1
|
Lukman MF, Pöppl A. Electron paramagnetic resonance spectroscopy: toward the path of dihydrogen isotopologue detection in porous materials. Chem Commun (Camb) 2025. [PMID: 39886910 DOI: 10.1039/d4cc06430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a powerful method to characterize the local framework structure of nanoporous materials during the dihydrogen isotopologue adsorption process. It also allows for exploring the adsorption sites of the dihydrogen isotopes and monitoring their desorption characteristics on the microscopic scale. The paramagnetic spin probes in the form of transition metal ions or organic radicals are required for EPR spectroscopy and are introduced either at the framework lattice position or in the pores of the metal-organic frameworks. This review highlights current advancements within the field of dihydrogen isotopologue detection as well as key findings related to the versatility of in situ continuous wave EPR and pulsed EPR experiments as toolkits for monitoring the adsorption-desorption process of dihydrogen isotopologues from the perspective of the framework as well as studying the host-guest interactions based on high-resolution advantages offered by using a pulsed EPR approach.
Collapse
Affiliation(s)
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig, Germany.
| |
Collapse
|
2
|
Xiao Y, Li S, Jiang B, Liang X, Chu Y, Deng F. Effect of Co-Adsorbed Guest Adsorbates on the Separation of Ethylene/Ethane Mixtures on Metal-Organic Frameworks with Open Metal Sites. Chemistry 2024; 30:e202401006. [PMID: 38625163 DOI: 10.1002/chem.202401006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Direct determination of the equilibrium adsorption and spectroscopic observation of adsorbent-adsorbate interaction is crucial to evaluate the olefin/paraffin separation performance of porous adsorbents. However, the experimental characterization of competitive adsorption of various adsorbates at atomic-molecular level in the purification of multicomponent gas mixtures is challenging and rarely conducted. Herein, solid-state NMR spectroscopy is employed to examine the effect of co-adsorbed guest adsorbates on the separation of ethylene/ethane mixtures on Mg-MOF-74, Zn-MOF-74 and UTSA-74. 1H MAS NMR facilitates the determination of equilibrium uptake and adsorption selectivity of ethylene/ethane in ternary mixtures. The co-adsorption of H2O and CO2 significantly leads to the degradation of ethylene uptake and ethylene/ethane selectivity. The detailed host-guest and guest-guest interactions are unraveled by 2D 1H-1H spin diffusion homo-nuclear correlation and static 25Mg NMR experiments. The experimental results verify H2O coordinated on open metal sites can supply a new adsorption site for ethylene and ethane. The effects of guest adsorbates on the adsorption capacity and adsorption selectivity of ethylene/ethane mixtures are in the following order: H2O>CO2>O2. This work provides a direct approach for exploring the equilibrium adsorption and detailed separation mechanism of multicomponent gas mixtures using MOFs adsorbents.
Collapse
Affiliation(s)
- Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Wuhan, 430074, China
| | - Xinmiao Liang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Moroz IB, Feldman Y, Carmieli R, Liu X, Leskes M. Endogenous metal-ion dynamic nuclear polarization for NMR signal enhancement in metal organic frameworks. Chem Sci 2023; 15:336-348. [PMID: 38131097 PMCID: PMC10731914 DOI: 10.1039/d3sc03456a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Rational design of metal-organic framework (MOF)-based materials for catalysis, gas capture and storage, requires deep understanding of the host-guest interactions between the MOF and the adsorbed molecules. Solid-State NMR spectroscopy is an established tool for obtaining such structural information, however its low sensitivity limits its application. This limitation can be overcome with dynamic nuclear polarization (DNP) which is based on polarization transfer from unpaired electrons to the nuclei of interest and, as a result, enhancement of the NMR signal. Typically, DNP is achieved by impregnating or wetting the MOF material with a solution of nitroxide biradicals, which prevents or interferes with the study of host-guest interactions. Here we demonstrate how Gd(iii) ions doped into the MOF structure, LaBTB (BTB = 4,4',4''-benzene-1,3,5-triyl-trisbenzoate), can be employed as an efficient polarization agent, yielding up to 30-fold 13C signal enhancement for the MOF linkers, while leaving the pores empty for potential guests. Furthermore, we demonstrate that ethylene glycol, loaded into the MOF as a guest, can also be polarized using our approach. We identify specific challenges in DNP studies of MOFs, associated with residual oxygen trapped within the MOF pores and the dynamics of the framework and its guests, even at cryogenic temperatures. To address these, we describe optimal conditions for carrying out and maximizing the enhancement achieved in DNP-NMR experiments. The approach presented here can be expanded to other porous materials which are currently the state-of-the-art in energy and sustainability research.
Collapse
Affiliation(s)
- Ilia B Moroz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Yishay Feldman
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 76100 Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot 76100 Israel
| | - Xinyu Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
4
|
He C, Li S, Jiang B, Chen F, Hu W, Deng F. Surface Hydrophobicity and Guest Permeability in Polydimethylsiloxane-Coated MIL-53 as Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37936-37945. [PMID: 37503940 DOI: 10.1021/acsami.3c07142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Experimental characterization of the hydrophobic porous materials at the atomic and molecular levels is of great significance, but exploring their hydrophobicity characteristics and interactions with guest molecules with distinct polarity is still challenging. In this work, solid-state NMR is employed to characterize the surface hydrophobicity and explore the guest solvent permeability in polydimethylsiloxane (PDMS)-coated MIL-53. It was found that the PDMS-coated MIL-53 was hydrophobic to water and infiltrated to methanol, acetone, benzene, toluene, and ethylbenzene solvents. In addition, two types of guest solvents (methanol, acetone, benzene, toluene, and ethylbenzene), inside the pore and outside the pore of PDMS-coated MIL-53, were clearly identified using two-dimensional 1H-1H homo-nuclear correlation NMR experiments. Moreover, the membrane thickness of the PDMS-coated MIL-53 could be determined from the analysis of the 1H-1H spin diffusion buildup curves. Furthermore, the permeability of benzene, toluene, and ethylbenzene at different PDMS coating levels was extracted from 1H MAS NMR. The increase of the hydrophobic PDMS layer resulted in a decrease of the penetration of aromatic guests to the internal pore of MIL-53. This work provides deep insights into the understanding of guest solvent permeability of hydrophobic layer-coated MOFs in the application fields of catalysis and separation.
Collapse
Affiliation(s)
- Caiyan He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Solid-state NMR studies of host-guest chemistry in metal-organic frameworks. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Xiao Y, Chu Y, Li S, Xu J, Deng F. Preferential adsorption sites for propane/propylene separation on ZIF-8 as revealed by solid-state NMR spectroscopy. Phys Chem Chem Phys 2022; 24:6535-6543. [PMID: 35258049 DOI: 10.1039/d1cp05931a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-state NMR spectroscopy in conjunction with theoretical calculation was employed to investigate the adsorbent-adsorbate host-guest interactions during propane/propylene separation on ZIF-8. 1H NMR chemical shifts of free gaseous and adsorbed propane/propylene are unambiguously assigned with the assistance of two-dimensional (2D) 1H-1H correlation spectroscopy (COSY) MAS NMR spectra. Meanwhile, the adsorption selectivity for propane/propylene mixtures on ZIF-8 at a pressure in range of 1.9-9.6 bar is quantitatively determined using 1H MAS NMR experiments, which agreed well with the ideal adsorbed solution theory (IAST) predictions. The preferential adsorption of propane compared with propylene on ZIF-8 is directly visualized from the 2D 1H-1H spin diffusion homo-nuclear correlation (HOMCOR) MAS NMR spectroscopy. Moreover, the preferential adsorption sites for propane and propylene are deduced from the 1H-1H spin diffusion buildup curves, which is further confirmed by DFT theoretical calculations. This work provides insights to understand the structure-property relationship during the propane/propylene separation on ZIF-8 as adsorbent.
Collapse
Affiliation(s)
- Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Yang W, Liang W, O’Dell LA, Toop HD, Maddigan N, Zhang X, Kochubei A, Doonan CJ, Jiang Y, Huang J. Insights into the Interaction between Immobilized Biocatalysts and Metal-Organic Frameworks: A Case Study of PCN-333. JACS AU 2021; 1:2172-2181. [PMID: 34977888 PMCID: PMC8715483 DOI: 10.1021/jacsau.1c00226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 05/05/2023]
Abstract
The immobilization of enzymes in metal-organic frameworks (MOFs) with preserved biofunctionality paves a promising way to solve problems regarding the stability and reusability of enzymes. However, the rational design of MOF-based biocomposites remains a considerable challenge as very little is known about the state of the enzyme, the MOF support, and their host-guest interactions upon immobilization. In this study, we elucidate the detailed host-guest interaction for MOF immobilized enzymes in the biointerface. Two enzymes with different sizes, lipase and insulin, have been immobilized in a mesoporous PCN-333(Al) MOF. The dynamic changes of local structures of the MOF host and enzyme guests have been experimentally revealed for the existence of the confinement effect to enzymes and van der Waals interaction in the biointerface between the aluminum oxo-cluster of the PCN-333 and the -NH2 species of enzymes. This kind of host-guest interaction renders the immobilization of enzymes in PCN-333 with high affinity and highly preserved enzymatic bioactivity.
Collapse
Affiliation(s)
- Wenjie Yang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, the University of
Sydney, Sydney, NSW 2006, Australia
- School
of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Weibin Liang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, the University of
Sydney, Sydney, NSW 2006, Australia
| | - Luke A. O’Dell
- Institute
for Frontier Materials, Deakin University, Geelong, VIC 3220, Australia
| | - Hamish D. Toop
- Department
of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Natasha Maddigan
- Department
of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xingmo Zhang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, the University of
Sydney, Sydney, NSW 2006, Australia
| | - Alena Kochubei
- School
of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Christian J. Doonan
- Department
of Chemistry and the Centre for Advanced Nanomaterials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yijiao Jiang
- School
of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Jun Huang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, the University of
Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Synthesis, optical and magnetic research of nicotinic acid ligand Zn, Cd, Mn and Co complexes. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Xiao Y, Chu Y, Li S, Chen F, Gao W, Xu J, Deng F. Host-Guest Interaction in Ethylene and Ethane Separation on Zeolitic Imidazolate Frameworks as Revealed by Solid-State NMR Spectroscopy. Chemistry 2021; 27:11303-11308. [PMID: 34109690 DOI: 10.1002/chem.202101779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 11/07/2022]
Abstract
The separation of ethane/ethylene mixture by using metal-organic frameworks (MOFs) as adsorbents is strongly associated with the pore size-sieving effect and the adsorbent-adsorbate interaction. Herein, solid-state NMR spectroscopy is utilized to explore the host-guest interaction and ethane/ethylene separation mechanism on zeolitic imidazolate frameworks (ZIFs). Preferential access to the ZIF-8 and ZIF-8-90 frameworks by ethane compared to ethylene is directly visualized from two-dimensional 1 H-1 H spin diffusion MAS NMR spectroscopy and further verified by computational density distributions. The 1 H MAS NMR spectroscopy provides an alternative for straightforwardly extracting the adsorption selectivity of ethane/ethylene mixture at 1.1∼9.6 bar in ZIFs, which is consistent with the IAST predictions.
Collapse
Affiliation(s)
- Yuqing Xiao
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Wei Gao
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| |
Collapse
|
10
|
Fu Y, Guan H, Yin J, Kong X. Probing molecular motions in metal-organic frameworks with solid-state NMR. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213563] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Xu J, Terskikh VV, Chu Y, Zheng A, Huang Y. 13 C chemical shift tensors in MOF α-Mg 3 (HCOO) 6 : Which component is more sensitive to host-guest interaction? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:1082-1090. [PMID: 31659777 DOI: 10.1002/mrc.4944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/23/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous materials with many current and potential applications. Their applications almost always involve the interaction between host framework and guest species. Therefore, understanding of host-guest interaction in MOF systems is fundamentally important. Solid-state NMR spectroscopy is an excellent technique for investigating host-guest interaction as it provides information complementary to that obtained from X-ray diffraction. In this work, using MOF α-Mg3 (HCOO)6 as an example, we demonstrated that 13 C chemical shift tensor of organic linker can be utilized to probe the host-guest interaction in MOFs. Obtaining 13 C chemical shift tensor components (δ11 , δ22 , and δ33 , where δ11 ≥ δ22 ≥ δ33 ) in this MOF is particularly challenging as there are six coordinatively equivalent but crystallographically non-equivalent carbons in the unit cell with very similar local coordination environment. Two-dimensional magic-angle-turning experiments were employed to measure the 13 C chemical shift tensors of each individual crystallographically non-equivalent carbon in three microporous α-Mg3 (HCOO)6 samples with different guest species. The results indicate that the δ22 component (with its direction approximately being co-planar with the formate anion and perpendicular to the C-H bond) is more sensitive to the adsorbate molecules inside the MOF channel due to the weak C-H···O hydrogen bonding or the ring current effect of benzene. The 13 C isotropic chemical shift, on the other hand, seems much less sensitive to the subtle changes in the local environment around formate linker induced by adsorption. The approach described in this study may be used in future studies on host-guest interaction within MOFs.
Collapse
Affiliation(s)
- Jun Xu
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P.R. China
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Yueying Chu
- Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Wuhan, 430071, P.R. China
| | - Anmin Zheng
- Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Wuhan, 430071, P.R. China
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
12
|
Li S, Lafon O, Wang W, Wang Q, Wang X, Li Y, Xu J, Deng F. Recent Advances of Solid-State NMR Spectroscopy for Microporous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002879. [PMID: 32902037 DOI: 10.1002/adma.202002879] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/29/2020] [Indexed: 05/25/2023]
Abstract
Microporous materials have attracted a rapid growth of research interest in materials science and the multidisciplinary area because of their wide applications in catalysis, separation, ion exchange, gas storage, drug release, and sensing. A fundamental understanding of their diverse structures and properties is crucial for rational design of high-performance materials and technological applications in industry. Solid-state NMR (SSNMR), capable of providing atomic-level information on both structure and dynamics, is a powerful tool in the scientific exploration of solid materials. Here, advanced SSNMR instruments and methods for characterization of microporous materials are briefly described. The recent progress of the application of SSNMR for the investigation of microporous materials including zeolites, metal-organic frameworks, covalent organic frameworks, porous aromatic frameworks, and layered materials is discussed with representative work. The versatile SSNMR techniques provide detailed information on the local structure, dynamics, and chemical processes in the confined space of porous materials. The challenges and prospects in SSNMR study of microporous and related materials are discussed.
Collapse
Affiliation(s)
- Shenhui Li
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181- UCCS - Unité de Catalyse et Chimie du Solide, Lille, F-59000, France
- Institut Universitaire de France, Paris, 75231, France
| | - Weiyu Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Wang
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
- International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Feng Deng
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Martins V, Xu J, Wang X, Chen K, Hung I, Gan Z, Gervais C, Bonhomme C, Jiang S, Zheng A, Lucier BEG, Huang Y. Higher Magnetic Fields, Finer MOF Structural Information: 17O Solid-State NMR at 35.2 T. J Am Chem Soc 2020; 142:14877-14889. [PMID: 32786791 DOI: 10.1021/jacs.0c02810] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spectroscopic study of oxygen, a vital element in materials, physical, and life sciences, is of tremendous fundamental and practical importance. 17O solid-state NMR (SSNMR) spectroscopy has evolved into an ideal site-specific characterization tool, furnishing valuable information on the local geometric and bonding environments about chemically distinct and, in some favorable cases, crystallographically inequivalent oxygen sites. However, 17O is a challenging nucleus to study via SSNMR, as it suffers from low sensitivity and resolution, owing to the quadrupolar interaction and low 17O natural abundance. Herein, we report a significant advance in 17O SSNMR spectroscopy. 17O isotopic enrichment and the use of an ultrahigh 35.2 T magnetic field have unlocked the identification of many inequivalent carboxylate oxygen sites in the as-made and activated phases of the metal-organic framework (MOF) α-Mg3(HCOO)6. The subtle 17O spectral differences between the as-made and activated phases yield detailed information about host-guest interactions, including insight into nonconventional O···H-C hydrogen bonding. Such weak interactions often play key roles in the applications of MOFs, such as gas adsorption and biomedicine, and are usually difficult to study via other characterization routes. The power of performing 17O SSNMR experiments at an ultrahigh magnetic field of 35.2 T for MOF characterization is further demonstrated by examining activation of the MIL-53(Al) MOF. The sensitivity and resolution enhanced at 35.2 T allows partially and fully activated MIL-53(Al) to be unambiguously distinguished and also permits several oxygen environments in the partially activated phase to be tentatively identified. This demonstration of the very high resolution of 17O SSNMR recorded at the highest magnetic field accessible to chemists to date illustrates how a broad variety of scientists can now study oxygen-containing materials and obtain previously inaccessible fine structural information.
Collapse
Affiliation(s)
- Vinicius Martins
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Jun Xu
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaoling Wang
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Kuizhi Chen
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Ivan Hung
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory (NHMFL), 1800 East Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Christel Gervais
- Sorbonne Université, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Christian Bonhomme
- Sorbonne Université, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, F-75005 Paris, France
| | - Shijia Jiang
- Center for Rare Earth and Inorganic Functional Materials, Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, People's Republic of China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
14
|
Wang YN, Wang RY, Yang QF, Yu JH. Acylhydrazidate-based porous coordination polymers and reversible I2 adsorption properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
15
|
Wu B, Wong YTA, Lucier BEG, Boyle PD, Huang Y. Exploring Host-Guest Interactions in the α-Zn 3(HCOO) 6 Metal-Organic Framework. ACS OMEGA 2019; 4:4000-4011. [PMID: 31459609 PMCID: PMC6648096 DOI: 10.1021/acsomega.8b03623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/11/2019] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are promising gas adsorbents. Knowledge of the behavior of gas molecules adsorbed inside MOFs is crucial for advancing MOFs as gas capture materials. However, their behavior is not always well understood. In this work, carbon dioxide (CO2) adsorption in the microporous α-Zn3(HCOO)6 MOF was investigated. The behavior of the CO2 molecules inside the MOF was comprehensively studied by a combination of single-crystal X-ray diffraction (SCXRD) and multinuclear solid-state magnetic resonance spectroscopy. The locations of CO2 molecules adsorbed inside the channels of the framework were accurately determined using SCXRD, and the framework hydrogens from the formate linkers were found to act as adsorption sites. 67Zn solid-state NMR (SSNMR) results suggest that CO2 adsorption does not significantly affect the metal center environment. Variable-temperature 13C SSNMR experiments were performed to quantitatively examine guest dynamics. The results indicate that CO2 molecules adsorbed inside the MOF channel undergo two types of anisotropic motions: a localized rotation (or wobbling) upon the adsorption site and a twofold hopping between adjacent sites located along the MOF channel. Interestingly, 13C SSNMR spectroscopy targeting adsorbed CO2 reveals negative thermal expansion (NTE) of the framework as the temperature rose past ca. 293 K. A comparative study shows that carbon monoxide (CO) adsorption does not induce framework shrinkage at high temperatures, suggesting that the NTE effect is guest-specific.
Collapse
Affiliation(s)
| | | | | | | | - Yining Huang
- E-mail: . Webpage: http://publish.uwo.ca/~yhuang/index.htm
| |
Collapse
|
16
|
Wong YTA, Martins V, Lucier BEG, Huang Y. Solid-State NMR Spectroscopy: A Powerful Technique to Directly Study Small Gas Molecules Adsorbed in Metal-Organic Frameworks. Chemistry 2018; 25:1848-1853. [PMID: 30189105 DOI: 10.1002/chem.201803866] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Indexed: 12/31/2022]
Abstract
Metal-organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host-guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.
Collapse
Affiliation(s)
- Y T Angel Wong
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Vinicius Martins
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
17
|
Zhang Y, Lucier BEG, Fischer M, Gan Z, Boyle PD, Desveaux B, Huang Y. A Multifaceted Study of Methane Adsorption in Metal-Organic Frameworks by Using Three Complementary Techniques. Chemistry 2018; 24:7866-7881. [PMID: 29575184 DOI: 10.1002/chem.201800424] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/17/2018] [Indexed: 12/31/2022]
Abstract
Methane is a promising clean and inexpensive energy alternative to traditional fossil fuels, however, its low volumetric energy density at ambient conditions has made devising viable, efficient methane storage systems very challenging. Metal-organic frameworks (MOFs) are promising candidates for methane storage. In order to improve the methane storage capacity of MOFs, a better understanding of the methane adsorption, mobility, and host-guest interactions within MOFs must be realized. In this study, methane adsorption within α-Mg3 (HCO2 )6 , α-Zn3 (HCO2 )6 , SIFSIX-3-Zn, and M-MOF-74 (M=Mg, Zn, Ni, Co) has been comprehensively examined. Single-crystal X-ray diffraction (SCXRD) experiments and DFT calculations of the methane adsorption locations were performed for α-Mg3 (HCO2 )6 , α-Zn3 (HCO2 )6 , and SIFSIX-3-Zn. The SCXRD thermal ellipsoids indicate that methane possesses significant mobility at the adsorption sites in each system. 2 H solid-state NMR (SSNMR) experiments targeting deuterated CH3 D guests in α-Mg3 (HCO2 )6 , α-Zn3 (HCO2 )6 , SIFSIX-3-Zn, and MOF-74 yield an interesting finding: the 2 H SSNMR spectra of methane adsorbed in these MOFs are significantly influenced by the chemical shielding anisotropy in addition to the quadrupolar interaction. The chemical shielding anisotropy contribution is likely due mainly to the nuclear independent chemical shift effect on the MOF surfaces. In addition, the 2 H SSNMR results and DFT calculations strongly indicate that the methane adsorption strength is linked to the MOF pore size and that dispersive forces are responsible for the methane adsorption in these systems. This work lays a very promising foundation for future studies of methane adsorption locations and dynamics within adsorbent MOF materials.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Michael Fischer
- Crystallography group, Department of Geosciences, University of Bremen, Klagenfurter Straße 2-4, D-28359, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, D-28359, Bremen, Germany
| | - Zhehong Gan
- Centre of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL, 32310, USA
| | - Paul D Boyle
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Bligh Desveaux
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
18
|
Lucier BEG, Chen S, Huang Y. Characterization of Metal-Organic Frameworks: Unlocking the Potential of Solid-State NMR. Acc Chem Res 2018; 51:319-330. [PMID: 29251909 DOI: 10.1021/acs.accounts.7b00357] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An exciting advance in materials science is the discovery of hybrid organic-inorganic solids known as metal-organic frameworks (MOFs). Although they have numerous important applications, the local structures, specific molecular-level features, and guest behaviors underpinning desirable properties and applications are often unknown. Solid-state nuclear magnetic resonance (SSNMR) is a powerful tool for MOF characterization as it provides information complementary to that from X-ray diffraction (XRD). We describe our novel pursuits in the three primary applications of SSNMR for MOF characterization: interrogating the metal center, targeting linker molecules, and probing guests. MOFs have relatively low densities, and the incorporated metals are often quadrupolar nuclei, making SSNMR detection difficult. Recently, we examined the local structures of metal centers (i.e., 25Mg, 47/49Ti, 63/65Cu, 67Zn, 69/71Ga, 91Zr, 115In, 135/137Ba, 139La, 27Al) in representative MOFs by SSNMR at a high magnetic field of 21.1 T, addressing several important issues: (1) resolving chemically and crystallographically nonequivalent metal sites; (2) exploring the origin of disorder around metals; (3) refining local metal geometry; (4) probing the effects of activation and adsorption on the metal local environment; and (5) monitoring in situ phase changes in MOFs. Organic linkers can be characterized by 1H, 13C, and 17O SSNMR. Although the framework structure can be determined by X-ray diffraction, hydrogen atoms cannot be accurately located, and thus the local structure about hydrogen is poorly characterized. Our work demonstrates that magic-angle spinning (MAS) experiments at very high magnetic field along with ultrafast spinning rates and isotope dilution enables one to obtain ultrahigh resolution 1H MAS spectra of MOFs, yielding structural information truly complementary to that obtained from single-crystal XRD. Oxygen is a key constituent of many important MOFs but 17O SSNMR work on MOFs is scarce due to the low natural abundance of 17O. 17O enriched MOFs can now be prepared in an efficient and economically feasible manner using solvothermal approaches involving labeled H217O water; the resulting 17O SSNMR spectra provide distinct spectral signatures of various key oxygen species in representative MOFs. MOFs are suitable for the capture of the greenhouse gas CO2 and the storage of energy carrier gases such as H2 and CH4. A better understanding of gas adsorption obtained using 13C, 2H, and 17O SSNMR will enable researchers to improve performance and realize practical applications for MOFs as gas adsorbents and carriers. The combination of SSNMR with XRD allows us to determine the number of adsorption sites in the framework, identify the location of binding sites, gain physical insight into the nature and strength of host-guest interactions, and understand guest dynamics.
Collapse
Affiliation(s)
- Bryan E. G. Lucier
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Shoushun Chen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| |
Collapse
|
19
|
Lu Y, Lucier BEG, Zhang Y, Ren P, Zheng A, Huang Y. Sizable dynamics in small pores: CO 2 location and motion in the α-Mg formate metal-organic framework. Phys Chem Chem Phys 2018; 19:6130-6141. [PMID: 28191584 DOI: 10.1039/c7cp00199a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) are promising materials for carbon dioxide (CO2) adsorption and storage; however, many details regarding CO2 dynamics and specific adsorption site locations within MOFs remain unknown, restricting the practical uses of MOFs for CO2 capture. The intriguing α-magnesium formate (α-Mg3(HCOO)6) MOF can adsorb CO2 and features a small pore size. Using an intertwined approach of 13C solid-state NMR (SSNMR) spectroscopy, 1H-13C cross-polarization SSNMR, and computational molecular dynamics (MD) simulations, new physical insights and a rich variety of information have been uncovered regarding CO2 adsorption in this MOF, including the surprising suggestion that CO2 motion is restricted at elevated temperatures. Guest CO2 molecules undergo a combined localized rotational wobbling and non-localized twofold jumping between adsorption sites. MD simulations and SSNMR experiments accurately locate the CO2 adsorption sites; the mechanism behind CO2 adsorption is the distant interaction between the hydrogen atom of the MOF formate linker and a guest CO2 oxygen atom, which are ca. 3.2 Å apart.
Collapse
Affiliation(s)
- Yuanjun Lu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Yue Zhang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| | - Pengju Ren
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China and National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.
| |
Collapse
|