1
|
Martínez‐Crespo L, Valkenier H. Transmembrane Transport of Bicarbonate by Anion Receptors. Chempluschem 2022; 87:e202200266. [PMID: 36414387 PMCID: PMC9827909 DOI: 10.1002/cplu.202200266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/13/2022] [Indexed: 01/31/2023]
Abstract
The development of synthetic anion transporters is motivated by their potential application as treatment for diseases that originate from deficient anion transport by natural proteins. Transport of bicarbonate is important for crucial biological functions such as respiration and digestion. Despite this biological relevance, bicarbonate transport has not been as widely studied as chloride transport. Herein we present an overview of the synthetic receptors that have been studied as bicarbonate transporters, together with the different assays used to perform transport studies in large unilamellar vesicles. We highlight the most active transporters and comment on the nature of the functional groups present in active and inactive compounds. We also address recent mechanistic studies that have revealed different processes that can lead to net transport of bicarbonate, as well as studies reported in cells and tissues, and comment on the key challenges for the further development of bicarbonate transporters.
Collapse
Affiliation(s)
- Luis Martínez‐Crespo
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK,Manchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK,Université Libre de Bruxelles (ULB) Engineering of Molecular NanoSystemsEcole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/64B-1050BrusselsBelgium
| | - Hennie Valkenier
- Université Libre de Bruxelles (ULB) Engineering of Molecular NanoSystemsEcole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/64B-1050BrusselsBelgium
| |
Collapse
|
2
|
Malla JA, Upadhyay A, Ghosh P, Mondal D, Mondal A, Sharma S, Talukdar P. Chloride Transport across Liposomes and Cells by Nontoxic 3-(1 H-1,2,3-Triazol-1-yl)benzamides. Org Lett 2022; 24:4124-4128. [PMID: 35657329 DOI: 10.1021/acs.orglett.2c01219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic anion transmembrane transporters are adding new aspirations for treating channelopathies by replacing defective ion channels. The availability of such suitable candidates is still infrequent due to the associated toxicity. Here, we report 3-(1H-1,2,3-triazol-1-yl)benzamides as transmembrane anion carriers, nontoxic to cells. The selective and electrogenic chloride transport activity was established by fluorescence and ion selective electrode-based assays. MQAE assay confirmed the chloride uptake into the cells by the nontoxic compounds.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Avisikta Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Debashis Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Abhishek Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, 411007 Pune, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
3
|
Pramanik S, Pathak S, Frontera A, Mukhopadhyay S. Syntheses, crystal structures and supramolecular assemblies of two Cu( ii) complexes based on a new heterocyclic ligand: insights into C–H⋯Cl and π⋯π interactions. CrystEngComm 2022. [DOI: 10.1039/d1ce01402a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new heterocyclic ligand, N3L [4-(1-methylimidazole)-2,6-di(pyrazinyl)pyridine] and two Cu(ii) complexes have been synthesized and characterized by several spectroscopic and DFT methods.
Collapse
Affiliation(s)
- Samit Pramanik
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sudipta Pathak
- Department of Chemistry, Haldia Government College, Purba Medinipur, 721657, Debhog, West Bengal, India
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain
| | | |
Collapse
|
4
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
5
|
Martínez‐Crespo L, Hewitt SH, De Simone NA, Šindelář V, Davis AP, Butler S, Valkenier H. Transmembrane Transport of Bicarbonate Unravelled*. Chemistry 2021; 27:7367-7375. [PMID: 33932059 PMCID: PMC8251953 DOI: 10.1002/chem.202100491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Anion receptors can be used to transport ions across lipid bilayers, which has potential for therapeutic applications. Synthetic bicarbonate transporters are of particular interest, as defects in transmembrane transport of bicarbonate are associated with various diseases. However, no convenient method exists to directly observe bicarbonate transport and study the mechanisms involved. Here, an assay is presented that allows the kinetics of bicarbonate transport into liposomes to be monitored directly and with great sensitivity. The assay utilises an encapsulated europium(III) complex, which exhibits a large increase in emission intensity upon binding bicarbonate. Mechanisms involving CO2 diffusion and the dissipation of a pH gradient are shown to be able to lead to an increase in bicarbonate concentration within liposomes, without transport of the anion occurring at all. By distinguishing these alternative mechanisms from actual bicarbonate transport, this assay will inform the future development of bicarbonate transporters.
Collapse
Affiliation(s)
- Luis Martínez‐Crespo
- Université Libre de Bruxelles (ULB)Engineering of Molecular NanoSystems, Ecole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| | - Sarah H. Hewitt
- Loughborough UniversityDepartment of ChemistryEpinal WayLoughboroughLE11 3TUUK
| | | | - Vladimír Šindelář
- Masaryk UniversityDepartment of Chemistry and RECETOX, Faculty of ScienceKamenice 5625 00BrnoCzech Republic
| | - Anthony P. Davis
- University of BristolSchool of ChemistryCantock's CloseBristolBS8 1TSUK
| | - Stephen Butler
- Loughborough UniversityDepartment of ChemistryEpinal WayLoughboroughLE11 3TUUK
| | - Hennie Valkenier
- Université Libre de Bruxelles (ULB)Engineering of Molecular NanoSystems, Ecole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| |
Collapse
|
6
|
Bickerton LE, Sterling AJ, Beer PD, Duarte F, Langton MJ. Transmembrane anion transport mediated by halogen bonding and hydrogen bonding triazole anionophores. Chem Sci 2020; 11:4722-4729. [PMID: 34122927 PMCID: PMC8159253 DOI: 10.1039/d0sc01467b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transmembrane ion transport by synthetic anionophores is typically achieved using polar hydrogen bonding anion receptors. Here we show that readily accessible halogen and hydrogen bonding 1,2,3-triazole derivatives can efficiently mediate anion transport across lipid bilayer membranes with unusual anti-Hofmeister selectivity. Importantly, the results demonstrate that the iodo-triazole systems exhibit the highest reported activity to date for halogen bonding anionophores, and enhanced transport efficiency relative to the hydrogen bonding analogues. In contrast, the analogous fluoro-triazole systems, which are unable to form intermolecular interactions with anions, are inactive. The halogen bonding anionophores also exhibit a remarkable intrinsic chloride over hydroxide selectivity, which is usually observed only in more complex anionophore designs, in contrast to the readily accessible acyclic systems reported here. This highlights the potential of iodo-triazoles as synthetically accessible and versatile motifs for developing more efficient anion transport systems. Computational studies provide further insight into the nature of the anion-triazole intermolecular interactions, examining the origins of the observed transport activity and selectivity of the systems, and revealing the role of enhanced charge delocalisation in the halogen bonding anion complexes. Halogen and hydrogen bonding 1,2,3-triazole derivatives efficiently mediate anion transport across lipid bilayer membranes with unusual anion selectivity profiles.![]()
Collapse
Affiliation(s)
- Laura E Bickerton
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Alistair J Sterling
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
7
|
Carreira-Barral I, Mielczarek M, Alonso-Carrillo D, Capurro V, Soto-Cerrato V, Pérez Tomás R, Caci E, García-Valverde M, Quesada R. Click-tambjamines as efficient and tunable bioactive anion transporters. Chem Commun (Camb) 2020; 56:3218-3221. [PMID: 32073062 DOI: 10.1039/d0cc00643b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel class of transmembrane anion carriers, the click-tambjamines, display remarkable anionophoric activities in model liposomes and living cells. The versatility of this building block for the generation of molecular diversity offers promise to develop future drugs based on this design.
Collapse
Affiliation(s)
| | - Marcin Mielczarek
- Departamento de Química, Universidad de Burgos, Burgos 09001, Spain.
| | | | - Valeria Capurro
- UOC Genetica Medica, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | - Vanessa Soto-Cerrato
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Ricardo Pérez Tomás
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Emanuela Caci
- UOC Genetica Medica, IRCSS Istituto Giannina Gaslini, Genova, Italy
| | | | - Roberto Quesada
- Departamento de Química, Universidad de Burgos, Burgos 09001, Spain.
| |
Collapse
|
8
|
Yu XH, Hong XQ, Mao QC, Chen WH. Biological effects and activity optimization of small-molecule, drug-like synthetic anion transporters. Eur J Med Chem 2019; 184:111782. [DOI: 10.1016/j.ejmech.2019.111782] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022]
|
9
|
|
10
|
Chen S, Zhao Y, Bao C, Zhou Y, Wang C, Lin Q, Zhu L. A well-defined unimolecular channel facilitates chloride transport. Chem Commun (Camb) 2018; 54:1249-1252. [PMID: 29340374 DOI: 10.1039/c7cc09200h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A unimolecular ion channel was optimized by functionalization with a new type of rigid-rod oligomer. The macrocycle pendant endows chloride selectivity and the fluorescence feature and suitable length of the rod facilitates the visual insertion of channels into the lipid bilayer, resulting in efficient ion transport with an EC50 value of 0.36 μM.
Collapse
Affiliation(s)
- Sujun Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130# Meilong Road, Shanghai, 200237, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hernando E, Capurro V, Cossu C, Fiore M, García-Valverde M, Soto-Cerrato V, Pérez-Tomás R, Moran O, Zegarra-Moran O, Quesada R. Small molecule anionophores promote transmembrane anion permeation matching CFTR activity. Sci Rep 2018; 8:2608. [PMID: 29422673 PMCID: PMC5805763 DOI: 10.1038/s41598-018-20708-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022] Open
Abstract
Anion selective ionophores, anionophores, are small molecules capable of facilitating the transmembrane transport of anions. Inspired in the structure of natural product prodigiosin, four novel anionophores 1a-d, including a 1,2,3-triazole group, were prepared. These compounds proved highly efficient anion exchangers in model phospholipid liposomes. The changes in the hydrogen bond cleft modified the anion transport selectivity exhibited by these compounds compared to prodigiosin and suppressed the characteristic high toxicity of the natural product. Their activity as anionophores in living cells was studied and chloride efflux and iodine influx from living cells mediated by these derivatives was demonstrated. These compounds were shown to permeabilize cellular membranes to halides with efficiencies close to the natural anion channel CFTR at doses that do not compromise cellular viability. Remarkably, optimal transport efficiency was measured in the presence of pH gradients mimicking those found in the airway epithelia of Cystic Fibrosis patients. These results support the viability of developing small molecule anionophores as anion channel protein surrogates with potential applications in the treatment of conditions such as Cystic Fibrosis derived from the malfunction of natural anion transport mechanisms.
Collapse
Affiliation(s)
- Elsa Hernando
- Departamento de Química, Universidad de Burgos, 09001, Burgos, Spain
| | - Valeria Capurro
- U.O.C. Genetica Medica, Instituto Giannina Gaslini, Genoa, Italy
| | | | | | | | - Vanessa Soto-Cerrato
- Cancer Cell Biology Research Group, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ricardo Pérez-Tomás
- Cancer Cell Biology Research Group, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | | | - Roberto Quesada
- Departamento de Química, Universidad de Burgos, 09001, Burgos, Spain.
| |
Collapse
|
12
|
Lang C, Mohite A, Deng X, Yang F, Dong Z, Xu J, Liu J, Keinan E, Reany O. Semithiobambus[6]uril is a transmembrane anion transporter. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc04026a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bambus[6]uril analogs are excellent anion binders but only the sulfur analog is also an effective anion transporter capable of polarizing lipid membranes through selective anion uniport.
Collapse
Affiliation(s)
- Chao Lang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Amar Mohite
- Department of Natural Sciences
- The Open University of Israel
- Ra'anana
- Israel
| | - Xiaoli Deng
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Ehud Keinan
- The Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Technion city
- Israel
| | - Ofer Reany
- Department of Natural Sciences
- The Open University of Israel
- Ra'anana
- Israel
| |
Collapse
|