1
|
Zhang NN, Zhang YN, Li L, Li ZY, Liu YT, Dong Y, Yan Y, Wang MS. Photochromism and single-component white light emission from a metalloviologen complex based on 1,5-naphthyridine. Dalton Trans 2024; 53:6547-6555. [PMID: 38517702 DOI: 10.1039/d3dt04250b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Metalloviologens, as emerging electron-transfer photochromic compounds, have shown intriguing properties such as radiochromism, photochromism and photoconductance. However, only a limited number of them have been reported so far. Exploration of new metalloviologens is strongly desired. Herein, we report a new solvothermally synthesized metalloviologen complex [CdCl2(ND)2]n (1, ND = 1,5-naphthalenes) that exhibits photochromic and intrinsic white light emission properties. Density functional theory calculation results reveal that the photochromism could be assigned to photoinduced electron transfer from chlorine atoms to ND molecules. The photoinduced charge-separated states are heat/air stable, attributed to the delocalization of ND and strong intermolecular π-π interactions. Besides, complex 1 consistently emits intrinsic white light when excited with 340-370 nm UV light, achieving high color rendering index (CRI) values (82.54-94.04). By adjusting the excitation wavelength, both "warm" and "cold" white light emission can be produced, making it suitable for the application of a white light emitting diode (WLED). Thus, this work demonstrates that the ND-based metalloviologen is not only helpful in producing photochromism, but also beneficial for creating white-light emission.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Ya-Nan Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Li Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China
| | - Zhen-Yu Li
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ya-Tong Liu
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Yunyun Dong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Yong Yan
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, P. R. China.
| | - Ming-Sheng Wang
- State Key Laboratory Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China
| |
Collapse
|
2
|
Poojita, Rom T, Biswas R, Haldar KK, Paul AK. Intrinsic Specific Activity Enhancement for Bifunctional Electrocatalytic Activity toward Oxygen and Hydrogen Evolution Reactions via Structural Modification of Nickel Organophosphonates. Inorg Chem 2024; 63:3795-3806. [PMID: 38335251 DOI: 10.1021/acs.inorgchem.3c03960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A comprehensive knowledge of the structure-activity relationship of the framework material is decisive to develop efficient multifunctional electrocatalysts. In this regard, two different metal organophosphonate compounds, [Ni(Hhedp)2]·4H2O (I) and [Ni3(H3hedp)2(C4H4N2)3]·6H2O (II) have been isolated through one-pot hydrothermal strategy by using H4hedp (1-hydroxyethane 1,1-diphosphonic acid) and N-donor auxiliary ligand (pyrazine; C4H4N2). The structures of synthesized materials have been established through single-crystal X-ray diffraction studies, which confirm that compound I formed a one-dimensional molecular chain structure, while compound II exhibited a three-dimensional extended structure. Further, the crystalline materials have participated as efficient electrocatalysts for the oxygen evolution and hydrogen evolution reactions (OER and HER) as compared to the state-of-the-art electrocatalyst RuO2. The electrocatalytic OER and HER performances show that compound II displayed better electrocatalytic performances toward OER (η10 = 305 mV) and HER (η10 = 230 mV) in alkaline (1 M KOH) and acidic (0.5 M H2SO4) media, respectively. Substantially, the specific activity has been assessed in order to measure the inherent electrocatalytic activity of the title electrocatalyst, which displays an enrichment of fourfold higher activity of compound II (0.64 mA/cm2) than compound I (0.16 mA/cm2) for the OER experiments. Remarkably, inclusion of an auxiliary pyrazine ligand into the metal organophosphonate structure (compound II) not only offers higher dimensionality along with significant enhancement of the overall bifunctional electrocatalytic performances but also improves the long-term stability, which is noteworthy for the family of hybrid framework materials.
Collapse
Affiliation(s)
- Poojita
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| | - Tanmay Rom
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Rathindranath Biswas
- Department of Chemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Krishna Kanta Haldar
- Department of Chemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra 136119, Haryana, India
| |
Collapse
|
3
|
Zhang YY, Wang HC, Jin XX, Li RJ, Li QG, Sun R, Li P, Wang BW, Wang L, Sui Q. Tunable Chromic Properties of Viologen-Metal Polymers Modulated by Coordination Modes for Inkless Erasable Printing. Chemistry 2023; 29:e202302397. [PMID: 37583100 DOI: 10.1002/chem.202302397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Inkless and erasable printing (IEP) based on chromic materials holds great promise to alleviate environmental and sustainable problems. Metal-organic polymers (MOPs) are bright platforms for constructing IEP materials. However, it is still challenging to design target MOPs with excellent specific functions rationally due to the intricate component-structure-property relationships. Herein, an effective strategy was proposed for the rational design IEP-MOP materials. The stimuli-responsive viologen moiety was introduced into the construction of MOPs to give it potential chromic behaviors and two different coordination models (i. e. bilateral coordination model, M1 ; unilateral coordinated model, M2 ) based on the same viologen ligand were designed. Aided by theoretical calculations, model M1 was recommended secondarily as a more suitable system for IEP materials. Along this line, two representative viologen-ZnII MOPs 1 and 2 with models M1 and M2 were synthesized successfully. Experiments exhibit that 1 does have quicker stimuli response, stronger color contrast and longer radical lifetime compared to 2. Significantly, the obtained 1-IEP media brightly inherits the excellent chromic characteristics of 1 and the flexibility of the paper at the same time, which achieves most daily printing requirements, as well as enough resolution and durability to be used in identification by smart device.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - He-Chong Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University Qinhuangdao, 066004, Hebei, P. R. China
| | - Xin-Xin Jin
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Run-Jie Li
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Qian-Ge Li
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Peng Li
- College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 234000, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University Qinhuangdao, 066004, Hebei, P. R. China
| | - Qi Sui
- Key Laboratory of Surface &, Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
4
|
Cornelio J, Lee SJ, Zhou TY, Alkaş A, Thangavel K, Pöppl A, Telfer SG. Photoinduced Electron Transfer in Multicomponent Truxene-Quinoxaline Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8437-8445. [PMID: 37288142 PMCID: PMC10242685 DOI: 10.1021/acs.chemmater.2c02220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Indexed: 06/09/2023]
Abstract
Metal-organic frameworks (MOFs) can respond to light in a number of interesting ways. Photochromism is observed when a structural change to the framework is induced by the absorption of light, which results in a color change. In this work, we show that introducing quinoxaline ligands to MUF-7 and MUF-77 (MUF = Massey University Framework) produces photochromic MOFs that change color from yellow to red upon the absorption of 405 nm light. This photochromism is observed only when the quinoxaline units are incorporated into the framework and not for the standalone ligands in the solid state. Electron paramagnetic resonance (EPR) spectroscopy shows that organic radicals form upon irradiation of the MOFs. The EPR signal intensities and longevity depend on the precise structural details of the ligand and framework. The photogenerated radicals are stable for long periods in the dark but can be switched back to the diamagnetic state by exposure to visible light. Single-crystal X-ray diffraction analysis reveals bond length changes upon irradiation that are consistent with electron transfer. The multicomponent nature of these frameworks allows the photochromism to emerge by allowing through-space electron transfer, precisely positioning the framework building blocks, and tolerating functional group modifications to the ligands.
Collapse
Affiliation(s)
- Joel Cornelio
- School
of Natural Sciences, MacDiarmid Institute of Advanced Materials and
Nanotechnology, Massey University, Palmerston North 4410, New Zealand
| | - Seok June Lee
- School
of Natural Sciences, MacDiarmid Institute of Advanced Materials and
Nanotechnology, Massey University, Palmerston North 4410, New Zealand
| | - Tian-You Zhou
- School
of Natural Sciences, MacDiarmid Institute of Advanced Materials and
Nanotechnology, Massey University, Palmerston North 4410, New Zealand
| | - Adil Alkaş
- School
of Natural Sciences, MacDiarmid Institute of Advanced Materials and
Nanotechnology, Massey University, Palmerston North 4410, New Zealand
| | - Kavipriya Thangavel
- Felix
Bloch Institute for Solid State Physics, Leipzig University, Linnestrasse 5, Leipzig D-04103, Germany
| | - Andreas Pöppl
- Felix
Bloch Institute for Solid State Physics, Leipzig University, Linnestrasse 5, Leipzig D-04103, Germany
| | - Shane G. Telfer
- School
of Natural Sciences, MacDiarmid Institute of Advanced Materials and
Nanotechnology, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
5
|
Li CL, Sun YH, Wang MS, Xing XS. A crystalline photochromic metalloviologen compound with a chiral ligand: Synthetic strategy and SHG-photoswitching property. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Wang YW, Li MH, Zhang SQ, Fang X, Lin MJ. A Three-Component Donor-Acceptor Hybrid Framework with Low-Power X-ray-Induced Photochromism. Inorg Chem 2022; 61:8153-8159. [PMID: 35580155 DOI: 10.1021/acs.inorgchem.2c00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Donor-acceptor (D-A) hybrid frameworks with visual X-ray photochromism at room temperature are fascinating because of their promising applications as X-ray detectors. Herein, a 3-fold interpenetrated D-A hybrid framework, [Eu(bcbp)1.5(DMF)(H2O)2][Co(CN)6]·4H2O·CH3OH (1), has been obtained by incorporating electron-rich Co(CN)63- into the electron-deficient europium viologen framework, which interestingly exhibits ultraviolet and low-power X-ray dual photochromism with a remarkable color change from brown to green. Experimental and theoretical studies revealed that the X-ray photochromic behavior of hybrid 1 could be attributed to its D-A hybrid structural feature increasing the extent of photoinduced electron transfer and thus photogenerated radical species upon X-ray irradiation. Meanwhile, due to the introduction of emissive lanthanide cations in the D-A system, hybrid 1 exhibits photomodulated luminescence properties.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Meng-Hua Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou 350002, China
| | - Xin Fang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Mei-Jin Lin
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
7
|
Luo Y, Ying SW, Li SJ, Li LK, Li HY, Asad M, Zang SQ, Mak TCW. Photo/Electrochromic Dual Responsive Behavior of a Cage-like Zr(IV)-Viologen Metal-Organic Polyhedron (MOP). Inorg Chem 2022; 61:2813-2823. [PMID: 35113540 DOI: 10.1021/acs.inorgchem.1c03203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stable stimulus-responsive materials are highly desirable due to their widespread potential applications and growing demand in recent decades. Despite the fact that viologen derivatives have long been known as excellent photochromic and electrochromic materials, the development of stable viologen-based multifunctional smart materials with short coloration times remains an exciting topic. To obtain photochromic and electrochromic dual responsive materials, embedding the viologen ligand into a robust metal oxide cluster to increase its stability and sensitivity is an effective strategy. Herein, a viologen-based metal-organic polyhedron (MOP) {[Zr6L3(μ3-O)2(μ2-OH)6Cp6]·8Cl·CH3OH·DMF} [Zr-MOP-1; H2L·2Cl = 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium dichloride, and Cp = η5-C5H5] was successfully prepared and characterized. It consists of trinuclear Zr-oxygen secondary building units and exhibits reversible photochromic and electrochromic dual responsive behaviors. As expected, the designed robust viologen-based nanocage with a V2E3 (V = vertex, and E = edge) topology can maintain its stability and rapid photo/electrochromic behaviors with an obvious reversible change in color from purple (brown) to green, mainly due to the enclosed cluster structure and the abundant free viologen radicals that originate from the effective Cl → N and O → N electron transfers. Spectroelectrochemistry and theoretical calculations of this Zr-MOP were also performed to verify the chromic mechanism.
Collapse
Affiliation(s)
- Yun Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Si-Wei Ying
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shi-Jun Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lin-Ke Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hai-Yang Li
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Muhammad Asad
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Thomas C W Mak
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, China
| |
Collapse
|
8
|
Han SD, Hu JX, Wang GM. Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214304] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Zheng Z, Lu H, Guo X, Zhou Z, Wang Y, Li ZJ, Xiao GP, Qian Y, Lin J, Wang JQ. Emergence of a thorium-organic framework as a radiation attenuator for selective X-ray dosimetry. Chem Commun (Camb) 2021; 57:8131-8134. [PMID: 34286741 DOI: 10.1039/d1cc02649f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
By first applying a thorium-organic framework (Th-SINAP-2) as a radiation attenuator and by incorporating a terpyridine derivative (Htpbz) as a photo-responsive guest, selective photochromism in response to X-rays was achieved in the host-guest assembly of Htpbz@Th-SINAP-2. Such a combination endows the afforded material with the lowest detection limit of X-ray dose among all photochromic sensors and a brand-new function of X-ray dosimetry for thorium containing materials.
Collapse
Affiliation(s)
- Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lu H, Xie J, Wang XY, Wang Y, Li ZJ, Diefenbach K, Pan QJ, Qian Y, Wang JQ, Wang S, Lin J. Visible colorimetric dosimetry of UV and ionizing radiations by a dual-module photochromic nanocluster. Nat Commun 2021; 12:2798. [PMID: 33990611 PMCID: PMC8121945 DOI: 10.1038/s41467-021-23190-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Radiation dosimeters displaying conspicuous response of irradiance are highly desirable, owing to the growing demand of monitoring high-energy radiation and environmental exposure. Herein, we present a case of dosimetry based on a discrete nanocluster, [Th6(OH)4(O)4(H2O)6](TPC)8(HCOO)4∙4DMF∙H2O (Th-SINAP-100), by judiciously incorporating heavy Th6 polynuclear centers as radiation attenuator and organic linkers as photo-responsive sensor. Interestingly, dual-module photochromic transitions upon multiple external stimuli including UV, β-ray, and γ-ray are integrated into this single material. The striking color change, and more significantly, the visible color transition of luminescence in response to accumulating radiation dose allow an on-site quantitative platform for naked-eye detection of ionization radiations over a broad range (1-80 kGy). Single crystal X-ray diffraction and density functional theory calculations reveal that the dual-module photochromism can be attributed to the π(TPC) → π*(TPC) intermolecular charge transfer driven by enhanced π-π stacking interaction between the adjacent TPC moieties upon irradiation.
Collapse
Affiliation(s)
- Huangjie Lu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xie
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xin-Yu Wang
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Yaxing Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zi-Jian Li
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kariem Diefenbach
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China.
| | - Yuan Qian
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Dalian National Laboratory for Clean Energy, Dalian, China
| | - Shuao Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| | - Jian Lin
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Xia B, Gao Q, Hu ZP, Wang QL, Cao XW, Li W, Song Y, Bu XH. Concomitant Photoresponsive Chiroptics and Magnetism in Metal-Organic Frameworks at Room Temperature. RESEARCH 2021; 2021:5490482. [PMID: 33644763 PMCID: PMC7894082 DOI: 10.34133/2021/5490482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/28/2020] [Indexed: 01/01/2023]
Abstract
Stimulus-responsive metal-organic frameworks (MOFs) can be used for designing smart materials. Herein, we report a family of rationally designed MOFs which exhibit photoresponsive chiroptical and magnetic properties at room temperature. In this design, two specific nonphotochromic ligands are selected to construct enantiomeric MOFs, {Cu2(L-mal)2(bpy)2(H2O)·3H2O}n (1) and {Cu2(D-mal)2(bpy)2(H2O)·3H2O}n (2) (mal = malate, bpy = 4, 4′ − bipyridine), which can alter their color, magnetism, and chiroptics concurrently in response to light. Upon UV or visible light irradiation, long-lived bpy− radicals are generated via photoinduced electron transfer (PET) from oxygen atoms of carboxylates and hydroxyl of malates to bpy ligands, giving rise to a 23.7% increase of magnetic susceptibility at room temperature. The participation of the chromophores (-OH and -COO−) bound with the chiral carbon during the electron transfer process results in a small dipolar transition; thus, the Cotton effects of the enantiomers are weakened along with a photoinduced color change. This work demonstrates that the simultaneous responses of chirality, optics, and magnetism can be achieved in a single compound at room temperature and may open up a new pathway for designing chiral stimuli-responsive materials.
Collapse
Affiliation(s)
- Bin Xia
- College of Chemistry, State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Gao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Zhen-Peng Hu
- School of Physics, Nankai University, Tianjin 300071, China
| | - Qing-Lun Wang
- College of Chemistry, State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Wei Cao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Wei Li
- School of Materials Science and Engineering, Tianjin Key Lab of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - You Song
- State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xian-He Bu
- College of Chemistry, State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.,School of Materials Science and Engineering, Tianjin Key Lab of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Xu F, Liu AJ, Han SD, Pan J, Wang GM. Decorating Metal Nitrate with a Coplanar Bipyridine Moiety: A Simple and General Method for Fabricating Photochromic Complexes. Chemistry 2021; 27:4709-4714. [PMID: 33428231 DOI: 10.1002/chem.202005402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2021] [Indexed: 12/17/2022]
Abstract
As a significant class of photochromic materials, crystalline hybrid photochromic materials (CHPMs) have attracted widespread attention of researchers because of their possibilities for generating other photoresponsive properties and advantages in understanding the underlying relationship between structure and photoresponsive performance. The predesign of suitable ligands plays a major role in generating desirable CHPMs. Hitherto, most CHPMs have been built from photodeformable or photoresponsive tectons. However, the synthesis of these ligands is usually time-consuming and expensive, and this greatly restricts their large-scale preparation and practical application. Therefore, it is necessary to explore new families of CHPMs besides the existing CHPMs. Herein, a simple and general method for constructing CHPMs by decorating metal nitrate with a coplanar bipyridine moiety, namely 1,10-phenanthroline (phen), is reported. The resulting products exhibit photocoloration in response to Xe-lamp irradiation. The electron transfer (ET) from the coplanar NO3 - species (as π-electron donors, π-EDs) to coplanar phen moieties (as π-electron acceptors, π-EAs) is responsible for the resulting photochromism. The influence of the coordination environment and central metal ion on the photochromism was also studied. This work demonstrates that the introduction of coplanar organic tectons as π-EAs to metal nitrates as π-EDs with the collaboration of ET and coordination-assembly strategies is a simple and general method to manufacture CHPMs.
Collapse
Affiliation(s)
- Fei Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Ai-Ju Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, P. R. China
| |
Collapse
|
13
|
Zheng Z, Lu H, Wang Y, Bao H, Li ZJ, Xiao GP, Lin J, Qian Y, Wang JQ. Tuning of the Network Dimensionality and Photoluminescent Properties in Homo- and Heteroleptic Lanthanide Coordination Polymers. Inorg Chem 2021; 60:1359-1366. [PMID: 33321039 DOI: 10.1021/acs.inorgchem.0c02447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeted synthesis, through a heteroleptic methodology, has resulted in three types of lanthanide (Ln) coordination polymers (CPs) with tailored dimensionality, tunable photoluminescent colors, and distinct luminescence quenching upon UV and X-ray irradiation. The homoleptic Ln(tpbz)(NO3)2 [CP-1; tpbz = 4-(2,2':6',2″-terpyridin-4'-yl)benzoate] is assembled from Ln cations and bridging tpbz ligands, accompanied by the decoration of NO3- anions, forming a one-dimensional (1D) chain structure. The presence of ancillary dicarboxylate linkers, 1,4-benzenedicarboxylate (bdc) and 2,5-thiophenedicarboxylate (tdc), promotes additional bridging between 1D chains to form a two-dimensional layer and a three-dimensional framework for Ln(tpbz)(bdc) (CP-2) and Ln(tpbz)(tdc) (CP-3), respectively. The multicolor and luminescence properties of the obtained CPs were investigated, displaying typical red EuIII-based and green TbIII-based emissions. The SmIII-bearing CP-1-CP-3, however, exhibit diverse ratiometric LnIII- and ligand-based emissions, with the photoluminescent colors varying from pink to orange to cyan. Notably, the TbIII-containing CP-1-CP-3 display distinct luminescence quenching upon continuous exposure to UV and X-ray irradiation. To our best knowledge, CP-2-Tb represents one of the most sensitive UV dosage probes (3.2 × 10-7 J) among all CPs.
Collapse
Affiliation(s)
- Zhaofa Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huangjie Lu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yumin Wang
- School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Hongliang Bao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zi-Jian Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Guo-Ping Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuan Qian
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jian-Qiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, 2019 Jia Luo Road, Shanghai 201800, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China.,Dalian National Laboratory for Clean Energy, Dalian 116023, China
| |
Collapse
|
14
|
Zhang N, Han Y, Du M, Sa R, Wang M, Guo G. 2,4,6‐Tri(4‐pyridyl)‐1,3,5‐triazine: Photoinduced Charge Separation and Photochromism in the Crystalline State. Chemistry 2019; 25:13972-13976. [PMID: 31486561 DOI: 10.1002/chem.201903106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Ning‐Ning Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 155 Yangqiao west road Fuzhou 350002 P. R. China
| | - Yong‐Fang Han
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 155 Yangqiao west road Fuzhou 350002 P. R. China
- University of the Chinese Academy of Sciences 19 Yuquan road Beijing 100049 P. R. China
| | - Ming‐Xiu Du
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 155 Yangqiao west road Fuzhou 350002 P. R. China
| | - Rong‐Jian Sa
- Institute of OceanographyOcean CollegeMinjiang University 200 Xiyuangong road Fuzhou 350002 P. R. China
| | - Ming‐Sheng Wang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 155 Yangqiao west road Fuzhou 350002 P. R. China
| | - Guo‐Cong Guo
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Sciences 155 Yangqiao west road Fuzhou 350002 P. R. China
| |
Collapse
|
15
|
Substantiation to structure-property of pyrazine-based compounds by undeniable impress of its different connectivities. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Liu JJ. Photochromism and decolorization controlled by auxiliary ligands of complexes derived from 1-methyl-4,4′-bipyridinium cation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jin-jian Liu
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen 041004 China
| |
Collapse
|
17
|
Pedersen KS, Perlepe P, Aubrey ML, Woodruff DN, Reyes-Lillo SE, Reinholdt A, Voigt L, Li Z, Borup K, Rouzières M, Samohvalov D, Wilhelm F, Rogalev A, Neaton JB, Long JR, Clérac R. Formation of the layered conductive magnet CrCl 2(pyrazine) 2 through redox-active coordination chemistry. Nat Chem 2018; 10:1056-1061. [PMID: 30202103 DOI: 10.1038/s41557-018-0107-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/05/2018] [Indexed: 11/09/2022]
Abstract
The unique properties of graphene, transition-metal dichalcogenides and other two-dimensional (2D) materials have boosted interest in layered coordination solids. In particular, 2D materials that behave as both conductors and magnets could find applications in quantum magnetoelectronics and spintronics. Here, we report the synthesis of CrCl2(pyrazine)2, an air-stable layered solid, by reaction of CrCl2 with pyrazine (pyz). This compound displays a ferrimagnetic order below ∼55 K, reflecting the presence of strong magnetic interactions. Electrical conductivity measurements demonstrate that CrCl2(pyz)2 reaches a conductivity of 32 mS cm-1 at room temperature, which operates through a 2D hopping-based transport mechanism. These properties are induced by the redox-activity of the pyrazine ligand, which leads to a smearing of the Cr 3d and pyrazine π states. We suggest that the combination of redox-active ligands and reducing paramagnetic metal ions represents a general approach towards tuneable 2D materials that consist of charge-neutral layers and exhibit both long-range magnetic order and high electronic conductivity.
Collapse
Affiliation(s)
- Kasper S Pedersen
- CNRS, CRPP, UMR 5031, Pessac, France. .,Univ. Bordeaux, CRPP, UMR 5031, Pessac, France. .,Department of Chemistry, Technical University of Denmark, Lyngby, Denmark.
| | - Panagiota Perlepe
- CNRS, CRPP, UMR 5031, Pessac, France.,Univ. Bordeaux, CRPP, UMR 5031, Pessac, France.,CNRS, ICMCB, UMR 5026, Pessac, France.,Univ. Bordeaux, ICMCB, UMR 5026, Pessac, France
| | - Michael L Aubrey
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | | | - Sebastian E Reyes-Lillo
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Physics, University of California Berkeley, Berkeley, CA, USA.,Departamento de Ciencias Físicas, Universidad Andres Bello, Santiago, Chile
| | - Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Laura Voigt
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Zheshen Li
- Department of Physics and Astronomy - Centre for Storage Ring Facilities (ISA), Aarhus University, Aarhus, Denmark
| | - Kasper Borup
- Center for Materials Crystallography, Department of Chemistry and iNano, Aarhus, Denmark
| | - Mathieu Rouzières
- CNRS, CRPP, UMR 5031, Pessac, France.,Univ. Bordeaux, CRPP, UMR 5031, Pessac, France
| | - Dumitru Samohvalov
- CNRS, CRPP, UMR 5031, Pessac, France.,Univ. Bordeaux, CRPP, UMR 5031, Pessac, France.,Sara Pharm Solutions, Bucharest, Romania
| | | | | | - Jeffrey B Neaton
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Physics, University of California Berkeley, Berkeley, CA, USA.,Kavli Energy Nanosciences Institute at Berkeley, Berkeley, CA, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA.,Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rodolphe Clérac
- CNRS, CRPP, UMR 5031, Pessac, France. .,Univ. Bordeaux, CRPP, UMR 5031, Pessac, France.
| |
Collapse
|
18
|
Li X, Wang Y, Xie J, Yin X, Silver MA, Cai Y, Zhang H, Chen L, Bian G, Diwu J, Chai Z, Wang S. Monitoring Ultraviolet Radiation Dosage Based on a Luminescent Lanthanide Metal–Organic Framework. Inorg Chem 2018; 57:8714-8717. [DOI: 10.1021/acs.inorgchem.8b01193] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoyan Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xuemiao Yin
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mark A. Silver
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yawen Cai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lanhua Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Guoqing Bian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Qiu X, Shi Q, Zhang D, Lin Q, Sun Y. A Multi‐Responsive Cd–Viologen Complex: Photochromism, Photomodulated Fluorescence, and Luminescent Sensing. ChemistrySelect 2018. [DOI: 10.1002/slct.201801005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xing‐Tai Qiu
- College of ChemistryFuzhou University Fuzhou, Fujian 350108 P. R. China
| | - Qing Shi
- College of ChemistryFuzhou University Fuzhou, Fujian 350108 P. R. China
| | - De‐Quan Zhang
- College of ChemistryFuzhou University Fuzhou, Fujian 350108 P. R. China
| | - Qing‐Feng Lin
- College of ChemistryFuzhou University Fuzhou, Fujian 350108 P. R. China
| | - Yan‐Qiong Sun
- College of ChemistryFuzhou University Fuzhou, Fujian 350108 P. R. China
| |
Collapse
|
20
|
Wang YG, Li YQ, Tang HH, Lin LR, Ma LH. Near-Infrared Photoluminescence and Reversible Trans-to-Cis Photoisomerization of Mononuclear and Binuclear Ytterbium(III) Complexes Functionalized by Azobenzene Groups. ACS OMEGA 2018; 3:5480-5490. [PMID: 31458752 PMCID: PMC6641697 DOI: 10.1021/acsomega.8b00386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/03/2018] [Indexed: 06/02/2023]
Abstract
Two mononuclear and one binuclear ytterbium complexes with dual near-infrared (NIR) photoluminescence and reversible trans-to-cis photoisomerization functions were synthesized and characterized. The central ytterbium(III) ion coordinates with two β-diketonate (4,4,4-trifluoro-1-phenylbutane-1,3-dionate (tfd)) ligands and one deprotonated azobenzene-containing tetradentate ligand [(E)-4-(phenyldiazenyl)-N,N-bis(pyridin-2-ylmethyl) benzohydrazide (HL), (E)-4-((4-(dimethylamino)phenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)benzohydrazide (HNL), or (E)-4,4'-N',N'-bis(pyridin-2-ylmethyl)benzohydrazide azobenzene (H2DL)] to form a neutral ternary complex ([Yb(tfd)2L], [Yb(tfd)2(NL)], or [Yb2(tfd)4(DL)], respectively), where the ytterbium(III) ion is eight-coordinated to N3O5 donor sets. X-ray crystallographic analysis shows that all three complexes form a trigonal dodecahedron geometry with similar -N=N- distances that are slightly longer than those of the pure azobenzene-containing ligands. The NIR luminescence properties of the Yb(III) complexes were determined at a wavelength of about 980 nm with quantum yields in the range of 0.4-0.6% in ethanol and acetonitrile solutions at room temperature, and trans-to-cis photoisomerization was determined with the quantum yields (Φt→c = 10-2) at the same level as their pure ligands. The trans-to-cis photoisomerization rates of the complexes (10-4 s-1) are slightly higher than those of the pure ligands and similar to azobenzene (10-5 to 10-4 s-1). From time-dependent density functional theory calculations of the energy levels of the first excited triplet states of the ligands, the energies of the lowest excited triplet states of all of the ligands are higher than the resonance level of Yb3+ (2F5/2, 1.2722 eV). We suggest that these azo-containing ligands may participate in energy transfer to the ytterbium ion, in addition to the main "antenna effect" ligand tfd. This is the first report of azobenzene group-functionalized ytterbium complexes with dual NIR luminescence and photoisomerization properties, indicating that azobenzene-containing lanthanide(III) complexes have potential applications as dual function materials in biological systems.
Collapse
Affiliation(s)
- Yun-Guang Wang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu-Qian Li
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hui-Hui Tang
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Li-Rong Lin
- Department
of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Li-Hua Ma
- Department
of Chemistry, College of Science and Computer Engineering, University of Houston-Clear Lake, 2700 Bay Area Blvd, Houston, Texas 77058, United States
| |
Collapse
|
21
|
Yu TL, Wu GX, Xue M, Wang ZH, Fu YL. Five monocyclic pyridinium derivative based halo-argentate/cuprate hybrids or iodide salts: influence of composition on photochromic behaviors. Dalton Trans 2018; 47:12172-12180. [DOI: 10.1039/c8dt02574f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using novel monocyclic pyridinium derivatives as structural directing agents and electron acceptors, five composition dependent photochromic compounds have been synthesized.
Collapse
Affiliation(s)
- Tan-Lai Yu
- Department of Chemistry & Chemical Engineering
- Lvliang University
- Lishi 033001
- P. R. China
| | - Guo-Xing Wu
- Department of Chemistry & Chemical Engineering
- Lvliang University
- Lishi 033001
- P. R. China
| | - Mei Xue
- Department of Chemistry & Chemical Engineering
- Lvliang University
- Lishi 033001
- P. R. China
| | - Zhong-Hui Wang
- Department of Chemistry & Chemical Engineering
- Lvliang University
- Lishi 033001
- P. R. China
| | - Yun-Long Fu
- School of Chemistry & Material Science
- Shanxi Normal University
- Linfen 041004
- P. R. China
| |
Collapse
|
22
|
Guo PY, Sun C, Zhang NN, Cai LZ, Wang MS, Guo GC. An inorganic–organic hybrid photochromic material with fast response to hard and soft X-rays at room temperature. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc00694f] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first X-ray-induced photochromic material, with the coloration time being within 5 min when exposed to Mo-Kα and Al-Kα X-rays, was designed and synthesized.
Collapse
Affiliation(s)
- Pei-Yu Guo
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Cai Sun
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Ning-Ning Zhang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Li-Zhen Cai
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- P. R. China
| |
Collapse
|
23
|
Xia B, Zhou Y, Wang QL, Xu XF, Tong YZ, Bu XH, Li JR. Photoinduced electron transfer and remarkable enhancement of magnetic susceptibility in bridging pyrazine complexes. Dalton Trans 2018; 47:15888-15896. [DOI: 10.1039/c8dt03422b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three bridging pyrazine complexes that exhibit both photochromism and photomagnetism were prepared. Photoinduced electron transfer can be realized by constructing a donor–metal–accepter system.
Collapse
Affiliation(s)
- Bin Xia
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Zhou
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Qing-Lun Wang
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xiu-Fang Xu
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu-Zhang Tong
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xian-He Bu
- College of Chemistry
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nankai University
- Tianjin 300071
- P. R. China
| | - Jian-Rong Li
- Department of Chemistry and Chemical Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|
24
|
Chen M, Sun L, Yang XD, Guo RY, Zhang QQ, Zhang J. Regulating photochromism of viologen-bearing coordination polymers via the variation of electron-donating/withdrawing groups on organic ligands. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2017.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Su YB, Wei YQ, Cai LZ, Li PX, Wang MS, Guo GC. Energy-dependent photochromism at room temperature for visually detecting and distinguishing X-rays. Chem Commun (Camb) 2018; 54:12349-12352. [DOI: 10.1039/c8cc07004k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A radiochromic material with energy-dependent X-ray-induced photochromism was obtained by incorporating a radiosensitive ligand into an electron-transfer photochromic metalloviologen system.
Collapse
Affiliation(s)
- Yi-Bo Su
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| | - Yong-Qin Wei
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| | - Li-Zhen Cai
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| | - Pei-Xin Li
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| | - Ming-Sheng Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- Fujian 350002
| |
Collapse
|
26
|
Li Z, Guo J, Xiang F, Lin Q, Ye Y, Zhang J, Chen S, Zhang Z, Xiang S. Photochromic naphthalene diimide Cd-MOFs based on different second dicarboxylic acid ligands. CrystEngComm 2018. [DOI: 10.1039/c8ce01667d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel 3D calcium-based metal–organic frameworks (FJU-67, FJU-68, and FJU-69) established on naphthalene diimide chromophores have been synthesized, which exhibit unique multiple interpenetrated networks with dia net topologies.
Collapse
Affiliation(s)
- Ziyin Li
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| | - Junzhi Guo
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| | - Quanjie Lin
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| | - Yingxiang Ye
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| | - Jindan Zhang
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| | - Shimin Chen
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- PR China
| |
Collapse
|
27
|
Xu HL, Zeng XS, Li J, Xu YC, Qiu HJ, Xiao DR. The impact of metal ions on photoinduced electron-transfer properties: four photochromic metal–organic frameworks based on a naphthalenediimide chromophore. CrystEngComm 2018. [DOI: 10.1039/c8ce00213d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Four photochromic MOFs show that electron-withdrawing capabilities of metal ions play a significant role in tuning the photosensitivity of photochromic MOFs.
Collapse
Affiliation(s)
- Hui-Ling Xu
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- PR China
| | - Xiao-Shan Zeng
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- PR China
| | - Jie Li
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- PR China
| | - Yu-Ci Xu
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- PR China
| | - Hai-Jiang Qiu
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- PR China
| | - Dong-Rong Xiao
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- PR China
- State Key Laboratory of Structural Chemistry
| |
Collapse
|
28
|
Hu KQ, Wu QY, Mei L, Zhang XL, Ma L, Song G, Chen DY, Wang YT, Chai ZF, Shi WQ. Novel Viologen Derivative Based Uranyl Coordination Polymers Featuring Photochromic Behaviors. Chemistry 2017; 23:18074-18083. [DOI: 10.1002/chem.201704478] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Xiao-Lin Zhang
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Lei Ma
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclide Pollution, Control and Resources; School of Environmental Science and Engineering, Guangzhou University; Guangzhou 510006 China
| | - Di-Yun Chen
- Guangdong Provincial Key Laboratory of Radionuclide Pollution, Control and Resources; School of Environmental Science and Engineering, Guangzhou University; Guangzhou 510006 China
| | - Yi-Tong Wang
- China International Engineering Consulting Corporation; Beijing 100089 China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry; Institute of High Energy Physics, Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
29
|
Brisar R, Hollmann D, Mejia E. Pyrazine Radical Cations as a Catalyst for the Aerobic Oxidation of Amines. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rok Brisar
- Leibniz Institute for Catalysis; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Dirk Hollmann
- Leibniz Institute for Catalysis; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Esteban Mejia
- Leibniz Institute for Catalysis; Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
30
|
Yu TL, Hao PF, Shen JJ, Li HH, Fu YL. Stoichiometry-controlled structural and functional variation in two photochromic iodoargentates with a fast and wide range response. Dalton Trans 2016; 45:16505-16510. [DOI: 10.1039/c6dt03105f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Two MCMP+/iodoargentate hybrids have been synthesized and they exhibit rare electron transfer photochromsim with a fast response rate, a wide response range and a long-lived charge-separated state, which is largely ascribed to the flexible aggregation of electron-deficient MCMP+ counterions.
Collapse
Affiliation(s)
- Tan-Lai Yu
- School of Chemistry & Material Science
- Shanxi Normal University
- Linfen 041004
- P. R. China
| | - Peng-Fei Hao
- School of Chemistry & Material Science
- Shanxi Normal University
- Linfen 041004
- P. R. China
| | - Jun-Ju Shen
- School of Chemistry & Material Science
- Shanxi Normal University
- Linfen 041004
- P. R. China
| | - Hui-Hui Li
- School of Chemistry & Material Science
- Shanxi Normal University
- Linfen 041004
- P. R. China
| | - Yun-Long Fu
- School of Chemistry & Material Science
- Shanxi Normal University
- Linfen 041004
- P. R. China
| |
Collapse
|