan H W A Corbet
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Bas F M de Waal
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Robby Reynaerts
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B-3001, Leuven, Belgium
| | - Alain M Jonas
- Institute of Condensed Matter and Nanosciences, Bio- and Soft Matter, Université catholique de Louvain-UCLouvain, Ottignies-Louvain-la-Neuve, Louvain-la-Neuve, B-1348, Belgium
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, Australia
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Matarranz B, Díaz‐Cabrera S, Ghosh G, Carreira‐Barral I, Soberats B, García‐Valverde M, Quesada R, Fernández G. Anticooperative Supramolecular Oligomerization Mediated by V‐Shaped Monomer Design and Unconventional Hydrogen Bonds. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202218555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Beatriz Matarranz
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | - Sandra Díaz‐Cabrera
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Goutam Ghosh
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| | | | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears Cra. Valldemossa, Km. 7.5 07122 Palma de Mallorca Spain
| | - María García‐Valverde
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Roberto Quesada
- Departamento de Química Facultad de Ciencias Universidad de Burgos 09001 Burgos Spain
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster Organisch-Chemisches Institut Corrensstraße 36 48149 Münster Germany
| |
Collapse
|
7
|
Matarranz B, Díaz-Cabrera S, Ghosh G, Carreira-Barral I, Soberats B, García-Valverde M, Quesada R, Fernández G. Anticooperative Supramolecular Oligomerization Mediated by V-Shaped Monomer Design and Unconventional Hydrogen Bonds. Angew Chem Int Ed Engl 2023; 62:e202218555. [PMID: 36828774 DOI: 10.1002/anie.202218555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/26/2023]
Abstract
After more than three decades of extensive investigations on supramolecular polymers, strategies for self-limiting growth still remain challenging. Herein, we exploit a new V-shaped monomer design to achieve anticooperatively formed oligomers with superior robustness and high luminescence. In toluene, the monomer-oligomer equilibrium is shifted to the monomer side, enabling the elucidation of the molecular packing modes and the resulting (weak) anticooperativity. Steric effects associated with an antiparallel staircase organization of the dyes are proposed to outcompete aromatic and unconventional B-F⋅⋅⋅H-N/C interactions, restricting the growth at the stage of oligomers. In methylcyclohexane (MCH), the packing modes and the anticooperativity are preserved; however, pronounced solvophobic and chain-enwrapping effects lead to thermally ultrastable oligomers. Our results shed light on understanding anticooperative effects and restricted growth in self-assembly.
Collapse
Affiliation(s)
- Beatriz Matarranz
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Sandra Díaz-Cabrera
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Goutam Ghosh
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears Cra., Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Gustavo Fernández
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
8
|
Sallembien Q, Aoun P, Blanchard S, Bouteiller L, Raynal M. Interplay Between Hydrogen Bonding and Electron Transfer in Mixed Valence Assemblies of Triarylamine Trisamides. Chemistry 2023; 29:e202203199. [PMID: 36394123 PMCID: PMC10107863 DOI: 10.1002/chem.202203199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/18/2022]
Abstract
Hydrogen-bonding interactions are assumed to play a critical role in the long-range transport of light or charge recently observed in supramolecular assemblies of C3 -symmetrical discotic molecules. Herein, the structure of mixed valence assemblies formed by irradiating triarylamine trisamide (TATA) molecules was determined by multifarious techniques under various conditions with the aim of probing the interplay between the hydrogen bonding network and the rate of electron transport in different states (solution, gel, film). Irradiation was performed under initial states that vary by the degree of association of TATA monomers through hydrogen bonds. Firstly, a significant shift of the N-H and C=O stretching frequencies was observed by FTIR upon irradiation thus revealing an overlooked signature of TATA⋅+ species and interacting mixed valence aggregates. Secondly, gels and films both mostly consist of hydrogen-bonded TATA polymers but their EPR spectra recorded at 293 K reveal very different behaviors: localized electrons in the gels versus fully delocalized electrons in the films. Hydrogen bonding thus appears as a necessary but not sufficient condition to get fast electron transfer rates and a packing of the TATA monomers particularly suitable for charge transport is assumed to exist in the solid state. Finally, defects in the hydrogen bonding network are detected upon increasing the number of radical species in the mixed valence assemblies present in the film state without impeding the delocalization of the unpaired electrons. A delicate balance between hydrogen bonds and packing is thus necessary to get supramolecular polarons in mixed valence TATA assemblies.
Collapse
Affiliation(s)
- Quentin Sallembien
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Paméla Aoun
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Sébastien Blanchard
- Institut Parisien de Chimie Moléculaire, Equipe Edifices Polymétalliques, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Laurent Bouteiller
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Raynal
- Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
9
|
Umer Lone M, Sahu N, Kumar Roy R, Adhikari B. Introduction of Ferrocene as a Facilitator for the Construction of Supramolecular Polymers. Chemistry 2023; 29:e202202711. [PMID: 36178321 DOI: 10.1002/chem.202202711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 01/04/2023]
Abstract
Proper monomer design is the key to enhancing the strength of noncovalent interactions between the molecules toward the efficient formation of supramolecular polymers (SPs). We have designed and synthesized 1,n'-disubstituted ferrocene-azobenzene-long alkyl chains, Fc(CONH-Azo-TDP)2 , to afford SPs with a high probability. The design exploits the ''molecular ball-bearing'' property of the ferrocene core, which allows two azobenzene arms to rotate in the planes of cyclopentadienyl rings, generating the most suitable molecular conformation required for SP formation. This ferrocene monomer formed a supergel consisting of SPs supported by strong intermolecular (H-bonding and π-π stacking) interactions and higher enthalpy gain than the reference molecules, where the central ferrocene core was replaced by flexible aliphatic as well as rigid benzene linkers. The molecular conformation involved in SPs, the strength of noncovalent interactions, and the process of supramolecular polymerization were investigated through NMR, UV-Vis, XRD and TEM studies. The results demonstrate that ferrocene may act as a good modulator for constructing efficient SPs.
Collapse
Affiliation(s)
- Mohammad Umer Lone
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli PO, 140306, S. A. S. Nagar, Punjab, India
| | - Nihar Sahu
- Department of Chemistry, National Institute of Technology Rourkela, 769008, Rourkela, Odisha, India
| | - Raj Kumar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, Manauli PO, 140306, S. A. S. Nagar, Punjab, India
| | - Bimalendu Adhikari
- Department of Chemistry, National Institute of Technology Rourkela, 769008, Rourkela, Odisha, India
| |
Collapse
|
10
|
Chorol S, Saini P, Mukhopadhyay S P. Synthesis and Properties of Electron-Deficient and Electron-Rich Redox-Active Ionic π-Systems. CHEM REC 2022; 22:e202200172. [PMID: 36069267 DOI: 10.1002/tcr.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/18/2022] [Indexed: 12/14/2022]
Abstract
There is growing interest towards the design and synthesis of organic redox-active systems, which exist in ionic form. Multi- redox systems entail life-sustaining processes like photosynthesis and cellular respiration. The significant challenge for material scientists is to rationally design complex molecular materials that can store and transfer multiple electrons at low operational potentials and are stable under ambient conditions. Also, important are the designed ionic π-systems that combine efficient electron and ion transport. Here, we discuss the synthesis of ionic π-systems which exist in the closed-shell form. Firstly, different classes of ionic arylenediimides and viologens with different π-linkers are discussed from the synthetic, structural and redox perspective. These ionic π-systems are based on the electron deficient π-scaffolds, and are shown to accumulate upto six electrons. We then discuss electron-rich ionic arylenediimides which can exist in anionic form or zwitterionic form. The anionic electron donors have absorption extending to the near Infrared (NIR) region and can be stabilized in aqueous solution. We also discuss the effect of the electron accumulation on the aromaticity and non-aromaticity of the naphthalene and the imide rings of the naphthalenediimides. We finally discuss in brief, the applications related to the organic mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Sonam Chorol
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Poonam Saini
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | | |
Collapse
|
11
|
Khamrui R, Manna RN, Rajdev P, Paul A, Ghosh S. Impact of the Hydrogen-Bonding Functional Group on Hydrogelation of Amphiphilic Naphthalene-diimide Derivatives and Nonspecific Protein Adsorption. ACS APPLIED BIO MATERIALS 2022; 5:5410-5417. [PMID: 36251686 DOI: 10.1021/acsabm.2c00761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This manuscript reports the effect of hydrogen-bonding functionality on the supramolecular assembly of naphthalene-diimide (NDI)-derived amphiphilic building blocks in water. All the molecules contain a central NDI chromophore, functionalized with a hydrophilic oligo-oxyethylene (OE) wedge in one arm and a phenyl group on the opposite arm. They differ by a single H-bonding functionality, which links the NDI chromophore and the phenyl moiety. The H-bonding functionalities are amide, thioamide, urea, and urethane in NDI-A, NDI-TA, NDI-U, and NDI-UT, respectively. All of these molecules exhibit π-stacking in water, as evident from their distinct UV/vis absorption spectra when compared to that of the monomeric dye in THF. However, among these four, only NDI-A and NDI-TA show hydrogelation, while the other two precipitate out of the medium. The NDI-A hydrogel also exhibits transient stability and leads to a crystalline precipitate within ∼5 h. Only NDI-TA produces stable transparent hydrogel with the entangled fibrillar morphology that is typical for gelators. Both NDI-A and NDI-TA showed a thermoresponsive property with a lower critical solution temperature of about 41-42 °C. Powder XRD studies show a parallel orientation for NDI-A and an antiparallel orientation for NDI-TA. Computational studies support this experimental observation and indicate that the NDI-A assembly is highly stabilized by strong H-bonding among the amide groups and π-stacking interaction in the parallel orientation. On the other hand, due to weak H-bonding among the thioamide groups, the binding energy of the parallelly oriented NDI-TA was significantly lower and the optimized structure was disordered. Instead, its antiparallel orientation was more stable, with criss-cross aligned H-bonding interactions and π-π interactions between adjacent aromatic rings. The NDI-TA hydrogel with less ordered OE chains on the surface showed prominent adsorption of serum protein BSA. In sharp contrast, NDI-A did not exhibit any notable interaction with BSA, as evident from the ITC studies.
Collapse
Affiliation(s)
- Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Rabindra Nath Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Priya Rajdev
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Ankan Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
12
|
Ghosh G, Chakraborty A, Pal P, Jana B, Ghosh S. Direct Participation of Solvent Molecules in the Formation of Supramolecular Polymers. Chemistry 2022; 28:e202201082. [PMID: 35475531 DOI: 10.1002/chem.202201082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/05/2022]
Abstract
This article reports supramolecular polymerization of two bis-amide functionalized naphthalene-diimide (NDI) building blocks (NDI-L and NDI-C) in two solvents, namely n-heptane (Hep) and methylcyclohexane (MCH). NDI-L and NDI-C differ only by the peripheral hydrocarbon wedges, consisting of linear C7 chains or cyclic methylcyclohexane rings, respectively. UV/Vis and FTIR spectroscopy studies reveal distinct internal order and H-bonding pattern for NDI-L and NDI-C aggregates irrespective of the solvent system, indicating the dominant role of the intrinsic packing parameters of the individual building block, possibly influenced by the peripheral steric crowding. However, NDI-L produces a significantly stronger gel in Hep compared to MCH as evident from the rheological and thermal properties. In contrast, NDI-C exhibits a clear preference for MCH, producing gel with moderate strength but in Hep it fails to produce 1D morphology or gelation. All-atom molecular dynamics (MD) simulation studies corroborate with the experimental observation and provide the rationale for the observed solvent-shape effect by revealing a quantitative estimate regarding the thermodynamics of self-assembly in these four combinations. Such clear-cut shape-matching effect (between the peripheral hydrocarbon wedge and the solvent system) unambiguously support a direct participation of the solvent molecules during supramolecular polymerization and presence of a closely-adhered solvent shell around the supramolecular polymers, similar to the first layer of water molecules around the protein surface. Solvent induced CD experiments support this hypothesis as induced CD band was observed only from a chiral co-solvent of matching shape. This is reconfirmed by the higher de-solvation temperature of the shape-matching NDI/solvent system combination compared to the shape mis-match combination in variable temperature UV/Vis experiments, revealing transformation to a different aggregate at higher temperatures rather than disassembly to the monomer for all four combinations.
Collapse
Affiliation(s)
- Goutam Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Anwesha Chakraborty
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Prasun Pal
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Biman Jana
- School of Chemical Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, 2 A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
13
|
Matern J, Fernández Z, Bäumer N, Fernández G. Expanding the Scope of Metastable Species in Hydrogen Bonding-Directed Supramolecular Polymerization. Angew Chem Int Ed Engl 2022; 61:e202203783. [PMID: 35362184 PMCID: PMC9321731 DOI: 10.1002/anie.202203783] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Indexed: 12/23/2022]
Abstract
We reveal unique hydrogen (H-) bonding patterns and exploit them to control the kinetics, pathways and length of supramolecular polymers (SPs). New bisamide-containing monomers were designed to elucidate the role of competing intra- vs. intermolecular H-bonding interactions on the kinetics of supramolecular polymerization (SP). Remarkably, two polymerization-inactive metastable states were discovered. Contrary to previous examples, the commonly assumed intramolecularly H-bonded monomer does not evolve into intermolecularly H-bonded SPs via ring opening, but rather forms a metastable dimer. In this dimer, all H-bonding sites are saturated, either intra- or intermolecularly, hampering elongation. The dimers exhibit an advantageous preorganization, which upon opening of the intramolecular portion of the H-bonding motif facilitates SP in a consecutive process. The retardation of spontaneous self-assembly as a result of two metastable states enables length control in SP by seed-mediated growth.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Zulema Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Nils Bäumer
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
14
|
Mukherjee A, Barman S, Ghosh A, Datta A, Datta A, Ghosh S. A Hierarchical (Macro)molecular Assembly Assisted by Donor-Acceptor Charge-Transfer Interactions Exhibiting Room-Temperature Ferroelectricity. Angew Chem Int Ed Engl 2022; 61:e202203817. [PMID: 35353441 DOI: 10.1002/anie.202203817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/12/2022]
Abstract
This communication reveals co-assembly of an electron-deficient naphthalene-diimide (NDI)-appended polyurethane (P1) and electron-rich pyrene (Py), forming an organogel with prominent room-temperature ferroelectricity. In a non-polar medium, intra-chain hydrogen-bonding among the urethane groups of P1 produces a folded structure with an array of the NDIs in the periphery, which intercalate Py by charge-transfer (CT)-interaction. Such CT-complexation enables slow crystallization of the peripheral hydrocarbons, causing gelation with nanotubular morphology, in which the wall consists of the alternating NDI-Py stack. Such D-A assembly exhibits ferroelectricity (saturation polarization Ps ≈0.8 μC cm-2 and coercive field Ec ≈8 kV cm-1 at 500 V and 10 Hz frequency) with Curie temperature (Tc ) of ≈350 K, which can be related to the disassembly of the CT-complex. In the absence of Py, P1 forms spherical aggregates, showing dielectric behaviour.
Collapse
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Shubhankar Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
15
|
Kotha S, Sahu R, Srideep D, Yamijala SSRKC, Reddy SK, Rao KV. Cooperative supramolecular polymerization guided by dispersive interactions. Chem Asian J 2022; 17:e202200494. [DOI: 10.1002/asia.202200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Srinu Kotha
- IITH: Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Rahul Sahu
- IIT Kharagpur: Indian Institute of Technology Kharagpur Centre for Computational and Data Science INDIA
| | - Dasari Srideep
- IITH: Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Sharma S. R. K. C. Yamijala
- IIT Madras: Indian Institute of Technology Madras Department of Chemistry and Center for Atomistic Modelling and Materials Design INDIA
| | - Sandeep Kumar Reddy
- IIT Kharagpur: Indian Institute of Technology Kharagpur Centre for Computational and Data Science INDIA
| | | |
Collapse
|
16
|
Matern J, Fernandez Z, Bäumer N, Fernandez G. Expanding the Scope of Metastable Species in Hydrogen Bonding‐Directed Supramolecular Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonas Matern
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Zulema Fernandez
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Nils Bäumer
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
17
|
Mukherjee A, Barman S, Ghosh A, Datta A, Datta A, Ghosh S. A Hierarchical (Macro)molecular Assembly Assisted by Donor‐Acceptor Charge‐Transfer Interactions Exhibiting Room‐Temperature Ferroelectricity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Anupam Ghosh
- Indian Association for the Cultivation of Science SCS INDIA
| | - Ayan Datta
- Indian Association for the Cultivation of Science SCS INDIA
| | - Anuja Datta
- Indian Association for the Cultivation of Science SAIS INDIA
| | - Suhrit Ghosh
- Indian Association for the Cultivation of Science Polymer Science Unit 2A& B Raja S. C. Mullick Rd.Jadavur 700032 Kolkata INDIA
| |
Collapse
|
18
|
Srideep D, Sriram K, Kotha S, Babu DJ, Singh SK, Rao KV. Synthesis and Self-assembly of Benzoperylene Benzimidazoles: Tunable Morphology with Aggregation Induced Enhanced Emission. Chem Asian J 2022; 17:e202200099. [PMID: 35235252 DOI: 10.1002/asia.202200099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Indexed: 11/06/2022]
Abstract
Benzoperylene benzimidazoles ( BPBIs ) based π-systems are synthesized and their self-assembly in both non-polar and polar solvents is investigated. Due to the presence of donor and acceptor functional groups, BPBIs absorb light up to 600 nm and display red fluorescence (575-800 nm). Depending on the solvent and side chain, BPBIs self-assemble into various nanostructures such as nanoribbons, nanorods, nanofibers and nanoparticles. Notably, these ordered nanostructures are formed by BPBIs in both polar and non-polar solvents without the aid of hydrogen bonding and amphiphilic interactions due to the presence of a large rigid π-system. Interestingly, BPBIs follow a weakly cooperative mechanism during the self-assembly. Moreover, BPBIs show aggregation induced enhanced emission (AIEE) in all the self-assembled nanostructures which is not common for rigid π-systems.
Collapse
Affiliation(s)
- Dasari Srideep
- IITH: Indian Institute of Technology Hyderabad, Chemistry, INDIA
| | - Kasilingam Sriram
- IITH: Indian Institute of Technology Hyderabad, Department of Materials Science and Metallurgical Engineering, INDIA
| | - Srinu Kotha
- IITH: Indian Institute of Technology Hyderabad, Chemistry, INDIA
| | - Deepu J Babu
- IITH: Indian Institute of Technology Hyderabad, Department of Materials Science and Metallurgical Engineering, INDIA
| | | | - Kotagiri Venkata Rao
- Indian Institute of Technology Hyderabad, Chemistry, Kandi, 502285, Hyderabad, INDIA
| |
Collapse
|
19
|
Mukherjee A, Barman S, Ghosh A, Chakraborty S, Datta A, Datta A, Ghosh S. Stable room temperature ferroelectricity in hydrogen-bonded supramolecular assemblies of ambipolar π-systems. Chem Sci 2022; 13:781-788. [PMID: 35173943 PMCID: PMC8768847 DOI: 10.1039/d1sc04617a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
This article reports H-bonding driven supramolecular polymerization of naphthalimide (A)-thiophene (D)-naphthalimide (A) (AD n A, n = 1-4) conjugated ambipolar π-systems and its remarkable impact on room temperature ferroelectricity. Electrochemical studies confirm the ambipolar nature of these AD n A molecules with the HOMO-LUMO gap varying between 2.05 and 2.29 eV. Electron density mapping from ESP calculations reveals intra-molecular charge separation as typically observed in ambipolar systems. In the aggregated state, AD1A and AD2A exhibit bathochromically shifted absorption bands while AD3A and AD4A show typical H-aggregation with a hypsochromic shift. Polarization vs. electric field (P-E) measurements reveal stable room temperature ferroelectricity for these supramolecular assemblies, most prominent for the AD2A system, with a Curie temperature (T c) ≈ 361 K and saturation polarization (P s) of ∼2 μC cm-2 at a rather low coercive field of ∼2 kV cm-1. Control molecules, lacking either the ambipolar chromophore or the amide functionality, do not show any ferroelectricity, vindicating the present molecular and supramolecular design. Computational studies enable structural optimization of the stacked oligomer(s) of AD2A molecules and reveal a significant increase in the macro-dipole moment (in the range of 10-12 Debye) going from the monomer to the oligomer(s), which provides the rationale for the origin of ferroelectricity in these supramolecular polymers.
Collapse
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Shubhankar Barman
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja SC Mallick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
20
|
Guo Y, Xu G, Xu Z, Guo Y. Developing visible light responsive BN/NTCDA heterojunctions with a good degradation performance for tetracycline. NEW J CHEM 2022. [DOI: 10.1039/d2nj04395e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper, a series of BN/NTCDA photocatalysts have been prepared using a simple calcination method and their photocatalytic performance under visible light irradiation is studied with tetracycline (TC) as the target pollutant.
Collapse
Affiliation(s)
- Yong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, P. R. China
| | - Guowei Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, P. R. China
| | - Zixuan Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210093, P. R. China
| | - Ying Guo
- Key Laboratory of Environmental Engineering of Jiangsu Province, Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| |
Collapse
|
21
|
Xue D, Ma L, Tian Y, Zeng Q, Tu B, Luo W, Wen S, Luo J. Light-Controlled Friction by Carboxylic Azobenzene Molecular Self-Assembly Layers. Front Chem 2021; 9:707232. [PMID: 34422766 PMCID: PMC8374315 DOI: 10.3389/fchem.2021.707232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Nowadays, reversible friction regulation has become the focus of scientists in terms of the flexible regulatory structure of photosensitive materials and theories since this facilitates rapid development in this field. Meanwhile, as an external stimulus, light possesses great potential and advantages in spatiotemporal control and remote triggering. In this work, we demonstrated two photo-isomerized organic molecular layers, tetra-carboxylic azobenzene (NN4A) and dicarboxylic azobenzene (NN2A), which were selected to construct template networks on the surface of the highly oriented pyrolytic graphite (HOPG) to study the friction properties, corresponding to the arrangement structure of self-assembled layers under light regulation. First of all, the morphology of the self-assembled layers were characterized by a scanning tunneling microscope (STM), then the nanotribological properties of the template networks were measured by atomic force microscope (AFM). Their friction coefficients are respectively changed by about 0.6 and 2.3 times under light control. The density functional theory (DFT) method was used to calculate the relationship between the force intensity and the friction characteristics of the self-assembled systems under light regulation. Herein, the use of external light stimulus plays a significant role in regulating the friction properties of the interface of the nanometer, hopefully serving as a fundamental basis for further light-controlling research for the future fabrication of advanced on-surface devices.
Collapse
Affiliation(s)
- Dandan Xue
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Liran Ma
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China.,Center of Materials Science and Optoelectonics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Tu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Wendi Luo
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Rajdev P, Ghosh S. Thermodynamic Insights into Protein Adsorption on Supramolecular Assemblies of π-Amphiphiles. J Phys Chem B 2021; 125:8981-8988. [PMID: 34324355 DOI: 10.1021/acs.jpcb.1c03283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonspecific adsorption of proteins on the surface of nanocarriers plays a critical role in their cellular uptake and other biological functions. This article reports vesicular assemblies of two π-amphiphiles (NDI-1 and NDI-2) and thermodynamic aspects of their interaction with bovine serum albumin (BSA). Both contain a hydrophobic naphthalene-diimide (NDI) core and two oligo-oxyethylene (OE) wedges but differ by the presence of the hydrazide group in NDI-1. NDI-2 exhibits a constricted π-stacking and enthalpy-driven adsorption of BSA. In contrast, NDI-1 exhibits a stronger interaction due to enhanced entropy contribution. It is postulated that a tight packing of NDI chromophores in NDI-2 results in an inadequate space in the corona, leading to the dehydration of OE chains, which contributes to the observed enthalpy-driven binding. On the other hand, due to H-bonding along the direction of π-stacking in NDI-1, an enhanced interchromophoric distance provides more space in the shell, resulting in less dehydration of the OE chains, which results in an entropy gain from the BSA binding-induced release of water from the OE chains. Intercalation of an electron-rich pyrene in the electron-deficient NDI-1 stack further reduces the grafting density of the OE chains, resulting in negligible BSA adsorption, similar to a stealth polymer. A correlation can be seen between the thermodynamic landscape of the protein adsorption and the trend of their lower critical solution temperature (LCST), which follows the order NDI-1 + Py < NDI-1 < NDI-2.
Collapse
|
23
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
24
|
Lee H, Kim H, Lee SY. Self-Assembling Peptidic Bolaamphiphiles for Biomimetic Applications. ACS Biomater Sci Eng 2021; 7:3545-3572. [PMID: 34309378 DOI: 10.1021/acsbiomaterials.1c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bolaamphiphile, which is a class of amphiphilic molecules, has a unique structure of two hydrophilic head groups at the ends of the hydrophobic center. Peptidic bolaamphiphiles that employ peptides or amino acids as their hydrophilic groups exhibit unique biochemical activities when they self-organize into supramolecular structures, which are not observed in a single molecule. The self-assembled peptidic bolaamphiphiles hold considerable promise for imitating proteins with biochemical activities, such as specific affinity toward heterogeneous substances, a catalytic activity similar to a metalloenzyme, physicochemical activity from harmonized amino acid segments, and the capability to encapsulate genes like a viral vector. These diverse activities give rise to large research interest in biomaterials engineering, along with the synthesis and characterization of the assembled structures. This review aims to address the recent progress in the applications of peptidic bolaamphiphile assemblies whose densely packed peptide motifs on their surface and their stacked hydrophobic centers exhibit unique protein-like activity and designer functionality, respectively.
Collapse
Affiliation(s)
- Hyesung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hanbee Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Yup Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
25
|
Chakraborty A, Manna RN, Paul A, Ghosh S. Externally Regulated Specific Molecular Recognition Driven Pathway Selectivity in Supramolecular Polymerization. Chemistry 2021; 27:11458-11467. [PMID: 33978984 DOI: 10.1002/chem.202101492] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 01/01/2023]
Abstract
This article reveals 4-dimethylaminopyridine (DMAP) regulated pathway selectivity in the supramolecular polymerization of a naphthalene-diimide derivative (NDI-1), appended with a carboxylic acid group. In decane, NDI-1 produces ill-defined aggregate (Agg-1) due to different H-bonding motifs of the -COOH group. With one mole equivalent DMAP, the NDI-1/DMAP complex introduces new nucleation condition and exhibits a cooperative supramolecular polymerization producing J-aggregated fibrillar nanostructure (Agg-2). With 10 % DMAP and fast cooling (10 K/min), similar nucleation and open chain H-bonding with the free monomer in an anti-parallel arrangement produces identical J-aggregate (Agg-2a). With 2.5 % DMAP and slow cooling (1 K/min), a distinct nucleation and supramolecular polymerization pathway emerge leading to the thermodynamically controlled Agg-3 with face-to-face stacking and 2D-morphology. Slow cooling with 5-10 % DMAP produces a mixture of Agg-2a and Agg-3. Computational modelling studies provide valuable insights into the internal order and the pathway complexity.
Collapse
Affiliation(s)
- Anwesha Chakraborty
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 2A and 2B Raja S. C. Mullick Road, India-, 700032
| | - Rabindra Nath Manna
- School of Chemical Sciences Indian Association for the Cultivation of Science, Kolkata, 2A and 2B Raja S. C. Mullick Road, India-, 700032
| | - Ankan Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science, Kolkata, 2A and 2B Raja S. C. Mullick Road, India-, 700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences Indian Association for the Cultivation of Science, Kolkata, 2A and 2B Raja S. C. Mullick Road, India-, 700032
| |
Collapse
|
26
|
Keshri SK, Ishizuka T, Kojima T, Matsushita Y, Takeuchi M. Long-Range Order in Supramolecular π Assemblies in Discrete Multidecker Naphthalenediimides. J Am Chem Soc 2021; 143:3238-3244. [PMID: 33600719 DOI: 10.1021/jacs.0c13389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein the solution and solid-state studies of conformationally flexible multidecker naphthalenediimides (NDIs) in which the chromophoric NDI units intramolecularly assemble into a series of discrete π-stacks. The X-ray crystallography reveals the existence of exclusively all-syn NDIs orientations in lower congeners while all-anti in a higher congener, suggesting short- to long-range π···π interactions throughout the slipped πNDI chromophoric array. The UV/vis and fluorescence spectra evaluate the discrete π-stacks by remarkable optical changes upon cooling in solution. Furthermore, we carried out a systematic electrochemical investigation to gain an insight into redox properties of the long-range π-stacked structures. The higher congener (5NDI) shows a ten-electron reversible reduction process in a small working potential window (∼0.8 V). To our knowledge, this is an unusual observation in an organic molecular system to undergo up to ten-electron reduction. These results pave the way to design multidecker π-stacks in which structural control with specific electronic properties would be engineered.
Collapse
Affiliation(s)
- Sudhir Kumar Keshri
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure & Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8477, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure & Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8477, Japan
| | - Yoshitaka Matsushita
- Materials Analysis Station, Research Network and Facility Services Division, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Masayuki Takeuchi
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| |
Collapse
|
27
|
Aster A, Rumble C, Bornhof AB, Huang HH, Sakai N, Šolomek T, Matile S, Vauthey E. Long-lived triplet charge-separated state in naphthalenediimide based donor-acceptor systems. Chem Sci 2021; 12:4908-4915. [PMID: 34168763 PMCID: PMC8179635 DOI: 10.1039/d1sc00285f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
1,4,5,8-Naphthalenediimides (NDIs) are widely used motifs to design multichromophoric architectures due to their ease of functionalisation, their high oxidative power and the stability of their radical anion. The NDI building block can be incorporated in supramolecular systems by either core or imide functionalization. We report on the charge-transfer dynamics of a series of electron donor-acceptor dyads consisting of a NDI chromophore with one or two donors linked at the axial, imide position. Photo-population of the core-centred π-π* state is followed by ultrafast electron transfer from the electron donor to the NDI. Due to a solvent dependent singlet-triplet equilibrium inherent to the NDI core, both singlet and triplet charge-separated states are populated. We demonstrate that long-lived charge separation in the triplet state can be achieved by controlling the mutual orientation of the donor-acceptor sub-units. By extending this study to a supramolecular NDI-based cage, we also show that the triplet charge-separation yield can be increased by tuning the environment.
Collapse
Affiliation(s)
- Alexander Aster
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Christopher Rumble
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Anna-Bea Bornhof
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Hsin-Hua Huang
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Tomáš Šolomek
- Department of Chemistry, University of Basel St. Johanns-Ring 19 Basel 4056 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva CH-1211 Geneva Switzerland
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva CH-1211 Geneva Switzerland
| |
Collapse
|
28
|
Ishida K, Higashino T, Wada Y, Kaji H, Saeki A, Imahori H. Thiophene-Fused Naphthodiphospholes: Modulation of the Structural and Electronic Properties of Polycyclic Aromatics by Precise Fusion of Heteroles. Chempluschem 2021; 86:130-136. [PMID: 33415824 DOI: 10.1002/cplu.202000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/17/2020] [Indexed: 11/10/2022]
Abstract
For polycyclic aromatics with heterole-fused structures, the orientation of fused heterole rings as well as the geometry of their fused structures has a large impact on the physicochemical properties. In this study, a series of isomers of thiophene-fused naphthodiphospholes was designed and synthesized. Systematic investigation unveiled the explicit impact of heterole-fused structures on their structural and electronic properties. The isomers with 1,2/5,6-fused structure display phosphorescence due to enhanced spin-orbit coupling, whereas the isomers with 2,3/6,7-fused structure exhibit intense fluorescence. The trans isomers exhibited 1D slip π-stacked arrangement. In contrast, the cis isomers displayed 2D herringbone structure or columnar structure with a cavity. Therefore, the precisely controlled fusion of heterole rings is a universal approach to uncover their intrinsic properties for versatile applications as organic functional materials.
Collapse
Affiliation(s)
- Keiichi Ishida
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshimasa Wada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto, 615-8510, Japan.,Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
29
|
Cyclization of 1-ethynyl-2-alkenylbenzenes to naphthalenes using Et2AlCl and DIBAL-H. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Rani P, Husain A, Shukla A, Singla N, Srivastava AK, Kumar G, Bhasin KK, Kumar G. Functionalized naphthalenediimide based supramolecular charge-transfer complexes via self-assembly and their photophysical properties. CrystEngComm 2021. [DOI: 10.1039/d0ce01719a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Two new intermolecular CT complexes having large Stokes shift (>170 nm) and significant fluorescence life-time (∼1.55 ns) have been prepared and exploited for cell imaging application.
Collapse
Affiliation(s)
- Pooja Rani
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Ahmad Husain
- Department of Chemistry
- DAV University Jalandhar
- India
| | - Ananya Shukla
- Department of Biophysics
- Panjab University
- Chandigarh-160014
- India
| | - Neha Singla
- Department of Biophysics
- Panjab University
- Chandigarh-160014
- India
| | | | - Gulshan Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - K. K. Bhasin
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Girijesh Kumar
- Department of Chemistry & Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
31
|
Shaikh DB, More KS, Kobaisi MA, La DD, Bhosale SV, Bhosale SV. Flower‐Like Morphology of Naphthalene Diimides Containing
tetra
‐L‐ and D‐Alanine. ChemistrySelect 2020. [DOI: 10.1002/slct.202003108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dada B. Shaikh
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007, Telangana India
| | - Kerba S. More
- School of Chemical Sciences Goa University, Taleigao Plateau Goa 403206 India
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and Technology Swinburne University of Technology, Hawthorn Victoria 3122 Australia
| | - Duong Duc La
- Institute of Chemistry and Materials 17 Hoang Sam, Cay Giay Hanoi Vietnam
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007, Telangana India
| | | |
Collapse
|
32
|
Chakraborty S, Khamrui R, Ghosh S. Redox responsive activity regulation in exceptionally stable supramolecular assembly and co-assembly of a protein. Chem Sci 2020; 12:1101-1108. [PMID: 34163877 PMCID: PMC8179030 DOI: 10.1039/d0sc05312k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular assembly of biomolecules/macromolecules stems from the desire to mimic complex biological structures and functions of living organisms. While DNA nanotechnology is already in an advanced stage, protein assembly is still in its infancy as it is a significantly difficult task due to their large molecular weight, conformational complexity and structural instability towards variation in temperature, pH or ionic strength. This article reports highly stable redox-responsive supramolecular assembly of a protein Bovine serum albumin (BSA) which is functionalized with a supramolecular structure directing unit (SSDU). The SSDU consists of a benzamide functionalized naphthalene-diimide (NDI) chromophore which is attached with the protein by a bio-reducible disulfide linker. The SSDU attached protein (NDI-BSA) exhibits spontaneous supramolecular assembly in water by off-set π-stacking among the NDI chromophores, leading to the formation of spherical nanoparticles (diameter: 150-200 nm). The same SSDU when connected with a small hydrophilic wedge (NDI-1) instead of the large globular protein, exhibits a different π-stacking mode with relatively less longitudinal displacement which results in a fibrillar network and hydrogelation. Supramolecular co-assembly of NDI-BSA and NDI-1 (3 : 7) produces similar π-stacking and an entangled 1D morphology. Both the spherical assembly of NDI-BSA or the fibrillar co-assembly of NDI-BSA + NDI-1 (3 : 7) provide sufficient thermal stability to the protein as its thermal denaturation could be completely surpassed while the secondary structure remained intact. However, the esterase like activity of the protein reduced significantly as a result of such supramolecular assembly indicating limited access by the substrate to the active site of the enzyme located in the confined environment. In the presence of glutathione (GSH), a biologically important tri-peptide, due to the cleavage of the disulfide bond, the protein became free and was released, resulting in fully regaining its enzymatic activity. Such supramolecular assembly provided excellent protection to the protein against enzymatic hydrolysis as the relative hydrolysis was estimated to be <30% for the co-assembled protein with respect to the free protein under identical conditions. Similar to bioactivity, the enzymatic hydrolysis also became prominent after GSH-treatment, confirming that the lack of hydrolysis in the supramolecularly assembled state is indeed related to the confinement of the protein in the nanostructure assembly.
Collapse
Affiliation(s)
- Saptarshi Chakraborty
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Rajesh Khamrui
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road Kolkata India-700032
| |
Collapse
|
33
|
|
34
|
Mukherjee A, Sakurai T, Seki S, Ghosh S. Ultrathin Two Dimensional (2D) Supramolecular Assembly and Anisotropic Conductivity of an Amphiphilic Naphthalene-Diimide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13096-13103. [PMID: 33103440 DOI: 10.1021/acs.langmuir.0c02604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D)-supramolecular assemblies of π-conjugated chromophores are relatively less common compared to a large number of recent examples on their low dimensional (0D or 1D) assemblies or 3D architectures. This article reports a rational design for the 2D supramolecular assembly of an amphiphilic core-substituted naphthalene-diimide derivative (cNDI-1). The building block contains a naphthalene-diimide (NDI) chromophore, symmetrically substituted with two dodecyl chains from the aromatic core while the imide positions are functionalized with two hydrophilic wedges containing oligo-oxyethylene chains. In water, it exhibits entropically favorable self-assembly with a critical aggregation concentration of 1.5 × 10-5 M and a lower critical solution temperature of 55 °C. The UV/vis absorption spectrum in water shows bathochromically shifted absorption bands compared to that of the monomeric dye in THF, indicating offset π-stacking among the NDI chromophores. C-H symmetric and asymmetric stretching frequencies in the FT-IR spectrum support the presence of organized hydrocarbon chains in trans conformation in the self-assembled state, similar to that in the crystalline n-alkanes, which is further supported by studying the general polarization (GP) values of a noncovalently entrapped Laurdan dye. The atomic force microscopy (AFM) image shows the formation of ultrathin (height < 2.0 nm) ribbons for the spontaneously assembled sample which eventually produces a large-area 2D nanosheet by the lateral organization. The powder X-ray diffraction pattern of the drop-casted film, prepared from the preformed aggregates, reveals sharp peaks that indicate a crystalline lamellar packing along the direction of the 2D growth. Differential scanning calorimetry trace shows the melting of the crystalline alkyl chain domain at T > 75 °C, which destroys the 2D assembly. Local-scale photoconductivity of the ordered 2D assembly, studied by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) technique, reveals an anisotropic conductivity with ∼3 times larger conductivity along the parallel direction compared to that along the perpendicular one.
Collapse
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Tsuneaki Sakurai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
35
|
Kalita A, Upadhyaya S, Sen Sarma N. Salicylic Acid Appended Naphthalene Diimide Organic Linkers: A Systematic Investigation towards Electronic Aspects. ChemistrySelect 2020. [DOI: 10.1002/slct.202002645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anamika Kalita
- Physical Sciences Division Institute of Advanced Study in Science and Technology, Paschim Boragaon Guwahati 781035 Assam India
| | - Samiran Upadhyaya
- Physical Sciences Division Institute of Advanced Study in Science and Technology, Paschim Boragaon Guwahati 781035 Assam India
| | - Neelotpal Sen Sarma
- Physical Sciences Division Institute of Advanced Study in Science and Technology, Paschim Boragaon Guwahati 781035 Assam India
| |
Collapse
|
36
|
Deepthi K, R B AR, Prasad VS, Gowd EB. Co-assembly of functionalized donor-acceptor molecules within block copolymer microdomains via the supramolecular assembly approach with an improved charge carrier mobility. SOFT MATTER 2020; 16:7312-7322. [PMID: 32672783 DOI: 10.1039/d0sm00894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we demonstrate the three-component self-assembly of functionalized small molecules (donor and acceptor) and a polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer using the supramolecular approach. The introduction of functional groups on both the donor (1-pyrenebutyric acid, PBA) and acceptor (functionalized naphthalene diimide, FNDI) molecules can form stable charge-transfer (CT) complexes within the block copolymer domains and these supramolecules exhibited a charge carrier mobility of around 1.01 × 10-4 cm2 (V s)-1. In this case, both the molecules can form H-bonding with P4VP chains, and as well as π-π stacking between the PBA and FNDI molecules is also possible within the block copolymer domains. These noncovalent interactions lead to the formation of stable hierarchical structures and CT complexes between PBA and FNDI, where bilayer donor-acceptor (D-A) stacks formed within the block copolymer microdomains. Overall, the organization of both functionalized donor and acceptor molecules within the block copolymer domain exhibits an enhanced charge carrier mobility, which is potentially useful in the fabrication of organic photovoltaic cells and organic light-emitting diodes.
Collapse
Affiliation(s)
- Krishnan Deepthi
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | | | | | | |
Collapse
|
37
|
Mandal K, Bansal D, Kumar Y, Rustam, Shukla J, Mukhopadhyay P. Halogen-Bonded Assemblies of Arylene Imides and Diimides: Insight from Electronic, Structural, and Computational Studies. Chemistry 2020; 26:10607-10619. [PMID: 32428280 DOI: 10.1002/chem.202001706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/30/2020] [Indexed: 01/06/2023]
Abstract
Halogen-bonding interactions in electron-deficient π scaffolds have largely been underexplored. Herein, the halogen-bonding properties of arylene imide/diimide-based electron-deficient scaffolds were studied. The influence of scaffold size, from small (phthalimide) to moderately sized (pyromellitic diimide or naphthalenediimides) to large (perylenediimide), axial-group modification, and number of halo substituents on the halogen bonding and its self-assembly was probed in a set of nine compounds. The structural modification leads to tunable optical and redox properties. The first reduction potential E 1 / 2 1 ranges between -1.09 and -0.17 V (vs. SCE). Two of the compounds, that is, 6 and 9, have deep-lying LUMOs with values reaching -4.2 eV. Single crystals of all nine systems were obtained, which showed Br⋅⋅⋅O, Br⋅⋅⋅Br, or Br⋅⋅⋅π halogen-bonding interactions, and a few systems are capable of forming all three types. These interactions lead to halogen-bonded rings (up to 12-membered), which propagate to form stacked 1D, 2D, or corrugated sheets. A few outliers were also identified, for example, molecules that prefer C-H⋅⋅⋅O hydrogen bonding over halogen bonding, or noncentrosymmetric rather than centrosymmetric organization. Computational studies based on Atoms in Molecules and Natural Bond Orbital analysis provided further insight into the halogen-bonding interactions. This study can lead to a predictive design tool-box to further explore related systems on surfaces reinforced by these weak directional forces.
Collapse
Affiliation(s)
- Kalyanashis Mandal
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| | - Deepak Bansal
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Yogendra Kumar
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| | - Rustam
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| | - Jyoti Shukla
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, Delhi, 110067, India
| |
Collapse
|
38
|
Dey P, Rajdev P, Pramanik P, Haag R, Ghosh S. Synthesis of a Cylindrical Micelle from Hydrophilic Polymers Connected with a Single Supramolecular Structure-Directing Unit. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | | |
Collapse
|
39
|
Rinaldi S. The Diverse World of Foldamers: Endless Possibilities of Self-Assembly. Molecules 2020; 25:E3276. [PMID: 32708440 PMCID: PMC7397133 DOI: 10.3390/molecules25143276] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Different classes of foldamers, which are synthetic oligomers that adopt well-defined conformations in solution, have been the subject of extensive studies devoted to the elucidation of the forces driving their secondary structures and their potential as bioactive molecules. Regardless of the backbone type (peptidic or abiotic), the most important features of foldamers are the high stability, easy predictability and tunability of their folding, as well as the possibility to endow them with enhanced biological functions, with respect to their natural counterparts, by the correct choice of monomers. Foldamers have also recently started playing a starring role in the self-assembly of higher-order structures. In this review, selected articles will be analyzed to show the striking number of self-assemblies obtained for foldamers with different backbones, which will be analyzed in order of increasing complexity. Starting from the simplest self-associations in solution (e.g., dimers of β-strands or helices, bundles, interpenetrating double and multiple helices), the formation of monolayers, vesicles, fibers, and eventually nanostructured solid tridimensional morphologies will be subsequently described. The experimental techniques used in the structural investigation, and in the determination of the driving forces and mechanisms underlying the self-assemblies, will be systematically reported. Where applicable, examples of biomimetic self-assembled foldamers and their interactions with biological components will be described.
Collapse
Affiliation(s)
- Samuele Rinaldi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
40
|
Militzer S, Nishimura N, Ávila‐Rovelo NR, Matsuda W, Schwaller D, Mésini PJ, Seki S, Ruiz‐Carretero A. Impact of Chirality on Hydrogen‐Bonded Supramolecular Assemblies and Photoconductivity of Diketopyrrolopyrrole Derivatives. Chemistry 2020; 26:9998-10004. [PMID: 32369228 DOI: 10.1002/chem.202001540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Swann Militzer
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| | - Nozomi Nishimura
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Nelson Ricardo Ávila‐Rovelo
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| | - Wakana Matsuda
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Duncan Schwaller
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| | - Philippe J. Mésini
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| | - Shu Seki
- Department of Molecular Engineering Graduate School of Engineering Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Amparo Ruiz‐Carretero
- CNRS, UPR22 University of Strasbourg, Institute Charles Sadron 23 Rue du Loess 67000 Strasbourg Cedex 2 France
| |
Collapse
|
41
|
Shukla J, Kumar S, Rustam, Mukhopadhyay P. Synthesis of Stable, High-SOMO Zwitterionic Radicals: Enabling Intermolecular Electron Transfer between Naphthalenediimides. Org Lett 2020; 22:6229-6233. [DOI: 10.1021/acs.orglett.0c01263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jyoti Shukla
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sharvan Kumar
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rustam
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pritam Mukhopadhyay
- Supramolecular and Material Chemistry Lab, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
42
|
Gruschwitz FV, Klein T, Catrouillet S, Brendel JC. Supramolecular polymer bottlebrushes. Chem Commun (Camb) 2020; 56:5079-5110. [PMID: 32347854 DOI: 10.1039/d0cc01202e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The field of supramolecular chemistry has long been known to generate complex materials of different sizes and shapes via the self-assembly of single or multiple low molar mass building blocks. Matching the complexity found in natural assemblies, however, remains a long-term challenge considering its precision in organizing large macromolecules into well-defined nanostructures. Nevertheless, the increasing understanding of supramolecular chemistry has paved the way to several attempts in arranging synthetic macromolecules into larger ordered structures based on non-covalent forces. This review is a first attempt to summarize the developments in this field, which focus mainly on the formation of one-dimensional, linear, cylindrical aggregates in solution with pendant polymer chains - therefore coined supramolecular polymer bottlebrushes in accordance with their covalent equivalents. Distinguishing by the different supramolecular driving forces, we first describe systems based on π-π interactions, which comprise, among others, the well-known perylene motif, but also the early attempts using cyclophanes. However, the majority of reported supramolecular polymer bottlebrushes are formed by hydrogen bonds as they can for example be found in linear and cyclic peptides, as well as so called sticker molecules containing multiple urea groups. Besides this overview on the reported motifs and their impact on the resulting morphology of the polymer nanostructures, we finally highlight the potential benefits of such non-covalent interactions and refer to promising future directions of this still mostly unrecognized field of supramolecular research.
Collapse
Affiliation(s)
- Franka V Gruschwitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | | | | | | |
Collapse
|
43
|
Supramolecular self-assembly of naphthalene diimide bolaamphiphile with biologically important amines: Cyclam, spermine and melamine. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Mukherjee A, Pal DS, Kar H, Ghosh S. Confined supramolecular polymers in water with exceptional stability, photoluminescence and chiroptical properties. Polym Chem 2020. [DOI: 10.1039/d0py01329c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipid-encased chiral supramolecular polymer nanorods (SPNRs), synthesized by the nanoprecipitation method in water from a hydrophobic naphthalene-diimide derivative, exhibit excellent thermal stability, intense fluorescence and strong CPL.
Collapse
Affiliation(s)
- Anurag Mukherjee
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Deep Sankar Pal
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Haridas Kar
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
45
|
Ghosh G, Dey P, Ghosh S. Controlled supramolecular polymerization of π-systems. Chem Commun (Camb) 2020; 56:6757-6769. [DOI: 10.1039/d0cc02787a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Externally-initiated controlled supramolecular polymerization of the kinetically trapped aggregated state in a chain growth mechanism can produce well-defined living supramolecular polymers and copolymers.
Collapse
Affiliation(s)
- Goutam Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Pradip Dey
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences
- Indian Association for the Cultivation Science
- Kolkata
- India
| |
Collapse
|
46
|
Advances in self-assembly and regulation of aromatic carboxylic acid derivatives at HOPG interface. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Calatrava-Pérez E, Acherman S, Stricker L, McManus G, Delente J, Lynes AD, Henwood AF, Lovitt JI, Hawes CS, Byrne K, Schmitt W, Kotova O, Gunnlaugsson T, Scanlan EM. Fluorescent supramolecular hierarchical self-assemblies from glycosylated 4-amino- and 4-bromo-1,8-naphthalimides. Org Biomol Chem 2020; 18:3475-3480. [DOI: 10.1039/d0ob00033g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The investigation into the self-assembly formation of the glycan based 4-amino- and 4-bromo-1,8-naphthalimide (Nap) structures1–3is presented.
Collapse
|
48
|
Chakraborty S, Varghese S, Ghosh S. Supramolecular Nanowires from an Acceptor-Donor-Acceptor Conjugated Chromophore. Chemistry 2019; 25:16725-16731. [PMID: 31638289 DOI: 10.1002/chem.201904463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/18/2019] [Indexed: 01/24/2023]
Abstract
Oligothiophene derivatives have been extensively studied as p-type semiconducting materials in organic electronics applications. This work reports the synthesis, self-assembly and photophysical properties of acceptor-donor-acceptor (A-D-A)-type oligothiophene derivatives by end-group engineering of quaterthiophene (QT) with naphthalene monoimide (NMI) chromophores that are further connected to a trialkoxy benzamide wedge. Conjugation to the NMI units reduces the HOMO-LUMO gap significantly, and consequently the absorption spectrum exhibits a bathochromic shift of about 50 nm compared with QT. Furthermore, extended H-bonding interactions among the amido groups of the peripheral wedges produce entangled fibrillar nanostructures and gelation in hydrocarbon solvents such as methylcyclohexane, wherein the A-D-A chromophore exhibits typical H-aggregation. On the contrary, the fact that the same chromophore, lacking only the amido units, does not produce gels or H-aggregates indicates strong impact of H-bonding on the self-assembly. Computational studies revealed the electronic properties of the chromophore and predicted the geometry of a dimer in the H-aggregate that reasonably matches with the experimental results. Bulk electrical conductivity measurements determined an excellent conductivity of 2.3×10-2 S cm-1 for the H-aggregated system (OT-1), which is two orders of magnitude higher than that of the same chromophore lacking the amido groups (OT-2).
Collapse
Affiliation(s)
| | - Shinto Varghese
- Technical Research Center, Indian Association for the Cultivation of, Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, India.,Technical Research Center, Indian Association for the Cultivation of, Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
49
|
Shukla J, Mukhopadhyay P. Synthesis of Functionalized Naphthalene Diimides and their Redox Properties. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901390] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jyoti Shukla
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| | | |
Collapse
|
50
|
Kaneko T, Araki Y, Shinohara KI, Teraguchi M, Aoki T. Antiparallel Arrangement of 2,7-Substituted 9,10-Bis(phenylethynyl)anthracene Assisted by Hydrogen Bonding of Terminal Units. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takashi Kaneko
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Yosuke Araki
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Ken-ichi Shinohara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Teraguchi
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Toshiki Aoki
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| |
Collapse
|