1
|
Porter WN, Turaczy KK, Yu M, Mou H, Chen JG. Transition metal nitride catalysts for selective conversion of oxygen-containing molecules. Chem Sci 2024; 15:6622-6642. [PMID: 38725511 PMCID: PMC11077531 DOI: 10.1039/d4sc01314j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Earth abundant transition metal nitrides (TMNs) are a promising group of catalysts for a wide range of thermocatalytic, electrocatalytic and photocatalytic reactions, with potential to achieve high activity and selectivity while reducing reliance on the use of Pt-group metals. However, current fundamental understanding of the active sites of these materials and the mechanisms by which selective transformations occur is somewhat lacking. Recent investigations of these materials from our group and others have utilized probe molecules, model surfaces, and in situ techniques to elucidate the origin of their activity, strong metal-support interactions, and unique d-band electronic structures. This Perspective discusses three classes of reactions for which TMNs have been used as case studies to highlight how these properties, along with synergistic interactions with metal overlayers, can be exploited to design active, selective and stable TMN catalysts. First, studies of the reactions of C1 molecules will be discussed, specifically highlighting the ability of TMNs to activate CO2. Second, the upgrading of biomass and biomass-derived oxygenates over TMN catalysts will be reviewed. Third, the use of TMNs for H2 production via water electrolysis will be discussed. Finally, we will discuss the challenges and future directions in the study of TMN catalysts, in particular expanding on opportunities to enhance fundamental mechanistic understanding using model surfaces, the elucidation of active centers via in situ techniques, and the development of efficient synthesis methods and design principles.
Collapse
Affiliation(s)
- William N Porter
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Kevin K Turaczy
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Marcus Yu
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Hansen Mou
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
2
|
Oliveira L, Pereira M, Pacheli Heitman A, Filho J, Oliveira C, Ziolek M. Niobium: The Focus on Catalytic Application in the Conversion of Biomass and Biomass Derivatives. Molecules 2023; 28:1527. [PMID: 36838514 PMCID: PMC9960283 DOI: 10.3390/molecules28041527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The world scenario regarding consumption and demand for products based on fossil fuels has demonstrated the imperative need to develop new technologies capable of using renewable resources. In this context, the use of biomass to obtain chemical intermediates and fuels has emerged as an important area of research in recent years, since it is a renewable source of carbon in great abundance. It has the benefit of not contributing to the additional emission of greenhouse gases since the CO2 released during the energy conversion process is consumed by it through photosynthesis. In the presented review, the authors provide an update of the literature in the field of biomass transformation with the use of niobium-containing catalysts, emphasizing the versatility of niobium compounds for the conversion of different types of biomass.
Collapse
Affiliation(s)
- Luiz Oliveira
- Departamento de Química, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Márcio Pereira
- Instituto de Ciência, Engenharia e Tecnologia, Campus Mucuri, Universidade Federal dos Vales Jequitinhonha e Mucuri, Teófilo Otoni 39803-371, MG, Brazil
| | - Ana Pacheli Heitman
- Departamento de Química, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - José Filho
- Departamento de Química, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Cinthia Oliveira
- Departamento de Química, Campus Pampulha, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Maria Ziolek
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Park MR, Chen Y, Thompson M, Benites VT, Fong B, Petzold CJ, Baidoo EEK, Gladden JM, Adams PD, Keasling JD, Simmons BA, Singer SW. Response of Pseudomonas putida to Complex, Aromatic-Rich Fractions from Biomass. CHEMSUSCHEM 2020; 13:4455-4467. [PMID: 32160408 DOI: 10.1002/cssc.202000268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Indexed: 06/10/2023]
Abstract
There is strong interest in the valorization of lignin to produce valuable products; however, its structural complexity has been a conversion bottleneck. Chemical pretreatment liberates lignin-derived soluble fractions that may be upgraded by bioconversion. Cholinium ionic liquid pretreatment of sorghum produced soluble, aromatic-rich fractions that were converted by Pseudomonas putida (P. putida), a promising host for aromatic bioconversion. Growth studies and mutational analysis demonstrated that P. putida growth on these fractions was dependent on aromatic monomers but unknown factors also contributed. Proteomic and metabolomic analyses indicated that these unknown factors were amino acids and residual ionic liquid; the oligomeric aromatic fraction derived from lignin was not converted. A cholinium catabolic pathway was identified, and the deletion of the pathway stopped the ability of P. putida to grow on cholinium ionic liquid. This work demonstrates that aromatic-rich fractions obtained through pretreatment contain multiple substrates; conversion strategies should account for this complexity.
Collapse
Affiliation(s)
- Mee-Rye Park
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mitchell Thompson
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Veronica T Benites
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bonnie Fong
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - John M Gladden
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Avenue, Livermore, CA, 94551, USA
| | - Paul D Adams
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technology, Shenzhen, China
| | - Blake A Simmons
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Gale M, Cai CM, Gilliard-Abdul-Aziz KL. Heterogeneous Catalyst Design Principles for the Conversion of Lignin into High-Value Commodity Fuels and Chemicals. CHEMSUSCHEM 2020; 13:1947-1966. [PMID: 31899593 DOI: 10.1002/cssc.202000002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 06/10/2023]
Abstract
Lignin valorization has risen as a promising pathway to supplant the use of petrochemicals for chemical commodities and fuels. However, the challenges of separating and breaking down lignin from lignocellulosic biomass are the primary barriers to success. Integrated biorefinery systems that incorporate both homo- and heterogeneous catalysis for the upgrading of lignin intermediates have emerged as a viable solution. Homogeneous catalysis can perform selected chemistries, such as the hydrolysis and dehydration of ester or ether bonds, that are more suitable for the pretreatment and fractionation of biomass. Heterogeneous catalysis, however, offers a tunable platform for the conversion of extracted lignin into chemicals, fuels, and materials. Tremendous effort has been invested in elucidating the necessary factors for the valorization of lignin by using heterogeneous catalysts, with efforts to explore more robust methods to drive down costs. Current progress in lignin conversion has fostered numerous advances, but understanding the key catalyst design principles is important for advancing the field. This Minireview aims to provide a summary on the fundamental design principles for the selective conversion of lignin by using heterogeneous catalysts, including the pairing of catalyst metals, supports, and solvents. The review puts a particular focus on the use of bimetallic catalysts on porous supports as a strategy for the selective conversion of lignin. Finally, future research on the valorization of lignin is proposed on the basis of recent progress.
Collapse
Affiliation(s)
- Mark Gale
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, USA
| | - Charles M Cai
- Center for Environmental Research and Technology (CE-CERT), Bourns College of Engineering, University of California, Riverside, 1084 Columbia Avenue, Riverside, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Kandis Leslie Gilliard-Abdul-Aziz
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, 446 Winston Chung Hall, 900 University Ave, Riverside, USA
- Department of Material Science and Engineering, Bourns College of Engineering, University of California, Riverside, 313 Material Science and Engineering Building, 900 University Ave, Riverside, USA
| |
Collapse
|
5
|
Guo T, Wang C, Xu P, Feng C, Si S, Zhang Y, Wang Q, Shi M, Yang F, Wang J, Zhang Y. Effects of the Structure of TiO 2 Nanotube Arrays on Its Catalytic Activity for Microbial Fuel Cell. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800084. [PMID: 31565376 PMCID: PMC6498118 DOI: 10.1002/gch2.201800084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/18/2018] [Indexed: 06/10/2023]
Abstract
To enhance the microbial fuel cell (MFC) for wastewater treatment and chemical oxygen demand degradation, TiO2 nanotubes arrays (TNA) are successfully synthesized on Ti foil substrate by the anodization process in HF and NH4F solution, respectively (hereafter, denoted as TNA-HF and TNA-NF). The differences between the two kinds of TNA are revealed based on their morphologies and spectroscopic characterizations. It should be highlighted that 3D TNA-NF with an appropriate dimension can make a positive contribution to the high photocatalytic activity. In comparison with the TNA-HF, the 3D TNA-NF sample exhibits a significant enhancement in current generation as the MFC anode. In particular, the TNA-NF performs nearly 1.23 times higher than the TNA-HF, and near twofold higher than the carbon felt. It is found that the two kinds of TiO2-based anodes have different conductivities and corrosion potentials, which are responsible for the difference in their current generation performances. Based on the experimental results, excellent stability, reliability, and low cost, TNA-NF can be considered a promising and scalable MFC bioanode material.
Collapse
Affiliation(s)
- Tao Guo
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Changzheng Wang
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Ping Xu
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Cuimin Feng
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Shuai Si
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Yajun Zhang
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Qiang Wang
- Laboratory for Micro‐sized Functional MaterialsCollege of Elementary EducationCapital Normal UniversityBeijing100048P. R. China
| | - Mengtong Shi
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Fengnan Yang
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Jingxiao Wang
- Key Laboratory of Urban Stormwater System and Water EnvironmentMinistry of EducationBeijing University of Civil Engineering and ArchitectureBeijing100044P. R. China
| | - Yang Zhang
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing100083P. R. China
| |
Collapse
|
6
|
Zhao T, Shen S, Liu X, Guo Y, Pao CW, Chen JL, Wang Y. Morphology-maintaining synthesis of NbN and its catalytic performance in epoxidation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00890j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A strategy for the synthesis of NbN with different morphologies was provided and the reactivity for epoxidation was investigated.
Collapse
Affiliation(s)
- Tiaohao Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Shanshan Shen
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Centre
- Hsinchu
- Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Centre
- Hsinchu
- Taiwan
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
| |
Collapse
|
7
|
Tekin K, Hao N, Karagoz S, Ragauskas AJ. Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. CHEMSUSCHEM 2018; 11:3559-3575. [PMID: 30152117 DOI: 10.1002/cssc.201801291] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Growing energy demand, environmental impact, energy security issues, and rural economic development have encouraged the development of sustainable renewable fuels. Nonfood lignocellulosic biomass is a suitable source for sustainable energy because the biomass feedstocks are low cost, abundant, and carbon neutral. Recent thermochemical conversion studies are frequently directed at converting biomass into high-quality liquid fuel precursors or chemicals in a single step. Supercritical ethanol has been selected as a promising solvent medium to deconstruct lignocellulosic biomass because ethanol has extraordinary solubility towards lignocellulosic biomass and can be resourced from cellulosic ethanol facilities. This review provides a critical insight into both catalytic and noncatalytic strategies of lignocellulose deconstruction. In this context, the supercritical ethanol deconstruction pathways are thoroughly reviewed; GC-MS, 1D and 2D NMR spectroscopy, and elemental analysis strategies towards liquid biomass deconstruction products are also critically presented. This review aims to provide readers a broad and accurate roadmap of novel biomass to biofuel conversion techniques.
Collapse
Affiliation(s)
- Kubilay Tekin
- Department of Environmental Engineering, Karabük University, Karabük, 78050, Turkey
| | - Naijia Hao
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37916, USA
| | - Selhan Karagoz
- Department of Chemistry, Karabük University, Karabük, 78050, Turkey
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37916, USA
- Joint Institute of Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37916, USA
| |
Collapse
|
8
|
Li Q, López N. Chirality, Rigidity, and Conjugation: A First-Principles Study of the Key Molecular Aspects of Lignin Depolymerization on Ni-Based Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Qiang Li
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007 Tarragona, Catalonia, Spain
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans 16, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
9
|
Rashidi M, Konarova M, Aslam W, Beltramini JN. TiN‐Cu Heterogeneous Nanocatalysts for Effective Depolymerisation of Oxidised Lignin. ChemistrySelect 2018. [DOI: 10.1002/slct.201702771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Masih Rashidi
- Australian Institute for Bioengineering and Nanotechnology - AIBNThe University of Queensland Brisbane, Queensland Australia
| | - Muxina Konarova
- Australian Institute for Bioengineering and Nanotechnology - AIBNThe University of Queensland Brisbane, Queensland Australia
| | - Waqas Aslam
- Australian Institute for Bioengineering and Nanotechnology - AIBNThe University of Queensland Brisbane, Queensland Australia
| | - Jorge Norberto Beltramini
- Australian Institute for Bioengineering and Nanotechnology - AIBNThe University of Queensland Brisbane, Queensland Australia
| |
Collapse
|
10
|
Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 2018; 47:852-908. [PMID: 29318245 DOI: 10.1039/c7cs00566k] [Citation(s) in RCA: 848] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.
Collapse
Affiliation(s)
- W Schutyser
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
11
|
Cheng C, Shen D, Gu S, Luo KH. State-of-the-art catalytic hydrogenolysis of lignin for the production of aromatic chemicals. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00845k] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Catalytic hydrogenolysis of lignin is overviewed, concerning the cleavage of typical inter-unit linkages and the production of aromatic chemicals.
Collapse
Affiliation(s)
- Chongbo Cheng
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Dekui Shen
- Key lab of Thermal Energy Conversion and Control of MoE
- Southeast University
- Nanjing 210096
- China
| | - Sai Gu
- Department of Chemical and Process Engineering
- Faculty of Engineering and Physical Sciences
- University of Surrey
- UK
| | - Kai Hong Luo
- Department of Mechanical Engineering
- University College London
- London WC1E 7JE
- UK
| |
Collapse
|
12
|
Li S, Li W, Zhang Q, Shu R, Wang H, Xin H, Ma L. Lignin-first depolymerization of native corn stover with an unsupported MoS2 catalyst. RSC Adv 2018; 8:1361-1370. [PMID: 35540922 PMCID: PMC9077037 DOI: 10.1039/c7ra11947j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 01/26/2023] Open
Abstract
The lignin-first biorefinery method appears to be an attractive approach to produce phenolic chemicals. Herein, corn stover was employed for the production of phenolic monomers using an unsupported non-noble MoS2 catalyst. The yield of phenolic monomers was enhanced from 6.65% to 18.47% with MoS2 at 250 °C and about 75% lignin was degraded with more than 90% glucan reserved in the solid residues. The Fourier-Transform Infrared (FT-IR) and heteronuclear single quantum coherence-nuclear magnetic resonance (1H–13C HSQC-NMR) characterization suggested that the cleavage of the β-O-4, γ-ester and benzyl ether linkages were enhanced, promoting the delignification and the depolymerization of lignin. The catalyst performance was relatively effective with 14.30% phenolic monomer yield after the fifth run. The effects of the reaction temperature, the initial hydrogen pressure, the dosage of catalyst, and the reaction time were investigated. The model reactions were also proposed for the potential mechanism study. This work provides some basic information for the improvement of the graminaceous plant lignin-first process with a non-noble metal catalyst. The non-noble metal catalyst MoS2 played a positive role in the depolymerization of native corn stover lignin by lignin-first biorefinery.![]()
Collapse
Affiliation(s)
- Song Li
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- PR China
- CAS Key Laboratory of Renewable Energy
| | - Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Qi Zhang
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- PR China
- CAS Key Laboratory of Renewable Energy
| | - Riyang Shu
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- PR China
- CAS Key Laboratory of Renewable Energy
| | - Huizhen Wang
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Haosheng Xin
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- PR China
| | - Longlong Ma
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- PR China
- CAS Key Laboratory of Renewable Energy
| |
Collapse
|
13
|
Galkin M, Di Francesco D, Edlund U, Samec JSM. Sustainable sources need reliable standards. Faraday Discuss 2017; 202:281-301. [DOI: 10.1039/c7fd00046d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review discusses the challenges within the research area of modern biomass fractionation and valorization. The current pulping industry focuses on pulp production and the resulting cellulose fiber. Hemicellulose and lignin are handled as low value streams for process heat and the regeneration of process chemicals. The paper and pulp industry have therefore developed analytical techniques to evaluate the cellulose fiber, while the other fractions are given a low priority. In a strive to also use the hemicellulose and lignin fractions of lignocellulosic biomass, moving towards a biorefining concept, there are severe shortcomings with the current pulping techniques and also in the analysis of the biomass. Lately, new fractionation techniques have emerged which valorize a larger extent of the lignocellulosic biomass. This progress has disclosed the shortcomings in the analysis of mainly the hemicellulose and lignin structure and properties. To move the research field forward, analytical tools for both the raw material, targeting all the wood components, and the generated fractions, as well as standardized methods for evaluating and reporting yields are desired. At the end of this review, a discourse on how such standardizations can be implemented is given.
Collapse
Affiliation(s)
- Maxim V. Galkin
- Department of Organic Chemistry
- Stockholm University
- Stockholm
- Sweden
| | | | - Ulrica Edlund
- Fiber and Polymer Technology
- Royal Institute of Technology (KTH)
- SE-100 44 Stockholm
- Sweden
| | | |
Collapse
|