1
|
Yang Y, Guo S, Zhang Q, Guan ZJ, Wang QM. A Cages-on-Cluster Structure Constructed by Post-Clustering Covalent Modifications and Guest-Enabled Stimuli-Responsive Luminescence. Angew Chem Int Ed Engl 2024; 63:e202404798. [PMID: 38713516 DOI: 10.1002/anie.202404798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/09/2024]
Abstract
A gold(I)-cluster-based twin-cage has been constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure has double cavities and four binding sites, which show site-discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: the tetra-silver(I) host-guest complex is weakly red-emissive, while the bis-copper(I)-bis-silver(I) one is non-emissive but is a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enables the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues for finely tuning the properties of clusters.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shan Guo
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Qian Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
2
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
3
|
Peter BD, Pei W, Andrew GN, Zhou S, Luo Z. A luminescent Ag 8(DPPY) 6(PhCC) 6 cluster with a triangular superatomic Ag 8 core. NANOSCALE 2024; 16:8090-8095. [PMID: 38563406 DOI: 10.1039/d4nr00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We have synthesized single crystals of a highly stable Ag8 nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag8(DPPY)6(PhCC)6 cluster bears a triangular superatomic Ag8 core, with the vertex and edge Ag atoms (quasi-triangle Ag6) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands via μ3-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag8 core, this Ag8 nanocluster exhibits superatomic stability with two delocalized valence electrons (1S2||1P0), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms. Interestingly, the Ag8(DPPY)6(PhCC)6 NCs display temperature-dependent dual emissions at 330 and 535 nm under deep ultraviolet excitation. TD-DFT calculations reproduced the experimental spectrum, shedding light on the nature of excitation states and metal-ligand interactions in such a superatomic metal cluster.
Collapse
Affiliation(s)
- Blessing D Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Gaya N Andrew
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Si Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China.
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Lv W, Ma YJ, Wang AN, Mu Y, Niu SW, Wei L, Dong WL, Ding XY, Qiang YB, Li XY, Wang GM. Al 8 Cluster-Based Metal Halide Frameworks: Balancing Singlet-Triplet Excited States to Achieve White Light and Multicolor Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306713. [PMID: 37919863 DOI: 10.1002/smll.202306713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/01/2023] [Indexed: 11/04/2023]
Abstract
Luminescent metal clusters have attracted great interest in current research; however, the design synthesis of Al clusters with color-tunable luminescence remains challenging. Herein, an [Al8 (OH)8 (NA)16 ] (Al8 , HNA = nicotinic acid) molecular cluster with dual luminescence properties of fluorescence and room-temperature phosphorescence (RTP) is synthesized by choosing HNA ligand as phosphor. Its prompt photoluminescence (PL) spectrum exhibits approximately white light emission at room temperature. Considering that halogen atoms can be used to regulate the RTP property by balancing the singlet and triplet excitons, different CdX2 (X- = Cl- , Br- , I- ) are introduced into the reactive system of the Al8 cluster, and three new Al8 cluster-based metal-organic frameworks, {[Al8 Cd3 Cl5 (OH)8 (NA)17 H2 O]·2HNA}n (CdCl2 -Al8 ), {[Al8 Cd4 Br7 (OH)8 (NA)16 CH3 CN]·NA·HNA}n (CdBr2 -Al8 ) and {[Al8 Cd8 I16 (OH)8 (NA)16 ]}n (CdI2 -Al8 ) are successfully obtained. They realize the color tunability from blue to yellow at room temperature. The origination of fluorescence and phosphorescence has also been illustrated by structure-property analysis and theoretical calculation. This work provides new insights into the design of multicolor luminescent metal cluster-based materials and develops advanced photo-functional materials for multicolor display, anti-counterfeiting, and encryption applications.
Collapse
Affiliation(s)
- Wei Lv
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Juan Ma
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - A-Ni Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Ying Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Shu-Wen Niu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Li Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Wen-Long Dong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xue-Yao Ding
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Bin Qiang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiao-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
5
|
Lei Z, Zhao P, Pei XL, Ube H, Ehara M, Shionoya M. Photoluminescence control by atomically precise surface metallization of C-centered hexagold(i) clusters using N-heterocyclic carbenes. Chem Sci 2023; 14:6207-6215. [PMID: 37325149 PMCID: PMC10266449 DOI: 10.1039/d3sc01976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
The properties of metal clusters are highly dependent on their molecular surface structure. The aim of this study is to precisely metallize and rationally control the photoluminescence properties of a carbon(C)-centered hexagold(i) cluster (CAuI6) using N-heterocyclic carbene (NHC) ligands with one pyridyl, or one or two picolyl pendants and a specific number of silver(i) ions at the cluster surface. The results suggest that the photoluminescence of the clusters depends highly on both the rigidity and coverage of the surface structure. In other words, the loss of structural rigidity significantly reduces the quantum yield (QY). The QY in CH2Cl2 is 0.04 for [(C)(AuI-BIPc)6AgI3(CH3CN)3](BF4)5 (BIPc = N-isopropyl-N'-2-picolylbenzimidazolylidene), a significant decrease from 0.86 for [(C)(AuI-BIPy)6AgI2](BF4)4 (BIPy = N-isopropyl-N'-2-pyridylbenzimidazolylidene). This is due to the lower structural rigidity of the ligand BIPc because it contains a methylene linker. Increasing the number of capping AgI ions, i.e., the coverage of the surface structure, increases the phosphorescence efficiency. The QY for [(C)(AuI-BIPc2)6AgI4(CH3CN)2](BF4)6 (BIPc2 = N,N'-di(2-pyridyl)benzimidazolylidene) recovers to 0.40, 10-times that of the cluster with BIPc. Further theoretical calculations confirm the roles of AgI and NHC in the electronic structures. This study reveals the atomic-level surface structure-property relationships of heterometallic clusters.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Pei Zhao
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Masahiro Ehara
- Research Center for Computational Science, Institute for Molecular Science Myodaiji Okazaki Aichi 444-8585 Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
6
|
Feng M, Liu F, Yang N, Yu J, Yang W, Young DJ, Cao XQ, Li HX, Ren ZG. One-Dimensional Heterobimetallic Au/Ag Coordination Polymer Showing a Selective, Reversible, and Visible Vapor-Chromic Photoluminescent Response toward Methanol. Inorg Chem 2023; 62:6439-6446. [PMID: 37053452 DOI: 10.1021/acs.inorgchem.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
A heterobimetallic coordination polymer [Au4(dppmt)4(AgCl)2]n (1) incorporating an in situ generated P-S ligand (dppmtH) was synthesized from the solvothermal reaction of Au(tht)Cl, AgCl, and dpppyatc in CH3CN/CH2Cl2 (dppmtH = (diphenylphosphino)methanethiol, tht = tetrahydrothiophene, dpppyatc = N,N-bis((diphenylphosphaneyl)methyl)-N-(pyridin-2-yl)-amino-thiocarbamide). The structure of 1 contains a one-dimensional helical Au-Au chain in which the unique [Au4Ag2S2] cluster units are connected by [Au2(dppmt)2] dimers. Upon excitation at 343 nm, 1 exhibited cyan (495 nm) phosphorescent emission at quantum yield (QY) = 22.3% and τ = 0.78 μs (λex = 375 nm). Coordination polymer 1 exhibited a rapid, selective, reversible, and visible vapor-chromic response on exposure to methanol (MeOH) vapor with its emission shifting to a more intense green (530 nm, λex = 388 nm) with QY = 46.8% and τ = 1.24 μs (λex = 375 nm). A polymethylmethacrylate film containing 1 served as a reversible chemical sensor for the sensitive detection of MeOH in air.
Collapse
Affiliation(s)
- Mengyao Feng
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Fuyuan Liu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Ningwen Yang
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Jiayao Yu
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, People's Republic of China
| | - David James Young
- Glasgow College UESTC, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Xiang-Qian Cao
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Hong-Xi Li
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Zhi-Gang Ren
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Yoshinari N, Konno T. Multitopic metal–organic carboxylates available as supramolecular building units. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Ni J, Zhong C, Li L, Su M, Wang X, Sun J, Chen S, Duan C, Han C, Xu H. Deep‐Blue Electroluminescence from Phosphine‐Stabilized Au
3
Triangles and Au
3
Ag Pyramids. Angew Chem Int Ed Engl 2022; 61:e202213826. [DOI: 10.1002/anie.202213826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Jiteng Ni
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Chunlei Zhong
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | | | - Mengxue Su
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Xinran Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Jianan Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| |
Collapse
|
9
|
Baranov AY, Slavova SO, Berezin AS, Petrovskii SK, Samsonenko DG, Bagryanskaya IY, Fedin VP, Grachova EV, Artem'ev AV. Controllable Synthesis and Luminescence Behavior of Tetrahedral Au@Cu 4 and Au@Ag 4 Clusters Supported by tris(2-Pyridyl)phosphine. Inorg Chem 2022; 61:10925-10933. [PMID: 35775806 DOI: 10.1021/acs.inorgchem.2c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report herein a family of polynuclear complexes, [Au@Ag4(Py3P)4]X5 and [Au@Cu4(Py3P)4]X5 [X = NO3, ClO4, OTf, BF4, SbF6], containing unprecedented Au-centered Ag4 and Cu4 tetrahedral cores supported by tris(2-pyridyl)phosphine (Py3P) ligands. The [Au@Ag4]5+ clusters are synthesized via controlled substitution of the central Ag(I) ion in all-silver [Ag@Ag4]5+ precursors by the reaction with Au(tht)Cl, while the [Au@Cu4]5+ cluster is assembled through the treatment of a pre-organized [Au(Py3P)4]+ metallo-ligand with 4 equiv of a Cu(I) source. The structure of the Au@M4 clusters has been experimentally and theoretically investigated to reveal very weak intermolecular Au-M metallophilic interactions. At ambient temperature, the designed compounds emit a modest turquoise-to-yellow luminescence with microsecond lifetimes. Based on the temperature-dependent photophysical experiments and DFT/TD-DFT computations, the emission observed has been assigned to an MLCT or LLCT type depending on composition of the cluster core.
Collapse
Affiliation(s)
- Andrey Yu Baranov
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Sofia O Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Stanislav K Petrovskii
- Institute of Chemistry, St Petersburg University, 26, Universitetskiy Pr., St. Petersburg 198504, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Irina Yu Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University, 26, Universitetskiy Pr., St. Petersburg 198504, Russia
| | - Alexander V Artem'ev
- Nikolaev Institute of Inorganic Chemistry, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Li JJ, Liu CY, Guan ZJ, Lei Z, Wang QM. Anion-Directed Regulation of Structures and Luminescence of Heterometallic Clusters. Angew Chem Int Ed Engl 2022; 61:e202201549. [PMID: 35393719 DOI: 10.1002/anie.202201549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/09/2022]
Abstract
Anions have been used to regulate the structures and luminescence of heterometallic clusters. Introducing ClO4 - into orange-emissive, butterfly-like [(C)(Au-PPhpy2 )6 Ag4 ](BF4 )6 (1, PPhpy2 =bis(2-pyridyl)phenylphosphine) leads to the formation of red-emissive [(C)(Au-PPhpy2 )6 Ag5 (ClO4 )3 ](ClO4 )4 (2) with a novel trigonal bipyramidal structure; employing PhCO2 - gives yellow-emissive, hexagram-like [(C)(Au-PPhpy2 )6 Ag6 (PhCO2 )3 ](BF4 )5 (3). Notably, 1 exhibits weak luminescence in CH2 Cl2 /CH3 OH=1 : 1 (v : v) with a quantum yield (QY) of 0.05, whereas it was dramatically increased to 0.49 and 0.83 for 2 and 3, respectively. Theoretical calculation confirms that the involvement of anions in the electronic structures is responsible for the shifts of emission. The high QYs of 2 and 3 are attributed to the protection provided by ligands and anions. This work demonstrates that anions may serve as an extra designable factor beyond just counterions for functional metal clusters.
Collapse
Affiliation(s)
- Jiao-Jiao Li
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Chun-Yu Liu
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Zong-Jie Guan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhen Lei
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| | - Quan-Ming Wang
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Naina VR, Krätschmer F, Roesky PW. Selective coordination of coinage metals using orthogonal ligand scaffolds. Chem Commun (Camb) 2022; 58:5332-5346. [PMID: 35416815 DOI: 10.1039/d2cc01093c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Group 11 metal complexes with their ability to form metallophilic interations are widely pursued to develop multifunctional luminescent materials. Heteronuclear coinage metal complexes are promising candidates to tune electronic and optical properties which are not readily accessed by their homometallic congeners. In this review, we present the concept of orthogonal ligands which are rationally designed to access heteronuclear coinage metal complexes and studied in terms of their photophysical properties. Bifunctional ligands containing soft and hard donor atoms have the potential of providing different coordination modes to selectively synthesise heterobimetallic complexes in a predictable manner. This review deals with ligand sets composed of pyridine, bipyridine- or iminopyridine-substituted NHCs featuring C-N coordination modes, phosphine-based N-heterocycles and amidinate ligand scaffolds comprising of P-N functionalities and mixed phosphine-phosphine oxide with P-O donor sites. Therefore, the scope of this perspective is the discussion of heteronuclear coinage metal complexes supported by recently developed bifunctional ligands in terms of their synthesis, coordination geometries and tunability of optical properties when compared to their homometallic analogues.
Collapse
Affiliation(s)
- Vanitha R Naina
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Frederic Krätschmer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
12
|
Li JJ, Liu CY, Guan ZJ, Lei Z, Wang QM. Anion‐Directed Regulation of Structures and Luminescence of Heterometallic Clusters. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiao-Jiao Li
- Tsinghua University Department of Chemistry CHINA
| | - Chun-Yu Liu
- Tsinghua University Department of Chemistry CHINA
| | | | - Zhen Lei
- Tsinghua University Department of Chemistry CHINA
| | - Quan-Ming Wang
- Tsinghua University Chemistry Department 1 Tsinghua Yuan, Haidian District 100084 Beijing CHINA
| |
Collapse
|
13
|
Su YM, Li XY, Wang Z, Gao ZY, Huang XQ, Tung CH, Sun D. Structural rearrangement of Ag 60 nanocluster endowing different luminescence performances. J Chem Phys 2021; 155:234303. [PMID: 34937377 DOI: 10.1063/5.0070138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It is well known that structure determines property, but obtaining a pair of silver nanoclusters with comparable structures to understand the structure-property relationship is a very challenging task. A new 60-nuclei silver nanocluster (SD/Ag60a) protected by a mixed-ligand shell of tBuS- and o-CH3OPhCOO- was obtained and characterized. Single crystal x-ray diffraction reveals that SD/Ag60a has an identical metal nuclearity and core-shell structural type to SD/Ag1 previously reported by our group, whereas the compositions of the core and shell have undergone a rearrangement from an Ag12 cuboctahedron core and an Ag48 rhombicuboctahedron shell in SD/Ag1 to an Ag14 rhombic dodecahedron core and an oval Ag46 shell in SD/Ag60a. The core enlargement from Ag12 to Ag14 originates from the replacement of two S2- in Ag12S15 by two Ag+, which gives a new Ag14S13 core. This result indicates that the metal frameworks of silver nanoclusters have some extent flexibility despite the same nuclearity, which can be influenced by ligands, solvents, anion templates, and others in the embryonic stage of the assembly. Interestingly, different core-shell architectures of Ag60 nanoclusters also significantly endow the different optical absorption bands, photocurrent-generating properties, and luminesecent behaviors. This work not only realizes the regulation of the core-shell structure of silver nanoclusters with the same nuclearity but also provides a comparable model for investigating the relationship of structure-photoelectric properties.
Collapse
Affiliation(s)
- Yan-Min Su
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Xiao-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Zhi Wang
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Di Sun
- Key Lab for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
14
|
Abstract
Carbide complexes remain a rare class of molecules. Their paucity does not reflect exceptional instability but is rather due to the generally narrow scope of synthetic procedures for constructing carbide complexes. The preparation of carbide complexes typically revolves around generating LnM-CEx fragments, followed by cleavage of the C-E bonds of the coordinated carbon-based ligands (the alternative being direct C atom transfer). Prime examples involve deoxygenation of carbonyl ligands and deprotonation of methyl ligands, but several other p-block fragments can be cleaved off to afford carbide ligands. This Review outlines synthetic strategies toward terminal carbide complexes, bridging carbide complexes, as well as carbide-carbonyl cluster complexes. It then surveys the reactivity of carbide complexes, covering stoichiometric reactions where the carbide ligands act as C1 reagents, engage in cross-coupling reactions, and enact Fischer-Tropsch-like chemistry; in addition, we discuss carbide complexes in the context of catalysis. Finally, we examine spectroscopic features of carbide complexes, which helps to establish the presence of the carbide functionality and address its electronic structure.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Wang Y, Yan JJ, Hu S, James Young D, Li HX, Ren ZG. A Photoluminescent Ag 10 Cu 6 Cluster Stablized by a PNNP Ligand and Phenylacetylides Selectively and Reversibly Senses Ammonia in Air and Water. Chem Asian J 2021; 16:2681-2686. [PMID: 34313023 DOI: 10.1002/asia.202100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/24/2021] [Indexed: 01/23/2023]
Abstract
A photoluminescent bimetallic cluster [Ag10 Cu6 (bdppthi)2 (C≡CPh)12 (MeOH)2 (H2 O)](ClO4 )4 (1, bdppthi=N,N'-bis(diphenylphosphanylmethyl)-tetrahydroimidazole} was synthesized from the PNNP type ligand bdppthi generated in-situ. Upon excitation at 365 nm, 1 exhibited strong phosphorescent emission at 630 nm, which was selectively quenched by NH3 in air or water. The sensing of NH3 was rapid and recoverable, with detection limits of 53 ppm (v/v) in N2 and 21 μmol/L (0.36 ppm, w/w) for NH3 ⋅ H2 O in water. Cluster 1 could potentially serve as a bifunctional chemical sensor for the efficient detection of ammonia in waste-gas and waste-water.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jia-Jun Yan
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Shengnan Hu
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - David James Young
- College of Engineering Informationa Technology and Environment, Charles Darwin University, Northern Territory, 0909, Australia
| | - Hong-Xi Li
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhi-Gang Ren
- College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
16
|
Abstract
In this contribution, we provide an overview of the main avenues that have emerged in gold coordination chemistry during the last years. The unique properties of gold have motivated research in gold chemistry, and especially regarding the properties and applications of gold compounds in catalysis, medicine, and materials chemistry. The advances in the synthesis and knowledge of gold coordination compounds have been possible with the design of novel ligands becoming relevant motifs that have allowed the preparation of elusive complexes in this area of research. Strong donor ligands with easily modulable electronic and steric properties, such as stable singlet carbenes or cyclometalated ligands, have been decisive in the stabilization of gold(0) species, gold fluoride complexes, gold hydrides, unprecedented π complexes, or cluster derivatives. These new ligands have been important not only from the fundamental structure and bonding studies but also for the synthesis of sophisticated catalysts to improve activity and selectivity of organic transformations. Moreover, they have enabled the facile oxidative addition from gold(I) to gold(III) and the design of a plethora of complexes with specific properties.
Collapse
Affiliation(s)
- Raquel P Herrera
- Laboratorio de Organocatálisis Asimétrica Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
17
|
Zhou C, Li H, Ke F, Zhu C, Pan P, Xu WW, Kang X, Song Y, Zhu M. Au 11Ag 6 nanocluster: Controllable preparation, structural determination, and optical property investigation. J Chem Phys 2021; 154:184302. [PMID: 34241021 DOI: 10.1063/5.0050079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure/composition of nanoclusters has a decisive influence on their physicochemical properties. In this work, we obtained two different Au-Ag nanoclusters, [Au9Ag12(SAdm)4(dppm)6Cl6]3+ and Au11Ag6(dppm)4(SAdm)4(CN)4, via controlling the Au/Ag molar ratios by a one-pot synthetic approach. The structure of nanoclusters was confirmed and testified by single-crystal x-ray diffraction, electrospray ionization time-of-flight mass spectrometry, XPS, powder x-ray diffraction, and electron paramagnetic resonance. The Au11Ag6 nanocluster possessed a M13 core caped by four Au atoms and four dppm and four AdmS ligands. Interestingly, four CN are observed to locate at the equator of the M13 core. Both nanoclusters contain a similar icosahedral M13 core, whereas their surface structures are totally different. However, the Au11Ag6 nanocluster exhibits good stability and strong red photoluminescence in solution.
Collapse
Affiliation(s)
- Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Feng Ke
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Peiyao Pan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, People's Republic of China
| | - Yongbo Song
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Hefei 230601, People's Republic of China
| |
Collapse
|
18
|
Tao Y, Wang Y, Hu S, Young DJ, Lu C, Li HX, Ren ZG. A photoluminescent Au(I)/Ag(I)/PNN coordination complex for relatively rapid and reversible alcohol sensing. Dalton Trans 2021; 50:6773-6777. [PMID: 33960988 DOI: 10.1039/d1dt00931a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Trinuclear complex [Au2Ag(dppmaphen)2(CN)2]PF6 photoluminesces on exposure to low molecular weight alcohols. This emission is likely due to C-Hπ interactions between the analyte and -PPh2 group, that inhibits non-radiative relaxation of the photoexcited state. Photoluminescene was quenched by removing the analyte under a stream of N2 or replacing it with H2O. This on/off switching was clearly visible, relatively rapid and recyclable.
Collapse
Affiliation(s)
- Yanhui Tao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - Yuwei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - Shengnan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - David James Young
- College of Engineering, Informationa Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - Chengrong Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - Hong-Xi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, P. R. China.
| |
Collapse
|
19
|
Lei Z, Pei XL, Ube H, Shionoya M. Reconstituting C-Centered Hexagold(I) Clusters with N-Heterocyclic Carbene Ligands. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
20
|
Xu H, Han YZ, OuYang J, Chen ZC, Chen HJ, Nie HH, Tang Z, Yang SY, Huang RB, Zheng LS, Teo BK. Dissection of bicapped octahedral copper hydride cluster to form two chiral tetrahedral copper hydride cluster series exhibiting auto deracemization and photoluminescence. Dalton Trans 2021; 50:4028-4035. [PMID: 33662080 DOI: 10.1039/d1dt00031d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three series of copper hydride clusters [Cu8H6L6]2+ (1), [Cu4HX2L4]+ where X- = Cl- (2a), Br- (2b), I- (2c), N3- (2d) and SCN- (2e), and [Cu4HX3L3] where X- = Br- (3b) and I- (3c) (L = 2-(diphenylphosphino)pyridine, dppy) were synthesized and characterized by single-crystal X-Ray crystallography and standard spectroscopic techniques. The metal core of 1, Cu8, can be described as a bicapped octahedron, while those of 2 and 3 series adopt tetrahedral structures. The hydride positions were deduced from difference electron density maps and corroborated by NMR and DFT calculations. For 1, there are two μ4-H-, one each in the two tetrahedral cavities of the two capping atoms and four μ3-H- on the six triangular faces around the waist of the octahedron. For [Cu4HX2L4]+ and [Cu4HX3L3] series, the single μ4-H- resides in the center of the Cu4 tetrahedron. It was found that these three series of copper clusters are intimately connected and can convert from one to another under specific reaction conditions. Their transformation pathways were investigated in detail. Spontaneous resolution to form optically pure enantiomeric single crystals was observed for [Cu4H(SCN)2L4]+ (2e) and [Cu4HBr3L3] (3b). Photoluminescence was observed for [Cu4HX2L4]+, as well as [Cu4HX3L3] with strong emissions from green to yellow regions.
Collapse
Affiliation(s)
- Han Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
He W, Zhou Z, Han Z, Li S, Zhou Z, Ma L, Zang S. Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Wei‐Miao He
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhe Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Si Li
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhan Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Lu‐Fang Ma
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Shuang‐Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
22
|
He W, Zhou Z, Han Z, Li S, Zhou Z, Ma L, Zang S. Ultrafast Size Expansion and Turn‐On Luminescence of Atomically Precise Silver Clusters by Hydrogen Sulfide. Angew Chem Int Ed Engl 2021; 60:8505-8509. [DOI: 10.1002/anie.202100006] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Wei‐Miao He
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhe Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhen Han
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Si Li
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Zhan Zhou
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Lu‐Fang Ma
- Henan Key Laboratory of Function-Oriented Porous Materials College of Chemistry and Chemical Engineering Luoyang Normal University Luoyang 471934 China
| | - Shuang‐Quan Zang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
23
|
Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev 2020; 49:6443-6514. [PMID: 32760953 DOI: 10.1039/c9cs00633h] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal nanoclusters fill the gap between discrete atoms and plasmonic nanoparticles, providing unique opportunities for investigating the quantum effects and precise structure-property correlations at the atomic level. As a versatile strategy, alloying can largely improve the physicochemical performances compared to the corresponding homo-metal nanoclusters, and thus benefit the applications of such nanomaterials. In this review, we highlight the achievements of atomically precise alloy nanoclusters, and summarize the alloying principles and fundamentals, including the synthetic methods, site-preferences for different heteroatoms in the templates, and alloying-induced structure and property changes. First, based on various Au or Ag nanocluster templates, heteroatom doping modes are presented. The templates with electronic shell-closing configurations tend to maintain their structures during doping, while the others may undergo transformation and give rise to alloy nanoclusters with new structures. Second, alloy nanoclusters of specific magic sizes are reviewed. The arrangement of different atoms is related to the symmetry of the structures; that is, different atoms are symmetrically located in the nanoclusters of smaller sizes, and evolve into shell-by-shell structures at larger sizes. Then, we elaborate on the alloying effects in terms of optical, electrochemical, electroluminescent, magnetic and chiral properties, as well as the stability and reactivity via comparisons between the doped nanoclusters and their homo-metal counterparts. For example, central heteroatom-induced photoluminescence enhancement is emphasized. The applications of alloy nanoclusters in catalysis, chemical sensing, bio-labeling, and other fields are further discussed. Finally, we provide perspectives on existing issues and future efforts. Overall, this review provides a comprehensive synthetic toolbox and controllable doping modes so as to achieve more alloy nanoclusters with customized compositions, structures, and properties for applications. This review is based on publications available up to February 2020.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | | | | | | |
Collapse
|
24
|
Pei X, Pereira A, Smirnova ES, Echavarren AM. Small Gold(I) and Gold(I)-Silver(I) Clusters by C-Si Auration. Chemistry 2020; 26:7309-7313. [PMID: 32236985 PMCID: PMC7317441 DOI: 10.1002/chem.202001509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Indexed: 11/18/2022]
Abstract
Auration of o-trimethylsilyl arylphosphines leads to the formation of gold and gold-silver clusters with ortho-metalated phosphines displaying 3c-2e Au-C-M bonds (M=Au/Ag). Hexagold clusters [Au6 L4 ](X)2 are obtained by reaction of (L-TMS)AuCl with AgX, whereas reaction with AgX and Ag2 O leads to gold-silver clusters [Au4 Ag2 L4 ](X)2 . Oxo-trigold(I) species [Au3 O]+ were identified as the intermediates in the formation of the silver-doped clusters. Other [Au5 ], [Au4 Ag], and [Au12 Ag4 ] clusters were also obtained. Clusters containing PAu-Au-AuP structural motif display good catalytic activity in the activation of alkynes under homogeneous conditions.
Collapse
Affiliation(s)
- Xiao‐Li Pei
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅li Domingo s/n43007TarragonaSpain
| | - Ana Pereira
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅li Domingo s/n43007TarragonaSpain
| | - Ekaterina S. Smirnova
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅li Domingo s/n43007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and TechnologyAv. Països Catalans 1643007TarragonaSpain
- Departament de Química Analítica i Química OrgànicaUniversitat Rovira i VirgiliC/ Marcel⋅li Domingo s/n43007TarragonaSpain
| |
Collapse
|
25
|
Lei Z, Nagata K, Ube H, Shionoya M. Ligand effects on the photophysical properties of N,N′-diisopropylbenzimidazolylidene-protected C-centered hexagold(I) clusters. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Jiang MS, Tao YH, Wang YW, Lu C, Young DJ, Lang JP, Ren ZG. Reversible Solid-State Phase Transitions between Au-P Complexes Accompanied by Switchable Fluorescence. Inorg Chem 2020; 59:3072-3078. [PMID: 32058694 DOI: 10.1021/acs.inorgchem.9b03412] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Six complexes {(3-bdppmapy)(AuCl)2}n (1-6; 3-bdppmapy = N,N'-bis(diphenylphosphanylmethyl)-3-aminopyridine and tht = tetrahydrothiophene) were simultaneously formed by the reaction of Au(tht)Cl and 3-bdppmapy in CH2Cl2 followed by infusion with hexane. Complexes 4-6 could be produced independently by volatilizing solvent in air, solid-state heating, or solvothermal reaction. The PPh2-Au-Cl moieties extended in different directions, forming Au-Au and Au-Au-Au interactions. Complex 4 could be converted to 5 by heating to 130 °C, with the cleavage of one Au-Au bond, while 5 reverted back to 4 upon exposure to CH2Cl2 vapor over 11 h. This solid-state phase transition could be recycled and was accompanied by a change in solid-state fluorescence, without obvious intensity decay over five cycles. The reason for both the phase transition and difference in photoluminescence is related to the different numbers and strengths of aurophilic interactions in each complex that could be modeled by density functional theory calculations.
Collapse
Affiliation(s)
- Meng-Sha Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yan-Hui Tao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yu-Wei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Chengrong Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - David James Young
- College of Engineering, Information Technology and Environment, Charles Darwin University, Northern Territory 0909, Australia
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Zhi-Gang Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.,Collaborative Innovation Center for New-type Urbanization and Social Governance of Jiangsu Province, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Chen XR, Yang L, Tan YL, Yu H, Ni CY, Niu Z, Lang JP. The solvent-induced isomerization of silver thiolate clusters with symmetry transformation. Chem Commun (Camb) 2020; 56:3649-3652. [DOI: 10.1039/d0cc01195a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The solvent-induced isomerizations of Ag12 clusters with symmetry transformations were realized by changing the coordinated solvent molecules at room temperature.
Collapse
Affiliation(s)
- Xu-Ran Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Ling Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Yu-Ling Tan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Hong Yu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Chun-Yan Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Zheng Niu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| |
Collapse
|
28
|
Wang Z, Sun HT, Kurmoo M, Liu QY, Zhuang GL, Zhao QQ, Wang XP, Tung CH, Sun D. Carboxylic acid stimulated silver shell isomerism in a triple core-shell Ag 84 nanocluster. Chem Sci 2019; 10:4862-4867. [PMID: 31183036 PMCID: PMC6520922 DOI: 10.1039/c8sc05666h] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/28/2019] [Indexed: 12/02/2022] Open
Abstract
A unique triple core–shell Ag84 nanocluster displaying isomerism, which is controlled by different carboxylic acids and a one-way transformation (SD/Ag84a and SD/Ag84b).
Isomerization is highly important in all aspects of science, yet it is rarely observed in nanoscience. Here, we synthesized a unique triple core–shell Ag84 nanocluster displaying isomerism, which is controlled by different carboxylic acids and a one-way transformation (SD/Ag84a → SD/Ag84b). The innermost core is a rare Ag10 nanocluster which comprises an Ag6 octahedral unit as seen in face-centred cubic (fcc) silver metal and four capped Ag atoms. It templates two crescent-shaped polyoxometalate (W7O26)10– shells which are then enclosed in a shell of silver shaped as rugby balls. The organic ligands (iPrS–, nPrCOO– and PhCOO–) finally shield the metallic clusters. Due to slight differences in structure at two poles and the steric hindrance of nPrCOO– and PhCOO–, SD/Ag84a and SD/Ag84b adopt the shapes of flat-headed and cuspidal prolate spheres, respectively. Interestingly, PhCOOH is dominant over nPrCOOH whereby crystals of SD/Ag84b were isolated if PhCOOH is added during the synthesis of SD/Ag84a. This demonstrates that PhCOOH not only alters the organic coats but also induces metal shell re-organization. This work reveals carboxylate-controlled skeletal isomerism in silver nanoclusters for the first time, thus deepening the understanding of silver nanocluster assembly, flexibility and reactivity.
Collapse
Affiliation(s)
- Zhi Wang
- Key Laboratory of Colloid and Interface Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , People's Republic of China .
| | - Hao-Tian Sun
- Key Laboratory of Colloid and Interface Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , People's Republic of China .
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg , Université de Strasbourg , CNRS-UMR 7177 , 4 rue Blaise Pascal , 67008 Strasbourg Cedex , France
| | - Qing-Yun Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao , 266590 , People's Republic of China
| | - Gui-Lin Zhuang
- College of Chemical Engineering and Materials Science , Zhejiang University of Technology , Hangzhou , 310032 , People's Republic of China .
| | - Quan-Qin Zhao
- Key Laboratory of Colloid and Interface Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , People's Republic of China .
| | - Xing-Po Wang
- Key Laboratory of Colloid and Interface Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , People's Republic of China .
| | - Chen-Ho Tung
- Key Laboratory of Colloid and Interface Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , People's Republic of China .
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry , Ministry of Education , School of Chemistry and Chemical Engineering , State Key Laboratory of Crystal Materials , Shandong University , Jinan , 250100 , People's Republic of China . .,College of Chemical Engineering and Materials Science , Zhejiang University of Technology , Hangzhou , 310032 , People's Republic of China .
| |
Collapse
|
29
|
Rong MK, Holtrop F, Slootweg JC, Lammertsma K. Enlightening developments in 1,3-P,N-ligand-stabilized multinuclear complexes: A shift from catalysis to photoluminescence. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Wang JY, Huang RW, Wei Z, Xi XJ, Dong XY, Zang SQ. Linker Flexibility-Dependent Cluster Transformations and Cluster-Controlled Luminescence in Isostructural Silver Cluster-Assembled Materials (SCAMs). Chemistry 2019; 25:3376-3381. [DOI: 10.1002/chem.201805808] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/05/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jia-Yin Wang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Ren-Wu Huang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Zhong Wei
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Xiao-Juan Xi
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| | - Xi-Yan Dong
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
- College of Chemistry and Chemical Engineering; Henan Polytechnic University Henan Key Laboratory of, Coal Green Conversion; Henan Polytechnic University; Jiaozuo 454000 P.R. China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 P.R. China
| |
Collapse
|
31
|
Wang Y, Shi YF, Zou XC, Li XB, Peng Y, He YC. Structure and luminescence properties of a Cl@Ag11 cluster complex with diethyldithiocarbamate. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
|
33
|
Osawa M, Yamayoshi H, Hoshino M, Tanaka Y, Akita M. Luminescence color alteration induced by trapped solvent molecules in crystals of tetrahedral gold(i) complexes: near-unity luminescence mixed with thermally activated delayed fluorescence and phosphorescence. Dalton Trans 2019; 48:9094-9103. [DOI: 10.1039/c9dt01373c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Emission color alteration caused by captured solvent molecules in the crystal lattice of tetrahedral gold(i) complexes.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry
- Nippon Institute of Technology
- Saitama
- Japan
| | - Hiroto Yamayoshi
- Department of Applied Chemistry
- Nippon Institute of Technology
- Saitama
- Japan
| | - Mikio Hoshino
- Department of Applied Chemistry
- Nippon Institute of Technology
- Saitama
- Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research
- Tokyo Institute of Technology R1-27
- Yokohama 226-8503
- Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science Institute of Innovative Research
- Tokyo Institute of Technology R1-27
- Yokohama 226-8503
- Japan
| |
Collapse
|
34
|
Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev 2019; 48:2422-2457. [PMID: 30838373 DOI: 10.1039/c8cs00800k] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Due to their atomically precise structures and intriguing chemical/physical properties, metal nanoclusters are an emerging class of modular nanomaterials. Photo-luminescence (PL) is one of their most fascinating properties, due to the plethora of promising PL-based applications, such as chemical sensing, bio-imaging, cell labeling, phototherapy, drug delivery, and so on. However, the PL of most current nanoclusters is still unsatisfactory-the PL quantum yield (QY) is relatively low (generally lower than 20%), the emission lifetimes are generally in the nanosecond range, and the emitted color is always red (emission wavelengths of above 630 nm). To address these shortcomings, several strategies have been adopted, and are reviewed herein: capped-ligand engineering, metallic kernel alloying, aggregation-induced emission, self-assembly of nanocluster building blocks into cluster-based networks, and adjustments on external environment factors. We further review promising applications of these fluorescent nanoclusters, with particular focus on their potential to impact the fields of chemical sensing, bio-imaging, and bio-labeling. Finally, scope for improvements and future perspectives of these novel nanomaterials are highlighted as well. Our intended audience is the broader scientific community interested in the fluorescence of metal nanoclusters, and our review hopefully opens up new horizons for these scientists to manipulate PL properties of nanoclusters. This review is based on publications available up to December 2018.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, Anhui 230601, China.
| | | |
Collapse
|
35
|
1D silver cluster-assembled materials act as a platform for selectively erasable photoluminescent switch of acetonitrile. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9387-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Lei Z, Wan XK, Yuan SF, Wang JQ, Wang QM. Alkynyl-protected gold and gold–silver nanoclusters. Dalton Trans 2017; 46:3427-3434. [DOI: 10.1039/c6dt04763g] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alkynyl-protected coinage metal nanoclusters show new structural features and have interesting luminescence properties and catalytic behavior.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
| | - Xian-Kai Wan
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
- Department of Chemistry
| | - Shang-Fu Yuan
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
- Department of Chemistry
| | - Jia-Qi Wang
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
| | - Quan-Ming Wang
- Department of Chemistry
- Tsinghua University
- Beijing
- 100084 P. R. China
- Department of Chemistry
| |
Collapse
|
37
|
Kang X, Li X, Yu H, Lv Y, Sun G, Li Y, Wang S, Zhu M. Modulating photo-luminescence of Au2Cu6 nanoclusters via ligand-engineering. RSC Adv 2017. [DOI: 10.1039/c7ra04743f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The luminescence of Au2Cu6 nanocluster is controlled by tailoring the ligand to metal charge transfer via engineering the phosphine ligands.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
| | - Xiaowu Li
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
| | - Haizhu Yu
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
| | - Ying Lv
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
| | - Guodong Sun
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
| | - Yangfeng Li
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
| | - Shuxin Wang
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
| | - Manzhou Zhu
- Department of Chemistry
- Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
| |
Collapse
|
38
|
Kang X, Xiong L, Wang S, Pei Y, Zhu M. De-assembly of assembled Pt1Ag12 units: tailoring the photoluminescence of atomically precise nanoclusters. Chem Commun (Camb) 2017; 53:12564-12567. [DOI: 10.1039/c7cc05996e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
De-assembly of assembled Pt1Ag12-units renders a blue-shift of the photoluminescent emission as well as an enhancement of the quantum yield.
Collapse
Affiliation(s)
- Xi Kang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| | - Lin Xiong
- Department of Chemistry
- Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE
- Xiangtan University
- Xiangtan
- China
| | - Shuxin Wang
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| | - Yong Pei
- Department of Chemistry
- Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE
- Xiangtan University
- Xiangtan
- China
| | - Manzhou Zhu
- Department of Chemistry and Center for Atomic Engineering of Advanced Materials
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
- Hefei
- China
| |
Collapse
|