1
|
Lin MH, Kuo YT, Danglad-Flores J, Sletten ET, Seeberger PH. Parametric Analysis of Donor Activation for Glycosylation Reactions. Chemistry 2024; 30:e202400479. [PMID: 38545936 DOI: 10.1002/chem.202400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 04/18/2024]
Abstract
The chemical synthesis of complex oligosaccharides relies on efficient and highly reproducible glycosylation reactions. The outcome of a glycosylation is contingent upon several environmental factors, such as temperature, acidity, the presence of residual moisture, as well as the steric, electronic, and conformational aspects of the reactants. Each glycosylation proceeds rapidly and with a high yield within a rather narrow temperature range. For better control over glycosylations and to ensure fast and reliable reactions, a systematic analysis of 18 glycosyl donors revealed the effect of reagent concentration, water content, protecting groups, and structure of the glycosyl donors on the activation temperature. With these insights, we parametrize the first step of the glycosylation reaction to be executed reliably and efficiently.
Collapse
Affiliation(s)
- Mei-Huei Lin
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yan-Ting Kuo
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
- GlycoUniverseGmbH&Co.KGaA, Am Mühlenberg 11, 14476, Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
2
|
Ande C, Crich D. Stereodirecting Effect of Esters at the 4-Position of Galacto- and Glucopyranosyl Donors: Effect of 4- C-Methylation on Side-Chain Conformation and Donor Reactivity, and Influence of Concentration and Stoichiometry on Distal Group Participation. J Org Chem 2023; 88:13883-13893. [PMID: 37677151 PMCID: PMC10563135 DOI: 10.1021/acs.joc.3c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 09/09/2023]
Abstract
When generated in a mass spectrometer bridged bicyclic 1,3-dioxenium ions derived from 4-O-acylgalactopyranosyl, donors can be observed by infrared spectroscopy at cryogenic temperatures, but they are not seen in the solution phase in contrast to the fused bicyclic 1,3-dioxalenium ions of neighboring group participation. The inclusion of a 4-C-methyl group into a 4-O-benzoyl galactopyranosyl donor enables nuclear magnetic resonance observation of the bicyclic ion arising from participation by the distal ester, with the methyl group influence attributed to ester ground state conformation destabilization. We show that a 4-C-methyl group also influences the side-chain conformation, enforcing a gauche,trans conformation in gluco and galactopyranosides. Competition experiments reveal that the 4-C-methyl group has only a minor influence on the rate of reaction of 4-O-benzoyl or 4-O-benzyl-galacto and glucopyranosyl donors and, consequently, that participation by the distal ester does not result in kinetic acceleration (anchimeric assistance). We demonstrate that the stereoselectivity of the 4-O-benzoyl-4-C-methyl galactopyranosyl donor depends on reaction concentration and additive (diphenyl sulfoxide) stoichiometry and hence that participation by the distal ester is a borderline phenomenon in competition with standard glycosylation mechanisms. An analysis of a recent paper affirming participation by a remote pivalate ester is presented with alternative explanations for the observed phenomena.
Collapse
Affiliation(s)
- Chennaiah Ande
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - David Crich
- Department
of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Njeri DK, Ragains JR. Total Synthesis of a Pentasaccharide O-Glycan from Acinetobacter baumannii. European J Org Chem 2022; 2022:e202201261. [PMID: 36876192 PMCID: PMC9983622 DOI: 10.1002/ejoc.202201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 12/23/2022]
Abstract
Acinetobacter baumannii is a Gram-negative bacteria associated with drug resistance and infection in healthcare settings. An understanding of both the biological roles and antigenicity of surface molecules of this organism may provide an important step in the prevention and treatment of infection through vaccination or the development of monoclonal antibodies. With this in mind, we have performed the multistep synthesis of a conjugation-ready pentasaccharide O-glycan from A. baumannii with a longest linear synthetic sequence of 19 steps. This target is particularly relevant due to its role in both fitness and virulence across an apparently broad range of clinically relevant strains. Synthetic challenges include formulating an effective protecting group scheme as well as the installation of a particularly difficult glycosidic linkage between the anomeric position of a 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid and the 4-position of D-galactose.
Collapse
Affiliation(s)
- Dancan K Njeri
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803
| | - Justin R Ragains
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803
| |
Collapse
|
4
|
Elferink H, Remmerswaal WA, Houthuijs KJ, Jansen O, Hansen T, Rijs AM, Berden G, Martens J, Oomens J, Codée JDC, Boltje TJ. Competing C-4 and C-5-Acyl Stabilization of Uronic Acid Glycosyl Cations. Chemistry 2022; 28:e202201724. [PMID: 35959853 PMCID: PMC9825916 DOI: 10.1002/chem.202201724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Indexed: 01/11/2023]
Abstract
Uronic acids are carbohydrates carrying a terminal carboxylic acid and have a unique reactivity in stereoselective glycosylation reactions. Herein, the competing intramolecular stabilization of uronic acid cations by the C-5 carboxylic acid or the C-4 acetyl group was studied with infrared ion spectroscopy (IRIS). IRIS reveals that a mixture of bridged ions is formed, in which the mixture is driven towards the C-1,C-5 dioxolanium ion when the C-5,C-2-relationship is cis, and towards the formation of the C-1,C-4 dioxepanium ion when this relation is trans. Isomer-population analysis and interconversion barrier computations show that the two bridged structures are not in dynamic equilibrium and that their ratio parallels the density functional theory computed stability of the structures. These studies reveal how the intrinsic interplay of the different functional groups influences the formation of the different regioisomeric products.
Collapse
Affiliation(s)
- Hidde Elferink
- Institute for Molecules and MaterialsSynthetic Organic ChemistryRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| | - Wouter A. Remmerswaal
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Kas J. Houthuijs
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Oscar Jansen
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Thomas Hansen
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
- Departament de Química Inorgànica i Orgànica & IQTUBUniversitat de Barcelona08028BarcelonaSpain
| | - Anouk M. Rijs
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
- Division of BioAnalytical ChemistryDepartment of Chemistry and Pharmaceutical SciencesAIMMS Amsterdam Institute of Molecular and Life SciencesVrije Univeristeit AmsterdamDe Boelelaan 10851081 HVAmsterdam (TheNetherlands
| | - Giel Berden
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Jonathan Martens
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Jos Oomens
- Institute for Molecules and MaterialsFELIX LaboratoryRadboud University NijmegenToernooiveld 76525 EDNijmegen (TheNetherlands
| | - Jeroen D. C. Codée
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Thomas J. Boltje
- Institute for Molecules and MaterialsSynthetic Organic ChemistryRadboud University NijmegenHeyendaalseweg 1356525 AJNijmegen (TheNetherlands
| |
Collapse
|
5
|
Ben-Tal Y, Boaler PJ, Dale HJA, Dooley RE, Fohn NA, Gao Y, García-Domínguez A, Grant KM, Hall AMR, Hayes HLD, Kucharski MM, Wei R, Lloyd-Jones GC. Mechanistic analysis by NMR spectroscopy: A users guide. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 129:28-106. [PMID: 35292133 DOI: 10.1016/j.pnmrs.2022.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
A 'principles and practice' tutorial-style review of the application of solution-phase NMR in the analysis of the mechanisms of homogeneous organic and organometallic reactions and processes. This review of 345 references summarises why solution-phase NMR spectroscopy is uniquely effective in such studies, allowing non-destructive, quantitative analysis of a wide range of nuclei common to organic and organometallic reactions, providing exquisite structural detail, and using instrumentation that is routinely available in most chemistry research facilities. The review is in two parts. The first comprises an introduction to general techniques and equipment, and guidelines for their selection and application. Topics include practical aspects of the reaction itself, reaction monitoring techniques, NMR data acquisition and processing, analysis of temporal concentration data, NMR titrations, DOSY, and the use of isotopes. The second part comprises a series of 15 Case Studies, each selected to illustrate specific techniques and approaches discussed in the first part, including in situ NMR (1/2H, 10/11B, 13C, 15N, 19F, 29Si, 31P), kinetic and equilibrium isotope effects, isotope entrainment, isotope shifts, isotopes at natural abundance, scalar coupling, kinetic analysis (VTNA, RPKA, simulation, steady-state), stopped-flow NMR, flow NMR, rapid injection NMR, pure shift NMR, dynamic nuclear polarisation, 1H/19F DOSY NMR, and in situ illumination NMR.
Collapse
Affiliation(s)
- Yael Ben-Tal
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Patrick J Boaler
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Harvey J A Dale
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ruth E Dooley
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom; Evotec (UK) Ltd, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, United Kingdom
| | - Nicole A Fohn
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Yuan Gao
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrés García-Domínguez
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Katie M Grant
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Andrew M R Hall
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Hannah L D Hayes
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Maciej M Kucharski
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Ran Wei
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom.
| |
Collapse
|
6
|
Zhong X, Zhou S, Ao J, Guo A, Xiao Q, Huang Y, Zhu W, Cai H, Ishiwata A, Ito Y, Liu XW, Ding F. Zinc(II) Iodide-Directed β-Mannosylation: Reaction Selectivity, Mode, and Application. J Org Chem 2021; 86:16901-16915. [PMID: 34797079 DOI: 10.1021/acs.joc.1c02091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A direct, efficient, and versatile glycosylation methodology promises the systematic synthesis of oligosaccharides and glycoconjugates in a streamlined fashion like the synthesis of medium to long-chain nucleotides and peptides. The development of a generally applicable approach for the construction of 1,2-cis-glycosidic bond with controlled stereoselectivity remains a major challenge, especially for the synthesis of β-mannosides. Here, we report a direct mannosylation strategy mediated by ZnI2, a mild Lewis acid, for the highly stereoselective construction of 1,2-cis-β linkages employing easily accessible 4,6-O-tethered mannosyl trichloroacetimidate donors. The versatility and effectiveness of this strategy were demonstrated with successful β-mannosylation of a wide variety of alcohol acceptors, including complex natural products, amino acids, and glycosides. Through iteratively performing ZnI2-mediated mannosylation with the chitobiosyl azide acceptor followed by site-selective deprotection of the mannosylation product, the novel methodology enables the modular synthesis of the key intermediate trisaccharide with Man-β-(1 → 4)-GlcNAc-β-(1 → 4)-GlcNAc linkage for N-glycan synthesis. Theoretical investigations with density functional theory calculations delved into the mechanistic details of this β-selective mannosylation and elucidated two zinc cations' essential roles as the activating agent of the donor and the principal mediator of the cis-directing intermolecular interaction.
Collapse
Affiliation(s)
- Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaming Ao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371, Singapore
| | - Qian Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yan Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Wanmeng Zhu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako, Saitama 3510198, Japan.,Graduate School of Science, Osaka University, Toyonaka, Osaka 5600043, Japan
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637371, Singapore
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Nikolova Y, Dobrikov GM, Petkova Z, Shestakova P. Chiral Aminoalcohols and Squaric Acid Amides as Ligands for Asymmetric Borane Reduction of Ketones: Insight to In Situ Formed Catalytic System by DOSY and Multinuclear NMR Experiments. Molecules 2021; 26:6865. [PMID: 34833957 PMCID: PMC8624562 DOI: 10.3390/molecules26226865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
A series of squaric acid amides (synthesized in 66-99% isolated yields) and a set of chiral aminoalcohols were comparatively studied as ligands in a model reaction of reduction of α-chloroacetophenone with BH3•SMe2. In all cases, the aminoalcohols demonstrated better efficiency (up to 94% ee), while only poor asymmetric induction was achieved with the corresponding squaramides. A mechanistic insight on the in situ formation and stability at room temperature of intermediates generated from ligands and borane as possible precursors of the oxazaborolidine-based catalytic system has been obtained by 1H DOSY and multinuclear 1D and 2D (1H, 10/11B, 13C, 15N) NMR spectroscopy of equimolar mixtures of borane and selected ligands. These results contribute to better understanding the complexity of the processes occurring in the reaction mixture prior to the possible oxazaborolidine formation, which play a crucial role on the degree of enantioselectivity achieved in the borane reduction of α-chloroacetophenone.
Collapse
Affiliation(s)
- Yana Nikolova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (G.M.D.); (Z.P.)
| | | | | | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bl. 9, Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; (G.M.D.); (Z.P.)
| |
Collapse
|
8
|
Fu Y, Bernasconi L, Liu P. Ab Initio Molecular Dynamics Simulations of the S N1/S N2 Mechanistic Continuum in Glycosylation Reactions. J Am Chem Soc 2021; 143:1577-1589. [PMID: 33439656 PMCID: PMC8162065 DOI: 10.1021/jacs.0c12096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a computational approach to evaluate the reaction mechanisms of glycosylation using ab initio molecular dynamics (AIMD) simulations in explicit solvent. The reaction pathways are simulated via free energy calculations based on metadynamics and trajectory simulations using Born-Oppenheimer molecular dynamics. We applied this approach to investigate the mechanisms of the glycosylation of glucosyl α-trichloroacetimidate with three acceptors (EtOH, i-PrOH, and t-BuOH) in three solvents (ACN, DCM, and MTBE). The reactants and the solvents are treated explicitly using density functional theory. We show that the profile of the free energy surface, the synchronicity of the transition state structure, and the time gap between leaving group dissociation and nucleophile association can be used as three complementary indicators to describe the glycosylation mechanism within the SN1/SN2 continuum for a given reaction. This approach provides a reliable means to rationalize and predict reaction mechanisms and to estimate lifetimes of oxocarbenium intermediates and their dependence on the glycosyl donor, acceptor, and solvent environment.
Collapse
Affiliation(s)
- Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Leonardo Bernasconi
- Center for Research Computing, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
9
|
Evans R. The interpretation of small molecule diffusion coefficients: Quantitative use of diffusion-ordered NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:33-69. [PMID: 32471534 DOI: 10.1016/j.pnmrs.2019.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 06/11/2023]
Abstract
Measuring accurate molecular self-diffusion coefficients, D, by nuclear magnetic resonance (NMR) techniques has become routine as hardware, software and experimental methodologies have all improved. However, the quantitative interpretation of such data remains difficult, particularly for small molecules. This review article first provides a description of, and explanation for, the failure of the Stokes-Einstein equation to accurately predict small molecule diffusion coefficients, before moving on to three broadly complementary methods for their quantitative interpretation. Two are based on power laws, but differ in the nature of the reference molecules used. The third addresses the uncertainties in the Stokes-Einstein equation directly. For all three methods, a wide range of examples are used to show the range of chemistry to which diffusion NMR can be applied, and how best to implement the different methods to obtain quantitative information from the chemical systems studied.
Collapse
Affiliation(s)
- Robert Evans
- Aston Institute of Materials Research, School of Engineering and Applied Science, Aston University, Birmingham B4 7ET, United Kingdom.
| |
Collapse
|
10
|
Kowalska K, Pedersen CM. α-Selective glycosylations using glycosyl N-(ortho-methoxyphenyl)trifluoroacetimidates. Org Biomol Chem 2020; 18:1918-1925. [PMID: 32101221 DOI: 10.1039/c9ob02696g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Six N-(o-methoxyphenyl)trifluoroacetimidate glycosyl donors have been synthesized and their role as glycosyl donors has been investigated. The donors were synthesized with complete β-selectivity, except in one case, and were found to be stable. When Bi(OTf)3, Fe(OTf)2, and Zn(OTf)2 were employed as catalysts, the glycosylations were found to be highly α-selective in Et2O. The selectivity and reaction rate changed with a change in the acceptor reactivity.
Collapse
Affiliation(s)
- Karolina Kowalska
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark. and Faculty of Chemistry, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Christian Marcus Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Direct Addition of Amides to Glycals Enabled by Solvation‐Insusceptible 2‐Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Nakatsuji Y, Kobayashi Y, Takemoto Y. Direct Addition of Amides to Glycals Enabled by Solvation-Insusceptible 2-Haloazolium Salt Catalysis. Angew Chem Int Ed Engl 2019; 58:14115-14119. [PMID: 31392793 DOI: 10.1002/anie.201907129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/24/2019] [Indexed: 01/12/2023]
Abstract
The direct 2-deoxyglycosylation of nucleophiles with glycals leads to biologically and pharmacologically important 2-deoxysugar compounds. Although the direct addition of hydroxyl and sulfonamide groups have been well developed, the direct 2-deoxyglycosylation of amide groups has not been reported to date. Herein, we show the first direct 2-deoxyglycosylation of amide groups using a newly designed Brønsted acid catalyst under mild conditions. Through mechanistic investigations, we discovered that the amide group can inhibit acid catalysts, and the inhibition has made the 2-deoxyglycosylation reaction difficult. Diffusion-ordered two-dimensional NMR spectroscopy analysis implied that the 2-chloroazolium salt catalyst was less likely to form aggregates with amides in comparison to other acid catalysts. The chlorine atom and the extended π-scaffold of the catalyst played a crucial role for this phenomenon. This relative insusceptibility to inhibition by amides is more responsible for the catalytic activity than the strength of the acidity.
Collapse
Affiliation(s)
- Yuya Nakatsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yusuke Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Shimoadachi-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
13
|
Ning C, Ma H, Pedersen CM, Chang H, Wang Y, Qiao Y. Interaction between environmental contaminant PFOA and PAMAM in water: 19F and 1H NMR studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Fortunato S, Lenzi C, Granchi C, Citi V, Martelli A, Calderone V, Di Pietro S, Signore G, Di Bussolo V, Minutolo F. First Examples of H 2S-Releasing Glycoconjugates: Stereoselective Synthesis and Anticancer Activities. Bioconjug Chem 2019; 30:614-620. [PMID: 30609890 DOI: 10.1021/acs.bioconjchem.8b00808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
H2S donors are currently emerging as promising therapeutic agents in a wide variety of pathologies, including tumors. Cancer cells are characterized by an enhanced uptake of sugars, such as glucose. Therefore, novel glycoconjugated H2S donors were synthesized so that high concentrations of H2S can be selectively achieved therein. Dithiolethione portions or isothiocyanate portions were selected for their well-known H2S-releasing properties in the presence of biological substrates. A synthetic procedure employing trichloroacetimidate glycosyl donors was applied to produce, in a stereoselective fashion, C1-glycoconjugates, whereas C6-glycoconjugates were obtained by a Mitsunobu-based transformation. The resulting molecules were then tested for their anticancer effects on human pancreas adenocarcinoma ascites metastasis cell line AsPC-1. The most potent inhibitors of cell viability (6aβ and 7b) proved to release H2S inside the AsPC-1 cells and to alter the basal cell cycle.
Collapse
Affiliation(s)
- Serena Fortunato
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno Pisano , 56126 Pisa , Italy
| | - Chiara Lenzi
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno Pisano , 56126 Pisa , Italy
| | - Carlotta Granchi
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno Pisano , 56126 Pisa , Italy
| | - Valentina Citi
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno Pisano , 56126 Pisa , Italy
| | - Alma Martelli
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno Pisano , 56126 Pisa , Italy
| | - Vincenzo Calderone
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno Pisano , 56126 Pisa , Italy
| | - Sebastiano Di Pietro
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno Pisano , 56126 Pisa , Italy
| | - Giovanni Signore
- NEST, Scuola Normale Superiore and NANO-CNR , Piazza San Silvestro 12 , 56127 Pisa , Italy
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale , Università di Pisa , Via G. Moruzzi 13 , 56124 Pisa , Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia , Università di Pisa , Via Bonanno Pisano , 56126 Pisa , Italy
| |
Collapse
|
15
|
Sletten ET, Tu YJ, Schlegel HB, Nguyen HM. Are Brønsted Acids the True Promoter of Metal-Triflate-Catalyzed Glycosylations? A Mechanistic Probe into 1,2- cis-Aminoglycoside Formation by Nickel Triflate. ACS Catal 2019; 9:2110-2123. [PMID: 31819822 PMCID: PMC6900934 DOI: 10.1021/acscatal.8b04444] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal triflates have been utilized to catalytically facilitate numerous glycosylation reactions under mild conditions. In some methods, the metal triflate system provides stereocontrol during the glycosylation, rather than the nature of protecting groups on the substrate. Despite these advances, the true activating nature of metal triflates remains unclear. Our findings indicated that the in situ generation of trace amounts of triflic acid from metal triflates can be the active catalyst species in the glycosylation. This fact has been mentioned previously in metal triflate-catalyzed glycosylation reactions; however, a thorough study on the subject and its implications on stereoselectivity has yet to be performed. Experimental evidence from control reactions and 19F NMR spectroscopy have been obtained to confirm and quantify the triflic acid released from nickel triflate, for which it is of paramount importance in achieving a stereoselective 1,2-cis-2-amino glycosidic bond formation via a transient anomeric triflate. A putative intermediate resembling that of a glycosyl triflate has been detected using variable temperature NMR (1H and 13C) experiments. These observations, together with density functional theory calculations and a kinetic study, corroborate a mechanism involving triflic acid-catalyzed stereoselective glycosylation with N-substituted trifluoromethylbenzylideneamino protected electrophiles. Specifically, triflic acid facilitates formation of a glycosyl triflate intermediate which then undergoes isomerization from the stable α-anomer to the more reactive β-anomer. Subsequent SN2-like displacement of the reactive anomer by a nucleophile is highly favorable for the production of 1,2-cis-2-aminoglycosides. Although there is a previously reported work regarding glycosyl triflates, none of these reports have been confirmed to come from the counter ion of the metal center. Our work provides supporting evidence for the induction of a glycosyl triflate through the role of triflic acid in metal triflate-catalyzed glycosylation reactions.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United Sates
| | - Yi-Jung Tu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
16
|
Adero PO, Amarasekara H, Wen P, Bohé L, Crich D. The Experimental Evidence in Support of Glycosylation Mechanisms at the S N1-S N2 Interface. Chem Rev 2018; 118:8242-8284. [PMID: 29846062 PMCID: PMC6135681 DOI: 10.1021/acs.chemrev.8b00083] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A critical review of the state-of-the-art evidence in support of the mechanisms of glycosylation reactions is provided. Factors affecting the stability of putative oxocarbenium ions as intermediates at the SN1 end of the mechanistic continuum are first surveyed before the evidence, spectroscopic and indirect, for the existence of such species on the time scale of glycosylation reactions is presented. Current models for diastereoselectivity in nucleophilic attack on oxocarbenium ions are then described. Evidence in support of the intermediacy of activated covalent glycosyl donors is reviewed, before the influences of the structure of the nucleophile, of the solvent, of temperature, and of donor-acceptor hydrogen bonding on the mechanism of glycosylation reactions are surveyed. Studies on the kinetics of glycosylation reactions and the use of kinetic isotope effects for the determination of transition-state structure are presented, before computational models are finally surveyed. The review concludes with a critical appraisal of the state of the art.
Collapse
Affiliation(s)
- Philip Ouma Adero
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Harsha Amarasekara
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Peng Wen
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| | - Luis Bohé
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301 , Université Paris-Sud Université Paris-Saclay , 1 avenue de la Terrasse , 91198 Gif-sur-Yvette , France
| | - David Crich
- Department of Chemistry , Wayne State University , 5101 Cass Avenue , Detroit , Michigan 48202 , United States
| |
Collapse
|
17
|
Affiliation(s)
- Michael Martin Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | |
Collapse
|
18
|
Ning C, Ge W, Lyu Z, Luo D, Shi K, Pedersen CM, Nielsen MM, Qiao Y, Wang Y. Ca2+
-Assisted DOSY NMR: An Unexpected Tool for Anomeric Identification for d
-Glucopyranose. ChemistrySelect 2018. [DOI: 10.1002/slct.201800316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Caifang Ning
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
- Graduate University of Chinese Academy of Sciences; Beijing, People's Republic of China
| | - Wenzhi Ge
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
- Bruker (Beijing) Scientific Technology Co. Ltd. 8F, Tower C, Building B-6; No 66 Xi Xiao Kou Road, Haidian District Beijing China 100192
| | - Zexiang Lyu
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
| | - Dan Luo
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
- Graduate University of Chinese Academy of Sciences; Beijing, People's Republic of China
| | - Kemeng Shi
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
- Graduate University of Chinese Academy of Sciences; Beijing, People's Republic of China
| | | | - Michael Martin Nielsen
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 DK-2100 Copenhagen Denmark
| | - Yan Qiao
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
| | - Yingxiong Wang
- Institute of Coal Chemistry; Chinese Academy of Sciences; 27 South Taoyuan Road Taiyuan 030001, People's Republic of China
| |
Collapse
|
19
|
Concise synthesis of 2,7-anhydrosialic acid derivatives and its application. Carbohydr Res 2017; 453-454:44-53. [DOI: 10.1016/j.carres.2017.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
|
20
|
Kreyenschmidt AK, Bachmann S, Niklas T, Stalke D. Molecular Weight Estimation of Molecules Incorporating Heavier Elements from van-der-Waals Corrected ECC-DOSY. ChemistrySelect 2017. [DOI: 10.1002/slct.201701497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anne-Kathrin Kreyenschmidt
- Institut für Anorganische Chemie der; Georg-August-Universität Göttingen; Tammannstraße 4 37077 Göttingen
| | - Sebastian Bachmann
- Institut für Anorganische Chemie der; Georg-August-Universität Göttingen; Tammannstraße 4 37077 Göttingen
| | - Thomas Niklas
- Institut für Anorganische Chemie der; Georg-August-Universität Göttingen; Tammannstraße 4 37077 Göttingen
| | - Dietmar Stalke
- Institut für Anorganische Chemie der; Georg-August-Universität Göttingen; Tammannstraße 4 37077 Göttingen
| |
Collapse
|
21
|
Nielsen MM, Stougaard BA, Bols M, Glibstrup E, Pedersen CM. Glycosyl Fluorides as Intermediates in BF3·OEt2-Promoted Glycosylation with Trichloroacetimidates. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael M. Nielsen
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen O Denmark
| | - Bolette A. Stougaard
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen O Denmark
| | - Mikael Bols
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen O Denmark
| | - Emil Glibstrup
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen O Denmark
| | - Christian M. Pedersen
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 Copenhagen O Denmark
| |
Collapse
|
22
|
Abstract
Glycosylation using Tf2NH or Tf2NTMS as the catalysts and a trichloroacetimidate donor gives glycosides with inverted anomeric stereochemistry.
Collapse
Affiliation(s)
- K. Kowalska
- Department of Chemistry
- University of Copenhagen
- Universitetsparken 5
- DK-2100 Copenhagen
- Denmark
| | - C. M. Pedersen
- Department of Chemistry
- University of Copenhagen
- Universitetsparken 5
- DK-2100 Copenhagen
- Denmark
| |
Collapse
|
23
|
|