1
|
Yang L, Su H, Sun Y, Zhang S, Cheng M, Liu Y. Recent Advances in Gold(I)-Catalyzed Approaches to Three-Type Small-Molecule Scaffolds via Arylalkyne Activation. Molecules 2022; 27:8956. [PMID: 36558089 PMCID: PMC9785939 DOI: 10.3390/molecules27248956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Gold catalysts possess the advantages of water and oxygen resistance, with the possibility of catalyzing many novel chemical transformations, especially in the syntheses of small-molecule skeletons, in addition to achieving the rapid construction of multiple chemical bonds and ring systems in one step. In this feature paper, we summarize recent advances in the construction of small-molecule scaffolds, such as benzene, cyclopentene, furan, and pyran, based on gold-catalyzed cyclization of arylalkyne derivatives within the last decade. We hope that this review will serve as a useful reference for chemists to apply gold-catalyzed strategies to the syntheses of related natural products and active molecules, hopefully providing useful guidance for the exploration of additional novel gold-catalyzed approaches.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Drug Research in Medicine Capital of China, Shenyang Pharmaceutical University, Benxi 117000, China
| | - Hongwei Su
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Drug Research in Medicine Capital of China, Shenyang Pharmaceutical University, Benxi 117000, China
| | - Yue Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Drug Research in Medicine Capital of China, Shenyang Pharmaceutical University, Benxi 117000, China
| | - Sen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Drug Research in Medicine Capital of China, Shenyang Pharmaceutical University, Benxi 117000, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Drug Research in Medicine Capital of China, Shenyang Pharmaceutical University, Benxi 117000, China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Institute of Drug Research in Medicine Capital of China, Shenyang Pharmaceutical University, Benxi 117000, China
| |
Collapse
|
2
|
Ye YF, Li F, Chen JL, An ZQ, Zhang GY, Wang YB. Transition-Metal-Free Synthesis of 3-Acyl Chromones by the Tandem Reaction of Ynones and Methyl Salicylates. J Org Chem 2022; 87:14005-14015. [PMID: 36210518 DOI: 10.1021/acs.joc.2c01637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A facile and effective tandem reaction of ynones and methyl salicylates was developed to obtain a broad range of 3-acyl chromones in moderate-to-excellent yields. This protocol underwent a Michael addition and cyclization process, which exhibited easily accessible substrates, broad substrate scope, and high regioselectivity under mild and transition-metal-free conditions. Moreover, gram-scale reaction and further chemical transformation of the products were also further studied.
Collapse
Affiliation(s)
- Ya-Fang Ye
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Feng Li
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jia-Le Chen
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zi-Qian An
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Gui-Ying Zhang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yan-Bo Wang
- Henan Engineering Research Center of Functional Materials and Catalytic Reaction, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Zhang J, Zhang S, Ding Z, Hou A, Fu J, Su H, Cheng M, Lin B, Yang L, Liu Y. Gold(I)-Catalyzed Tandem Intramolecular Methoxylation/Double Aldol Condensation Strategy Yielding 2,2′-Spirobi[indene] Derivatives. Org Lett 2022; 24:6777-6782. [DOI: 10.1021/acs.orglett.2c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingfu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Sen Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Zhixing Ding
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Anbin Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Hongwei Su
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P.R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P.R. China
| |
Collapse
|
4
|
Darbem MP, Esteves HA, Burrow RA, Soares-Paulino AA, Pimenta DC, Stefani HA. Synthesis of unprotected glyco-alkynones via molybdenum-catalyzed carbonylative Sonogashira cross-coupling reaction. RSC Adv 2022; 12:2145-2149. [PMID: 35425248 PMCID: PMC8979075 DOI: 10.1039/d1ra08388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Herein we report a novel Mo-catalyzed carbonylative Sonogashira cross-coupling between 2-iodoglycals and terminal alkynes. The reaction displays major improvements compared to a related Pd-catalyzed procedure previously published by our group, such as utilizing unprotected sugar derivatives as starting materials and tolerance to substrates bearing chelating groups. In this work we also demonstrate the utility of the glyco-alkynone products as platform for further functionalization by synthesizing glyco-flavones via Au-catalyzed 6-endo-dig cyclization.
Collapse
Affiliation(s)
- Mariana P Darbem
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| | - Henrique A Esteves
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Robert A Burrow
- Departamento de Química, Universidade Federal de Santa Maria Santa Maria 97105-340 Brazil
| | - Antônio A Soares-Paulino
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| | | | - Hélio A Stefani
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| |
Collapse
|
5
|
Sharma S, Sarma B, Baishya G. Direct synthesis of 4-hydroxycoumarins and 4-hydroxy-6-methyl-2-pyrone containing chroman-4-ones via a silver catalyzed radical cascade cyclization reaction. NEW J CHEM 2021. [DOI: 10.1039/d1nj03437e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel AgNO3/K2S2O8 catalyzed radical cascade cyclization reaction of 2-(allyloxy)arylaldehydes with 4-hydroxycoumarins and 4-hydroxy-6-methyl-2-pyrone produces two new series of chroman-2-ones.
Collapse
Affiliation(s)
- Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur, 784028, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
6
|
Li SY, Zhang X, Teng F, Li Y, Li JH. Rh(iii)-Catalyzed [3 + 2]/[4 + 2] annulation of acetophenone oxime ethers with 3-acetoxy-1,4-enynes involving C–H activation. Org Chem Front 2021. [DOI: 10.1039/d1qo00090j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel, synthetically simple, selective rhodium(iii)-catalyzed [3 + 2]/[4 + 2] annulation cascade reaction to construct complex azafluorenone frameworks has been developed.
Collapse
Affiliation(s)
- Sun-Yong Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Xu Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- State Key Laboratory of Chemo/Biosensing and Chemometrics
| |
Collapse
|
7
|
Li Y, Zhao X. Importance of Counterions in Gold‐hydrogen Bonding Cooperative Catalytic Approach to Spirocyclic Rings: Insights on Mechanism and Origins. ChemCatChem 2020. [DOI: 10.1002/cctc.202001303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics School of Chemistry State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University Xi'an 710049 P.R. China
| | - Xiang Zhao
- Institute for Chemical Physics School of Chemistry State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University Xi'an 710049 P.R. China
| |
Collapse
|
8
|
Tian S, Luo T, Zhu Y, Wan JP. Recent advances in the diversification of chromones and flavones by direct C H bond activation or functionalization. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
10
|
Xie F, Zhang B, Chen Y, Jia H, Sun L, Zhuang K, Yin L, Cheng M, Lin B, Liu Y. A Gold(I)‐Catalyzed Tandem Cyclization to Benzo[
b
]indeno[1,2‐
e
][1,4]diazepines from
o
‐Phenylenediamines and Ynones. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fukai Xie
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| | - Bo Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| | - Yanyu Chen
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| | - Hongwei Jia
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| | - Lei Sun
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| | - Kaitong Zhuang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| | - Lili Yin
- Shenyang Heshi Pharmaceutical Co., Ltd. Shengyang 110163 People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University) Ministry of Education Shenyang 110016 People's Republic of China
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 People's Republic of China
- Institute of Drug Research in Medicine Capital of China Benxi 117000 People's Republic of China
| |
Collapse
|
11
|
Li Y, Zhao X. Assessing counterion effects in gold-catalyzed domino spirocyclization: an industrial perspective on hydrogen bonding. Phys Chem Chem Phys 2020; 22:19606-19612. [PMID: 32936160 DOI: 10.1039/d0cp03367g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We herein report a computational study of the hydrogen bonding in gold-catalyzed ipso-cyclization to diverse polyheterocyclic frameworks. The different roles of these hydrogen bonds are analyzed for the different ipso-cyclization reactions. The fine-tunability of the electronic as well as steric properties of gold counterions contributed substantially to the popularity of the dearomatization reaction, with robust applications in total synthesis and gold catalysis. We have found correlation between the hydrogen bonding parameters and chemoselectivity in gold-catalyzed spirocyclization, playing critical roles in determining the reaction direction of counterion-based enantioselective gold catalysis. The expanded use of counterions via hydrogen bonding interaction can occupy an important role in the future concerning catalyst optimization in gold catalysis.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
12
|
Liu MC, Liu W, Wu HY, Zhou YB, Ding Q, Peng Y. Transition-metal-free synthesis of CMe2CF3-containing chroman-4-ones via decarboxylative trifluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/c9qo01283d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
(NH4)2S2O8-mediated decarboxylative trifluoroalkylation of alkenes with 3,3,3-trifluoro-2,2-dimethylpropanoic acid under metal-free conditions has been described.
Collapse
Affiliation(s)
- Miao-Chang Liu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Wei Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- China
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- Jiangxi Normal University
- Nanchang 330022
- China
| |
Collapse
|
13
|
Li Y, Yu J, Bi Y, Yan G, Huang D. Tandem Reactions of Ynones:viaConjugate Addition of Nitrogen‐, Carbon‐, Oxygen‐, Boron‐, Silicon‐, Phosphorus‐, and Sulfur‐Containing Nucleophiles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900611] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Li
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Jian Yu
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Yicheng Bi
- Department of ChemistryQingdao University of Science & Technology Qingdao Shandong People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| |
Collapse
|
14
|
Xiong Z, Zhang X, Li Y, Peng X, Fu J, Guo J, Xie F, Jiang C, Lin B, Liu Y, Cheng M. Syntheses of 12H-benzo[a]xanthen-12-ones and benzo[a]acridin-12(7H)-ones through Au(i)-catalyzed Michael addition/6-endo-trig cyclization/aromatization cascade annulation. Org Biomol Chem 2019; 16:7361-7374. [PMID: 30124720 DOI: 10.1039/c8ob01684d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A multifaceted gold(i)-catalyzed aromaticity-driven double 6-endo cascade cyclization strategy to synthesize both 12H-benzo[a]xanthen-12-ones and benzo[a]acridin-12(7H)-ones, whose core motifs xanthone and acridone both exist as important scaffolds in an immense number of bioactive compounds, was developed. The scopes of this strategy were examined by using a batch of synthetic 1,3-diphenylprop-2-yn-1-one substrates. To probe the mechanism of this cyclization a control experiment for synthesizing intermediates was performed. Thus, a putative mechanism was determined according to this experiment and previous studies.
Collapse
Affiliation(s)
- Zhiling Xiong
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zheng Y, Guo L, Zi W. Enantioselective and Regioselective Hydroetherification of Alkynes by Gold-Catalyzed Desymmetrization of Prochiral Phenols with P-Stereogenic Centers. Org Lett 2018; 20:7039-7043. [DOI: 10.1021/acs.orglett.8b02982] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yin Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linna Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Tang L, Yang Z, Chang X, Jiao J, Ma X, Rao W, Zhou Q, Zheng L. K 2S 2O 8-Mediated Selective Trifluoromethylacylation and Trifluoromethylarylation of Alkenes under Transition-Metal-Free Conditions: Synthetic Scope and Mechanistic Studies. Org Lett 2018; 20:6520-6525. [PMID: 30289263 DOI: 10.1021/acs.orglett.8b02846] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A practical and efficient method for selective intramolecular radical trifluoromethylacylation and -arylation of alkenes with inexpensive CF3SO2Na and K2S2O8 in aqueous media has been developed, respectively, affording the highly chemoselective synthesis of CF3-functionalized chroman-4-ones and chromanes in satisfactory yields. Control experiments and DFT calculations indicate that the CF3SO2Na/K2S2O8 system is capable of trifluoromethylating the substrate of alkenes without a transition metal catalyst and the oxidation of CF3SO2Na to ·CF3 by K2S2O8 is involved in the rate-determining step.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China.,Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan , Xinyang , Henan 464000 , China
| | - Zhen Yang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Xueping Chang
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Jingchao Jiao
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Weihao Rao
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| | - Lingyun Zheng
- College of Chemistry and Chemical Engineering , Xinyang Normal University , Xinyang , Henan 464000 , China
| |
Collapse
|
17
|
Lachia M, Fonné-Pfister R, Screpanti C, Rendine S, Renold P, Witmer D, Lumbroso A, Godineau E, Hueber D, De Mesmaeker A. New and Scalable Access to Karrikin (KAR1) and Evaluation of Its Potential Application on Corn Germination. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mathilde Lachia
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - Raymonde Fonné-Pfister
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - Claudio Screpanti
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - Stefano Rendine
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - Peter Renold
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - David Witmer
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - Alexandre Lumbroso
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - Edouard Godineau
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - Damien Hueber
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| | - Alain De Mesmaeker
- Crop Protection Research; Syngenta Crop Protection AG; Schaffhauserstrasse CH-4332 Stein Switzerland
| |
Collapse
|
18
|
Jin S, Niu Y, Liu C, Zhu L, Li Y, Cui S, Xiong Z, Cheng M, Lin B, Liu Y. Gold(I)-Initiated Cycloisomerization/Diels–Alder/Retro-Diels–Alder Cascade Strategy to Biaryls. J Org Chem 2017; 82:9066-9074. [DOI: 10.1021/acs.joc.7b01561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shengfei Jin
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yujie Niu
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Chengjun Liu
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lifeng Zhu
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yangming Li
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Shanshan Cui
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Zhiling Xiong
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key
Laboratory of Structure-Based Drug Design and Discovery, Ministry
of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
19
|
Peng X, Zhu L, Hou Y, Pang Y, Li Y, Fu J, Yang L, Lin B, Liu Y, Cheng M. Access to Benzo[a]carbazoles and Indeno[1,2-c]quinolines by a Gold(I)-Catalyzed Tunable Domino Cyclization of Difunctional 1,2-Diphenylethynes. Org Lett 2017; 19:3402-3405. [DOI: 10.1021/acs.orglett.7b01358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaoshi Peng
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Lifeng Zhu
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Yuqian Hou
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Yadong Pang
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Yangming Li
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Jiayue Fu
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Lu Yang
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Bin Lin
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Yongxiang Liu
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Wuya
College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| | - Maosheng Cheng
- Key
Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi, 117000, P. R. China
| |
Collapse
|