1
|
Wang D, Chen J, Wang Y, Hao X, Peng H, Liao Y, Zhou X, Smalyukh II, Xie X. Photoswitching in a Liquid Crystalline Pt(II) Coordination Complex. Chemistry 2024; 30:e202304366. [PMID: 38296805 DOI: 10.1002/chem.202304366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Photoswitching of photoluminescence has sparked tremendous research interests for super-resolution imaging, high-security-level anti-counterfeiting, and other high-tech applications. However, the excitation of photoluminescence is usually ready to trigger the photoswitching process, making the photoluminescence readout unreliable. Herein, we report a new photoswitch by the marriage of spiropyran with platinum(II) coordination complex. Viable photoluminescence can be achieved upon excitation by 480 nm visible light while the photoswitching can be easily triggered by 365 nm UV light. The feasible photoswitching may be benefited from the formed liquid crystalline (LC) phase of the designed photoswitch as a crystalline spiropyran is normally unable to implement photoswitching. Compared to the counterparts, this LC photoswitch can show distinct and reliable apparent colors and emission colors before and after photoswitching, which may promise the utility in high-security-level anti-counterfeiting and other advanced information technologies.
Collapse
Affiliation(s)
- Dan Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jie Chen
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yixuan Wang
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xingtian Hao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Haiyan Peng
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Yonggui Liao
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Xingping Zhou
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| | - Ivan I Smalyukh
- Department of Physics and Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, Colorado, 80309, United States
| | - Xiaolin Xie
- Key Lab of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, HUST, Wuhan, 430074, China
- National Anti-counterfeit Engineering Research Center, HUST, Wuhan, 430074, China
| |
Collapse
|
2
|
Sathish V, Krishnan MM, Velayudham M, Thanasekaran P, Lu KL, Rajagopal S. Host-guest interaction studies of polycyclic aromatic hydrocarbons (PAHs) in alkoxy bridged binuclear rhenium (I) complexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117160. [PMID: 31176159 DOI: 10.1016/j.saa.2019.117160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
The interaction of two neutral alkoxy bridged binuclear rhenium(I) complexes, 1 and 2 [{Re(CO)3(1,4-NVP)}2(μ2-OR)2] (1, R = C4H9; 2, R = C10H21; 1,4-NVP = 4-(1-naphthylvinyl)pyridine] with polycyclic aromatic hydrocarbons (PAH) is investigated. UV-vis absorption, emission, 1H NMR spectral titrations, TCSPC lifetime studies and DFT theoretical calculations were carried out to examine the binding responses of complexes 1 and 2 with various PAHs such as pyrene, naphthalene, anthracene and phenanthrene. The UV-Vis absorption spectra showed an increase in absorbance of the metal-to ligand charge-transfer (MLCT) and ligand centered (LC) bands upon addition of various PAH molecules to 1 and 2, whereas the emission behavior was found to show emission quenching, which might occur through energy transfer pathway. The binding constants (K) of complexes 1 and 2 for various PAHs are found to be in the order of 104 M-1 with a 1:1 binding mode, as determined from UV-vis absorption and emission spectral titration studies. 1H NMR spectral studies show that the chemical shifts of pyrene guest and the 1,4-NVP moiety of 2 are shifted up-field, whilst the alkoxy protons do not show any appreciable change in their chemical shifts. It is believed that the open cavities present in the Re(I) complexes may lead to the recognition of PAHs via CH···π interaction.
Collapse
Affiliation(s)
- Veerasamy Sathish
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, India
| | - Mani Murali Krishnan
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam 638 401, India
| | - Murugesan Velayudham
- Department of Chemistry, Thiagarajar College of Engineering, Madurai 625 015, India
| | | | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | | |
Collapse
|
3
|
Yitzchaik S, Gutierrez R, Cuniberti G, Yerushalmi R. Diversification of Device Platforms by Molecular Layers: Hybrid Sensing Platforms, Monolayer Doping, and Modeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14103-14123. [PMID: 30253096 DOI: 10.1021/acs.langmuir.8b02369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inorganic materials such as semiconductors, oxides, and metals are ubiquitous in a wide range of device technologies owing to the outstanding robustness and mature processing technologies available for such materials. However, while the important contribution of inorganic materials to the advancement of device technologies has been well established for decades, organic-inorganic hybrid device systems, which merge molecular functionalities with inorganic platforms, represent a newer domain that is rapidly evolving at an increasing pace. Such devices benefit from the great versatility and flexibility of the organic building blocks merged with the robustness of the inorganic platforms. Given the overwhelming wealth of literature covering various approaches for modifying and using inorganic devices, this feature article selectively highlights some of the advances made in the context of the diversification of devices by surface chemistry. Particular attention is given to oxide-semiconductor systems and metallic surfaces modified with organic monolayers. The inorganic device components, such as semiconductors, metals, and oxides, are modified by organic monolayers, which may serve as either active, static, or sacrificial components. We portray research directions within the broader field of organic-inorganic hybrid device systems that can be viewed as specific examples of the potential of such hybrid device systems given their comprehensive capabilities of design and diversification. Monolayer doping techniques where sacrificial organic monolayers are introduced into semiconducting elements are reviewed as a specific case, together with associated requirements for nanosystems, devices, and sensors for controlling doping levels and doping profiles on the nanometric scale. Another series of examples of the flexibility provided by the marriage of organic functional monolayers and inorganic device components are represented by a new class of biosensors, where the organic layer functionality is exploited in a functioning device for sensing. Considerations for relying on oxide-terminated semiconductors rather than the pristine semiconductor material as a platform both for processing and sensing are discussed. Finally, we cover aspects related to the use of various theoretical and computational approaches to model organic-inorganic systems. The main objectives of the topics covered here are (i) to present the advances made in each respective domain and (ii) to provide a comprehensive view of the potential uses of organic monolayers and self-assembly processes in the rapidly evolving field of molecular-inorganic hybrid device platforms and processing methodologies. The directions highlighted here provide a perspective on a future, not yet fully realized, integrated approach where organic monolayers are combined with inorganic platforms in order to obtain versatile, robust, and flexible systems with enhanced capabilities.
Collapse
Affiliation(s)
- Shlomo Yitzchaik
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Givat Ram Jerusalem , 91904 Israel
| | | | | | - Roie Yerushalmi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Edmond J. Safra Campus , Givat Ram Jerusalem , 91904 Israel
| |
Collapse
|
4
|
Sinn S, Yang L, Biedermann F, Wang D, Kübel C, Cornelissen JJLM, De Cola L. Templated Formation of Luminescent Virus-like Particles by Tailor-Made Pt(II) Amphiphiles. J Am Chem Soc 2018; 140:2355-2362. [PMID: 29357236 PMCID: PMC5817621 DOI: 10.1021/jacs.7b12447] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Virus-like particles
(VLPs) have been created from luminescent
Pt(II) complex amphiphiles, able to form supramolecular structures
in water solutions, that can be encapsulated or act as templates of
cowpea chlorotic mottle virus capsid proteins. By virtue of a bottom-up
molecular design, icosahedral and nonicosahedral (rod-like) VLPs have
been constructed through diverse pathways, and a relationship between
the molecular structure of the complexes and the shape and size of
the VLPs has been observed. A deep insight into the mechanism for
the templated formation of the differently shaped VLPs was achieved,
by electron microscopy measurements (TEM and STEM) and bulk analysis
(FPLC, DLS, photophysical investigations). Interestingly, the obtained
VLPs can be visualized by their intense emission at room temperature,
generated by the self-assembly of the Pt(II) complexes. The encapsulation
of the luminescent species is further verified by their higher emission
quantum yields inside the VLPs, which is due to the confinement effect
of the protein cage. These hybrid materials demonstrate the potential
of tailor-made supramolecular systems able to control the assembly
of biological building blocks.
Collapse
Affiliation(s)
- Stephan Sinn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS , 8 Rue Gaspard Monge, 67000 Strasbourg, France
| | - Liulin Yang
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute, University of Twente , P.O. Box 207, 7500 AE Enschede, The Netherlands
| | | | | | | | - Jeroen J L M Cornelissen
- Laboratory for Biomolecular Nanotechnology, MESA+ Institute, University of Twente , P.O. Box 207, 7500 AE Enschede, The Netherlands
| | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS , 8 Rue Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
5
|
Saravanan RK, Avasthi I, Prajapati RK, Verma S. Surface modification and pattern formation by nucleobases and their coordination complexes. RSC Adv 2018; 8:24541-24560. [PMID: 35539208 PMCID: PMC9082088 DOI: 10.1039/c8ra03903h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/26/2018] [Indexed: 11/21/2022] Open
Abstract
This review presents recent progress concerning the organization of nucleobases on highly ordered pyrolytic graphite (HOPG), mica, Cu(110) and Au(111) surfaces, followed by their studies using microscopy methods such as atomic force microscopy (AFM), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). Interesting research prospects related to surface patterning by nucleobases, nucleobase-functionalized carbon nanotubes (CNTs) and metal–nucleobase coordination polymers are also discussed, which offer a wide array of functional molecules for advanced applications. Nucleobases and their analogs are able to invoke non-covalent interactions such as π–π stacking and hydrogen bonding, and possess the required framework to coordinate metal ions, giving rise to fascinating supramolecular architectures. The latter could be transferred to conductive substrates, such as HOPG and gold, for assessment by high-end tunneling microscopy under various conditions. Clear understanding of the principles governing nucleobase self-assembly and metal ion complexation, and precise control over generation of functional architectures, might lead to custom assemblies for targeted nanotechnological and nanomaterial applications. This review highlights recent advancements in surface patterning of nucleobases, their analogs including nucleobase-CNT hybrids and metal complexes, using various microscopy techniques for nanotechnological applications.![]()
Collapse
Affiliation(s)
- R. Kamal Saravanan
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur, 208016
- India
| | - Ilesha Avasthi
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur, 208016
- India
| | - Rajneesh Kumar Prajapati
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur, 208016
- India
- Centre for Nanoscience
| | - Sandeep Verma
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur, 208016
- India
- Centre for Nanoscience
| |
Collapse
|
6
|
Zhang Q, Tian X, Zhou H, Wu J, Tian Y. Lighting the Way to See Inside Two-Photon Absorption Materials: Structure-Property Relationship and Biological Imaging. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E223. [PMID: 28772584 PMCID: PMC5503390 DOI: 10.3390/ma10030223] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
The application of two-photon absorption (2PA) materials is a classical research field and has recently attracted increasing interest. It has generated a demand for new dyes with high 2PA cross-sections. In this short review, we briefly cover the structure-2PA property relationships of organic fluorophores, organic-inorganic nanohybrids and metal complexes explored by our group. (1) The two-photon absorption cross-section (δ) of organic fluorophores increases with the extent of charge transfer, which is important to optimize the core, donor-acceptor pair, and conjugation-bridge to obtain a large δ value. Among the various cores, triphenylamine appears to be an efficient core. Lengthening of the conjugation with styryl groups in the D-π-D quadrupoles and D-π-A dipoles increased δ over a long wavelength range than when vinylene groups were used. Large values of δ were observed for extended conjugation length and moderate donor-acceptors in the near-IR wavelengths. The δ value of the three-arm octupole is larger than that of the individual arm, if the core has electron accepting groups that allow significant electronic coupling between the arms; (2) Optical functional organic/inorganic hybrid materials usually show high thermal stability and excellent optical activity; therefore the design of functional organic molecules to build functional organic-inorganic hybrids and optimize the 2PA properties are significant. Advances have been made in the design of organic-inorganic nanohybrid materials of different sizes and shapes for 2PA property, which provide useful examples to illustrate the new features of the 2PA response in comparison to the more thoroughly investigated donor-acceptor based organic compounds and inorganic components; (3) Metal complexes are of particular interest for the design of new materials with large 2PA ability. They offer a wide range of metals with different ligands, which can give rise to tunable electronic and 2PA properties. The metal ions, including transition metals and lanthanides, can serve as an important part of the structure to control the intramolecular charge-transfer process that drives the 2PA process. As templates, transition metal ions can assemble simple to more sophisticated ligands in a variety of multipolar arrangements resulting in interesting and tailorable electronic and optical properties, depending on the nature of the metal center and the energetics of the metal-ligand interactions, such as intraligand charge-transfer (ILCT) and metal-ligand charge-transfer (MLCT) processes. Lanthanide complexes are attractive for a number of reasons: (i) their visible emissions are quite long-lived; (ii) their absorption and emission can be tuned with the aid of appropriate photoactive ligands; (iii) the accessible energy-transfer path between the photo-active ligands and the lanthanide ion can facilitate efficient lanthanide-based 2PA properties. Thus, the above materials with excellent 2PA properties should be applied in two-photon applications, especially two-photon fluorescence microscopy (TPFM) and related emission-based applications. Furthermore, the progress of research into the use of those new 2PA materials with moderate 2PA cross section in the near-infrared region, good Materials 2017, 10, 223 2 of 37 biocompatibility, and enhanced two-photon excited fluorescence for two-photon bio-imaging is summarized. In addition, several possible future directions in this field are also discussed (146 references).
Collapse
Affiliation(s)
- Qiong Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Department of Chemistry, Anhui University, Hefei 230039, China.
| | - Xiaohe Tian
- School of Life Science, Anhui University, Hefei 230039, China.
| | - Hongping Zhou
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Department of Chemistry, Anhui University, Hefei 230039, China.
| | - Jieying Wu
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Department of Chemistry, Anhui University, Hefei 230039, China.
| | - Yupeng Tian
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Department of Chemistry, Anhui University, Hefei 230039, China.
| |
Collapse
|
7
|
Zhang S, Geng Y, Fan Y, Duan W, Deng K, Zhao D, Zeng Q. Two-dimensional (2D) self-assembly of oligo(phenylene-ethynylene) molecules and their triangular platinum(ii) diimine complexes studied using STM. Phys Chem Chem Phys 2017; 19:31284-31289. [DOI: 10.1039/c7cp06154d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The self-assembly of a series of cyclic oligo(phenylene-ethynylene) (OPE) molecules and their triangular Pt(ii) diimine complexes were studied using scanning tunneling microscope (STM).
Collapse
Affiliation(s)
- Siqi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Yanfang Geng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Yuanpeng Fan
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
| | - Wubiao Duan
- Department of Chemistry
- School of Science
- Beijing Jiaotong University
- Beijing
- P. R. China
| | - Ke Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences
- Center for Soft Matter Science and Engineering
- Key Lab of Polymer Chemistry & Physics of the Ministry of Education
- College of Chemistry
- Peking University
| | - Qingdao Zeng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100190
- P. R. China
| |
Collapse
|